M. Abhimanyu, R. Ambalath, C. Balasundaram, H. Rao, V. Koppula et al., On the kernelization complexity of colorful motifs, IPEC 2010, number 6478 in LNCS, pp.14-25, 2010.

A. Adiga, R. Chitnis, and S. Saurabh, Parameterized Algorithms for Boxicity, pp.366-377, 2010.
DOI : 10.1007/978-3-642-17517-6_33

C. Bazgan, M. Chopin, and M. R. Fellows, Parameterized Complexity of the Firefighter Problem, ISAAC, pp.643-652, 2011.
DOI : 10.1007/978-3-642-25591-5_66

L. Hans, R. G. Bodlaender, M. R. Downey, D. Fellows, and . Hermelin, On problems without polynomial kernels, J. Comput. Syst. Sci, issue.8, pp.75423-434, 2009.

L. Hans, B. M. Bodlaender, S. Jansen, and . Kratsch, Cross-composition: A new technique for kernelization lower bounds, STACS, pp.165-176, 2011.

L. Hans and . Bodlaender, Kernelization: New upper and lower bound techniques, IWPEC, pp.17-37, 2009.

M. Binh, M. Bui-xuan-arne-telle, and . Vatshelle, Feedback vertex set on graphs of low cliquewidth, IWOCA, pp.113-124, 2009.

M. Cygan, F. V. Fomin, and E. Jan-van-leeuwen, Parameterized Complexity of Firefighting Revisited, IPEC, pp.13-26, 2011.
DOI : 10.1016/j.disc.2005.12.053

J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theoretical Computer Science, vol.411, issue.40-42, pp.3736-3756, 2010.
DOI : 10.1016/j.tcs.2010.06.026

J. [. Courcelle, U. Makowsky, and . Rotics, Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width, Theory of Computing Systems, vol.33, issue.2, pp.125-150, 2000.
DOI : 10.1007/s002249910009

M. [. Downey and . Fellows, Parameterized complexity. Monographs in Computer Science, 1999.

]. R. Die05 and . Diestel, Graph Theory, volume 173 of Graduate texts in mathematics, 2005.

M. Doucha and J. Kratochvíl, Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width, MFCS, pp.348-359, 2012.
DOI : 10.1007/978-3-642-32589-2_32

R. Enciso, M. R. Fellows, J. Guo, I. Kanj, F. Rosamond et al., What Makes Equitable Connected Partition Easy, IPEC, pp.122-133, 2009.
DOI : 10.1007/978-3-642-11269-0_10

D. [. Ford and . Fulkerson, Maximal flow through a network, Journal canadien de math??matiques, vol.8, issue.0, pp.399-404, 1954.
DOI : 10.4153/CJM-1956-045-5

R. Michael, G. Fellows, D. Fertin, S. Hermelin, and . Vialette, Upper and lower bounds for finding connected motifs in vertex-colored graphs, J. Comput. Syst. Sci, vol.77, pp.799-811, 2011.

R. Michael, F. V. Fellows, D. Fomin, F. Lokshtanov, S. Rosamond et al., On the complexity of some colorful problems parameterized by treewidth, Inf. Comput, vol.209, pp.143-153, 2011.

M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revisited

J. Fiala, P. A. Golovach, and J. Kratochvíl, Parameterized complexity of coloring problems: Treewidth versus vertex cover, Theoretical Computer Science, vol.412, issue.23, pp.2513-2523, 2011.
DOI : 10.1016/j.tcs.2010.10.043

P. [. Fomin, D. Golovach, S. Lokshtanov, and . Saurab, Clique-width: On the Price of Generality, SODA'09, pp.825-834, 2009.
DOI : 10.1137/1.9781611973068.90

V. Fedor, P. A. Fomin, D. Golovach, S. Lokshtanov, and . Saurabh, Algorithmic lower bounds for problems parameterized with clique-width, SODA, pp.493-502, 2010.

R. Michael, D. Fellows, F. A. Hermelin, and . Rosamond, Well quasi orders in subclasses of bounded treewidth graphs and their algorithmic applications, Algorithmica, vol.64, issue.1, pp.3-18, 2012.

S. Finbow, A. D. King, G. Macgillivray, and R. Rizzi, The firefighter problem for graphs of maximum degree three, Discrete Mathematics, vol.307, issue.16, pp.2094-2105, 2007.
DOI : 10.1016/j.disc.2005.12.053

R. Michael, D. Fellows, N. Lokshtanov, F. A. Misra, S. Rosamond et al., Graph layout problems parameterized by vertex cover, pp.294-305, 2008.

R. Michael, F. A. Fellows, U. Rosamond, S. Rotics, and . Szeider, Clique-width is NPcomplete, SIAM J. Discret. Math, vol.23, pp.909-939, 2009.

R. Ganian, Thread Graphs, Linear Rank-Width and Their Algorithmic Applications, IWOCA, pp.38-42, 2010.
DOI : 10.1109/TCBB.2008.121

R. Ganian, Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics, IPEC, number 7112 in LNCS, pp.259-271, 2011.
DOI : 10.2307/2319405

R. Ganian and P. Hlin?n´hlin?n´y, On parse trees and Myhill???Nerode-type tools for handling graphs of bounded rank-width, Discrete Applied Mathematics, vol.158, issue.7, pp.851-867, 2010.
DOI : 10.1016/j.dam.2009.10.018

R. Ganian, P. Hlin?n´hlin?n´y, P. Obdr?álek, R. Ossona-de-mendez, and . Ramadurai, When Trees Grow Low: Shrubs and Fast MSO1, MFCS, pp.419-430, 2012.
DOI : 10.1007/978-3-642-32589-2_38

]. B. Har95 and . Hartnell, Firefighter! An application of domination. Presentation, 25th Manitoba Conference on Combinatorial Mathematics and Computing, 1995.

E. John, R. M. Hopcroft, and . Karp, An n 5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput, vol.2, issue.4, pp.225-231, 1973.

M. Habib and C. Paul, A survey of the algorithmic aspects of modular decomposition, Computer Science Review, vol.4, issue.1, pp.41-59, 2010.
DOI : 10.1016/j.cosrev.2010.01.001

J. Kratochvíl, A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Applied Mathematics, vol.52, issue.3, pp.233-252, 1994.
DOI : 10.1016/0166-218X(94)90143-0

M. Lampis, Algorithmic Meta-theorems for Restrictions of Treewidth, Algorithmica, vol.4, issue.3, pp.19-37, 2012.
DOI : 10.1007/s00453-011-9554-x

[. Lacroix, C. G. Fernandes, M. , and F. Sagot, Motif Search in Graphs: Application to Metabolic Networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.3, issue.4, pp.360-368, 2006.
DOI : 10.1109/TCBB.2006.55

URL : https://hal.archives-ouvertes.fr/hal-00427984

]. W. Mey73 and . Meyer, Equitable coloring, American Mathematical Monthly, vol.80, pp.920-922, 1973.

P. [. Oum and . Seymour, Approximating clique-width and branch-width, Journal of Combinatorial Theory, Series B, vol.96, issue.4, pp.514-528, 2006.
DOI : 10.1016/j.jctb.2005.10.006

]. F. Rob69 and . Roberts, On the boxicity and cubicity of a graph, Recent Progresses in Combinatorics, pp.301-310, 1969.

P. [. Robertson and . Seymour, Graph minors. IV. Tree-width and well-quasi-ordering, Journal of Combinatorial Theory, Series B, vol.48, issue.2, pp.227-254, 1990.
DOI : 10.1016/0095-8956(90)90120-O

M. Tedder, D. G. Corneil, M. Habib, and C. Paul, Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations, ICALP (1), pp.634-645, 2008.
DOI : 10.1007/978-3-540-70575-8_52

S. Thomassé, A quadratic kernel for feedback vertex set, SODA '09, pp.115-119, 2009.
DOI : 10.1137/1.9781611973068.13

T. Victor and W. , Linear algorithms on k-terminal graphs, 1987.