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Abstract. We propose a multi-region two-stream R-CNN model for ac-
tion detection in realistic videos. We start from frame-level action detec-
tion based on faster R-CNN [1], and make three contributions: (1) we
show that a motion region proposal network generates high-quality pro-
posals, which are complementary to those of an appearance region pro-
posal network; (2) we show that stacking optical ow over several frames
signi�cantly improves frame-level action detection; and (3) we embed
a multi-region scheme in the faster R-CNN model, which adds comple-
mentary information on body parts. We then link frame-level detections
with the Viterbi algorithm, and temporally localize an action with the
maximum subarray method. Experimental results on the UCF-Sports,
J-HMDB and UCF101 action detection datasets show that our approach
outperforms the state of the art with a signi�cant margin in both frame-
mAP and video-mAP.

Keywords: Action detection, faster R-CNN, multi-region CNNs, two
stream R-CNN

1 Introduction

Action recognition in videos has many realistic applications such as surveillance,
human computer interaction, and content-based retrieval. Most research e�orts
have concentrated on action classi�cation [2{5], where a class label is assigned to
an entire video. However, given a video stream, actions occur at precise spatio-
temporal extents. Action detection aims at determining these location, which
has attracted increasing attention recently [6{9]. It is a challenging problem due
to large intra-class variations, background clutter and in particular the large
spatio-temporal search space.

Several previous works address only temporal localization [10{12], i.e. they
only provide the start and end time of an action. State-of-the-art results are
obtained with a temporal sliding window and dense trajectory features [11].
For spatio-temporal detection, several recent works extend 2D object detection
models to 3D ones. For example, Tianet al. [6] extend the 2D deformable part
model [13] to a 3D deformable part model and Wanget al. [7] extend poselets [14]
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to a dynamic poselet model. More recent works �rst detect actions at a frame
level by using Convolutional Neural Networks (CNNs) features and then either
link them or track some selected detections to obtain video action detections [8,
9]. Thanks to the excellent performance of CNNs for object detection, these
frame-level based approaches achieve state-of-the-art performance. This suggests
that the quality of the frame-level action detections impacts directly the quality
of action detection in videos.

Thus, a crucial point is how to improve the frame-level action detection.
Weinzaepfel et al. [9] improve frame-level action detection by using a better
proposal algorithm, i.e. EdgeBoxes [15]. Gkioxariet al. [16] boost R-CNN based
action detection in still images by adding contextual features. Indeed, these
two approaches indicate two important issues for frame-level detection: 1) high-
quality proposals help CNNs to extract action representations precisely; and
2) the action representation is vital for detection.

In this paper we focus on the frame-level based action detection method,
and aim to advance the state-of-the-art with respect to these two key aspects:
frame-level action proposal and action representation.
Frame-level action proposal. One of the bottleneck for object detection based
on region proposals is the accurate localization of these proposals [17, 1, 18]. To
address this issue for action detection, we �rst evaluate three proposal meth-
ods for frame-level action localization on RGB data: selective search (SS) [19],
EdgeBoxes (EB) [15], and region proposal network (RPN) [1]. We show that the
RPN approach on appearance information achieves consistently better results
than the others with higher inter-section-over-union (IoU) score. Furthermore,
we extend the appearance RPN to motion RPN trained on optical ow data.
We observe that motion RPN obtains high quality proposals, which are shown
to be complementary to appearance RPN.
Action representation. Action representation is crucial for good performance,
see for example [20, 21]. Here, we propose an improved action representation in-
spired by the two-stream CNNs for action classi�cation [22] and multi-region
CNNs [18]. First, we stack multiple frame optical ows for the faster R-CNN
model which signi�cantly improves the motion R-CNN. Second, we select mul-
tiple body regions (i.e., upper body, lower body and border region) for both
appearance and motion R-CNN, which boosts the performance of frame-based
action detection.

In summary, this paper introduces a multi-region two-stream R-CNN model
for action detection with state-of-the-art results on UCF-Sports, J-HMDB and
UCF101 datasets. Our contributions are as follows: (1) we introduce a motion
RPN which generates high-quality proposals and is complementary to the ap-
pearance RPN. (2) We show that stacking optical ows signi�cantly improves
frame-level detections. (3) We embed a multi-region scheme in the faster R-CNN
model which is shown to improve the results.

The remained of this paper is organized as follows. In Sec.2, we review related
work on action recognition and region CNNs. We introduce the two-stream R-
CNN with the motion RPN and stacked optical ows in Sec.3. Our multi-region
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embedded R-CNN is described in Sec.4 and the temporal linking and localization
in Sec.5. We present experimental results in Sec.6.

2 Related work

Action recognition and Convolutional Neural Networks (CNNs) have been ex-
tensively studied in recent years [23, 24]. This section only covers the approaches
directly related to our method.
Action classi�cation and detection. For action classi�cation, most methods
focus on how to represent the entire video [2{5]. Popular video representations
are bag-of-visual-words (BoW) [25] and its variants which aggregate local video
features [2], CNN representations [22, 26], and slow feature representations [27].
Wang et al. [2] use Fisher Vectors [28] and dense trajectories with motion com-
pensation. Penget al. [4] combine this approach with stacked Fisher Vectors.
Simonyan et al. [22] design the two-stream CNNs based on RGB data and opti-
cal ow. Karpathy et al. [26] explore several approaches for fusing information
over time based on appearance CNN. Wanget al. [5] extract two-stream CNNs
along dense trajectories.

For action detection, [10, 11, 29, 30] use local features to represent actions
and rely on a sliding window scheme for either temporal or spatio-temporal
localization. Rodriguez et al. [31] and Derpaniset al. [32] conduct global tem-
plate matching. Tran et al. [33] use a BoW representation and implement the
optimal spatio-temporal path for action detection. Tian et al. [6] extend the
2D deformable part model [13] to 3D space-time volumes for action localization.
Wang et al. [7] apply dynamic poselets and a sequential skeleton model to jointly
detect actions and poses.
Region CNN for detection. Region CNN (R-CNN) [17] has achieved a sig-
ni�cant improvement for object detection in static image. This approach �rst
extracts region proposals using selective search [19] and rescales them to a �xed
size, and then uses a standard CNN network [34] to train and extract features.
The features are subsequently fed into a SVM classi�er with hard negative min-
ing and a bounding box regressor. SPP-net improved it by removing the lim-
itation of a �xed input size with a spatial pyramid pooling strategy [35]. Fast
R-CNN speeds up the R-CNN by introducing a RoI pooling scheme and training
classi�er and bounding box regressor simultaneously [36]. Faster R-CNN further
accelerates the fast R-CNN by replacing the selective search proposal method
with a region proposal network [1]. Spyroset al. [18] added multi-region and
segmentation-aware CNN features to make the R-CNN representation more dis-
criminative. Inspired by R-CNN, Gkioxari and Malik [8] extract proposals by
using the selective search method on RGB frames and then applied the original
R-CNN on per frame RGB and optical ow data for frame-level action detection,
and �nally link detections by the Viterbi algorithm [37] to generate action tubes.
Weinzaepfelet al. [9] replaced the selective search method by EdgeBoxes [15] for
proposal extraction, and performed tracking on selected frame-level detections.
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Fig. 1: Overview of our two-stream faster R-CNN.

Our work di�ers from the above mentioned approaches in four ways: 1) we
generate rich proposals from both RGB and optical ow data by using region
proposal networks; 2) we use stacked optical ows to enhance the discriminative
capacity of motion R-CNN; 3) we further improve the performance by embedding
a multi-region scheme in faster R-CNN; and 4) we build an end-to-end multi-
region two-stream CNN model for frame-level action detection.

3 End-to-end two-stream faster R-CNN

Figure 1 gives an overview of our two-stream faster R-CNN (TS R-CNN) ap-
proach. Stacking optical ow has shown to be e�ective for CNN based action
classi�cation [22]. We believe this can also be the case for R-CNN based action
detection. Our TS R-CNN takes as input an RGB frame f t and several optical
ow maps extracted for frame f t and its neighboring frames (we take half of
the frames before timet and half of them after). The network then processes
them with several convolutional and max pooling layers, independently in the
appearance and the motion stream. For each stream, the last convolutional layer
is fed into an appearance or motion region proposal network and a region of
interest (RoI) pooling layer. Here we introduce a RoI fusion layer, which merges
the proposals from both the appearance RPN and the motion RPN. Both the
appearance and the motion RoI pooling layer take all the RoIs and perform
max-pooling for each of them with aH � W grid. For each stream, these �xed-
length feature vectors are then fed into a sequence of fully connected layers that
�nally branch into a softmax layer and a bounding box regressor. The �nal de-
tection results from both streams can be combined by several methods which
will be evaluated in Sec.6.3. Best performance is obtained by simply combining
the softmax scores.
Training and testing. We train each of the two-stream faster R-CNNs sepa-
rately. For both streams, we �ne-tune the VGG-16 model [38] pre-trained on the
ImageNet dataset [39]. One frame optical ow data is transformed to a 3 channel
image by stacking the x-component, the y-component and the magnitude of the
ow as in [9]. In case of multiple optical ow maps, where the input channel
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Fig. 2: Comparision of frame-level proposals on UCF-Sports and J-HMDB split 1:
selective search proposals (SS), EdgeBoxes proposals (EB), RPN-ImageNet,
RPN-a, RPN-m and the fusion of RPN-a and RPN-m proposals. RPN-mk indi-
catesk frame optical ows. Left: UCF-Sports. Right: J-HMDB split 1.

number is di�erent from that of VGG-16 net, we just duplicate the VGG-16 �l-
ters of the �rst layer multiple times. We use the ground-truth bounding boxes of
the middle frame for training. For testing, we �rst combine the learned appear-
ance and motion R-CNN models into one model by adding a RoI fusion layer,
see Figure 1. We then put frame-ow pairs to the end-to-end model and average
the softmax scores from both streams as the �nal action region detection scores.
The bounding box regressor is applied to corresponding RoIs of each stream (see
the red and blue solid bars in Figure 1). The concatenation of these boxes is the
�nal detection result.
Evaluation of our action proposals. To show the quality of our motion RPN
(RPN-m), we compare it to several other proposal methods. Figure 2 compares
the recall over intersection-over-union (IoU) for di�erent proposal methods de-
scribed in the following. Selective search (SS) [19] generates regions by using a
bottom-up grouping scheme with features from color, texture and box sizes. We
keep the default setting and obtain 2k proposals. EdgeBoxes (EB) [15] are ob-
tained based on the observation that the number of contours entirely contained
in a bounding box is indicative of the objectness. Again we use the default set-
ting and obtain 256 proposals. The RPN method �rst generates several anchor
boxes for each pixel with multiple scales and ratios, and then scores and regresses
them with the learned features. For training RPN, positive objectness labels are
obtained for those anchors that have high IoU overlap with ground-truth boxes.
For the comparison, we keep RPN 300 proposals and use one scale with a �xed
minimum side of 600 pixels. We also extend the RPN method to optical ow
and report results for single ow and stacked ows.

Figure 2 shows that RPN-a method consistently outperforms SS and EB,
i.e. it obtains best results when using RGB frames. Interestingly, on UCF-
Sports it obtains perfect detections (IoU=1) 25% of the time (i.e., recall=0.25
for IoU=1). For fair comparison with SS and EB (both are non-tuned meth-
ods for action datasets), we show the results of RPN pre-trained on ImageNet
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Fig. 3: Overview of the multi-region two-stream faster R-CNN architecture.

as RPN-ImageNet in Figure 2. It also consistently outperforms SS and EB on
both datasets. Moreover, the motion RPN with a single frame optical ow also
provides very good action proposals. They are better than RPN-a on UCF-
Sports, but worse on J-HMDB. This can be explained by more signi�cant mo-
tion occurring on UCF-Sports compared to J-HMDB, which contains a number
of daily activities without signi�cant motion, such as \brush hair", \pour" and
\wave". The recall increases with 5 stacked ows (RPN-m5) and decreases with
10 stacked ows (RPN-m10). A possible explanation is that stacking optical
ows makes the representation more discriminative, but that there is a satu-
ration for a higher number of frames due to the non-aligned temporal boxes.
Combining the proposals from both appearance and motion RPN achieves the
best performance and outperforms SS and EB by a signi�cant margin.

4 Multi-region two-stream faster R-CNN

The multi-region two-stream faster R-CNN (MR-TS R-CNN) architecture is
illustrated in Figure 3. It is built on the two-stream faster R-CNN by embedding
a multi-region generation layer between the RPNs and the RoI pooling layer.
Given proposals from both appearance RPN and motion RPN, the multi-region
layer generates 4 RoIs for each RPN proposal. We describe the 4 types of regions
relevant for action representation in the following.
Original regions are the original RPN proposals. A network along this channel
is guided to capture the whole action region. The network is exactly the same
as the TS R-CNN. The bounding box regressor is only applied on this channel.
\ Upper half " and \ bottom half" regions are the upper and bottom halfs of the
RPN proposals, see second and third rows in the multi-region layer in Figure 3.
Instead of left/right/upper/bottom half regions used for objects in [18], we only
use the upper/bottom half regions due to the mostly symmetric vertical structure
of bodies in action videos. Networks based on these parts are not only robust
w.r.t occlusions but also more discriminative for action categories for which body
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part features are dominant. For example, \golf" and \swing baseball" are easier
to recognize by only the upper half region, while \climb stairs" and \kick ball"
by only the bottom half region.
\ Border " regions are rectangular rings around the original proposals. Given a
RPN proposal, we generate the inner box of a border region by scaling the
proposal by a factor of 0.8 and the outer box by a factor of 1.5. For the ap-
pearance stream, a network along this channel is expected to jointly capture
the appearance border of human and nearby objects which may be helpful for
action recognition. For motion stream, this channel has high probability to focus
on the motion boundary region which was demonstrated to be very useful for
hand-crafted features [2].
Training. The two-stream network for original regions is copied from the one
presented in the previous section. For training the two-stream networks of the
other regions, we �ne-tune the network of the original regions separately for
each region. In particular, we only tune the fully connected layers, and �x all
the convolutional layers as well as the RPN to ensure that all the region networks
share the same proposals. Regarding the \Border" region two-stream network, we
introduce a mask-supported RoI pooling layer which sets the activations inside
the inner box to zero similar to [40, 18]. After training the region networks, we
combine them by further training another softmax layer based on the softmax
layers of multi-region two-stream networks, see Figure 3. Note that the multi-
region R-CNNs share all theconv layers and hence the computation cost during
testing increases only by a factor of 1.8.

5 Linking and temporal localization

Based on the above described method, we obtain frame-level action detections.
In order to achieve video-level detection, we apply linking similar to [8] and
temporal localization based on the maximum subarray algorithm [41].

Given two regionsRt and Rt +1 from consecutive framest and t +1, we de�ne
the linking score for an action classc by

sc(Rt ; Rt +1 ) = f sc(Rt ) + sc(Rt +1 ) + � ov (Rt ; Rt +1 )g �  (ov); (1)

where sc(Ri ) is the class score of regionRi , ov is the intersection-over-union
overlap of the two regions and� is a scalar. (ov) is a threshold function de�ned
by  (ov) = 1 if ov is larger than � ,  (ov) = 0 otherwise. We experimentally
observe that our linking score is better than the one in [8] and more robust due
to the additional overlap constraint. After computing all the linking scores of
an action, we obtain video-level action detections by determining the optimal
path iteratively with the Viterbi algorithm. We �nally score a video-level action
detection R = [ R1; R2; :::; RT ] by sc(R) = 1

T

P T
i =1 sc(Ri ).

In order to determine the temporal extent of an action detection within a
video track, one can apply a sliding window approach with multiple temporal
scales and strides as [9]. Here we rely on an e�cient maximum subarray method.
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Given a video-level detectionR, we aim to �nd a detection from frame s to frame
e which satis�es the following objective,

sc(R?
(s;e) ) = argmax

(s;e)
f

1
L (s;e)

eX

i = s

sc(Ri ) � �
jL (s;e) � L cj

L c
g; (2)

where L (s;e) is the track length and L c is the average duration of classc on the
training set. We propose to approximately solve this objective by three steps:
(1) subtract from all the frame-level action scores the video-length action score
sc(R), (2) �nd the maximum subarray of the subtracted array by using Kadane's
algorithm [41], (3) extend or shorten the optimal range to L c. Our solution
searches the track only once. For each video-length action detection, we only
keep the best extent as spatio-temporal detection. Note that the threes-step
heuristic is an approximation to equation (2), and step (3) sets the length of the
optimal tube from step (2) to the average length to avoid degenerate solutions.

6 Experiments

In this section, we �rst present the details of datasets and the evaluation metrics
and describe the implementation details. We then evaluate our method compre-
hensively and compare to the state of the art.

6.1 Datasets and evaluation metrics

In our experiments, we evaluate action detection on three datasets: UCF-Sports,
J-HMDB and UCF-101. We briey review them in the following and present the
metrics used for evaluation.
UCF-Sports [31] contains 150 short videos of 10 di�erent sport classes. Videos
are truncated to the action and bounding boxes annotations are provided for all
frames. We use the standard training and test split de�ned in [31].
J-HMDB [20] consists of 928 videos for 21 di�erent actions such as brush
hair, swing baseball or jump. Video clips are restricted to the duration of the
action. Each clip contains between 15 and 40 frames. Human silhouettes are
annotated for all frames. The ground-truth bounding boxes are inferred from
the silhouettes. There are 3 train/test splits and evaluation averages the results
over the three splits.
UCF-101 [42] is dedicated to action classi�cation with more than 13000 videos
and 101 classes. For a subset of 24 labels and 3207 videos, the spatio-temporal
extents of the actions are annotated. All experiments are performed on the �rst
split only. In contrast to UCF-Sports and J-HMDB where the videos are trun-
cated to the action, UCF-101 videos are longer and the localization is both
spatial and temporal.
Evaluation metrics. We use three metrics in our experiments: (i)frame-AP,
the average precision of detection at the frame level as in [8]; (ii)video-AP, the
average precision at the video level as in [8, 9]. We �x the IoU threshold to [0.2,
0.5] for frame-AP and video-AP measurement on the UCF-Sports and J-HMDB,
and [0.05, 0.1, 0.2, 0.3] on UCF101.



Multi-region two-stream R-CNN for action detection 9

Fig. 4: Evaluation of di�erent frames types (RGB and ow), number of frames
(x=1, 5, 10) used for detection and combination strategies (NMS or score
combination{ours). Left: UCF-Sports. Right: J-HMDB split 1.

6.2 Implementation details

We implement our method based on the Ca�e open source toolbox1. Optical ow
is estimated using the online code from Broxet al. [43]. For both appearance
and motion R-CNN, we use the same setting except that motion R-CNN uses
128; 128; 128 as the mean data values. Similar to [36], we use a single sample, i.e.
either a single image or a stacked optical ow map annotated with ground-truth
boxes at every training iteration. When �ne-tuning the VGG-16 model, we only
update layers from conv3 1 and up as observed to be e�cient in [36]. For action
region proposal network training, we set the regions with IoU larger than 0.7
as positive regions, and the regions with IoU less than 0.3 as negative regions.
For the classi�cation part of faster R-CNN, we use 256 proposals with a quarter
of them as positive bounding boxes from the RPN, where the IoU of a positive
box is larger than 0.5 and of a negative between 0.1 and 0.5. When training the
two-stream R-CNN on UCF-Sports and J-HMDB, we initialize the learning rate
to 10� 3, decrease it to 10� 4 after 50K iterations, and stop training after 70K
iterations. When training the multi-region two-stream R-CNN, we only �ne-tune
the fully-connected layers of the TS R-CNN model and set the learning rate to
10� 4, change it to 10� 5 after 7K iterations, and stop after 10k iterations. We
double the mentioned iterations on the UCF101 dataset empirically since it is a
much larger dataset. The grid of RoI pooling layer is �xed to 7� 7. The dropout
rates of fully connected layers are set to 0.5 in all cases. The threshold� of
function  (ov) is �xed to 0.2 empirically.

6.3 Evaluation of multi-region two-stream faster R-CNN

In this section, we �rst evaluate our method for frame-level detection with respect
to four aspects: RGB/ow stacking, stream combination, multi-scale training and
testing and multi-region scheme. We then present the spatio-temporal detection
at the video level and the action classi�cation results based on detection.
RGB and optical ow faster R-CNN with several frames. We compare

1 https://github.com/rbgirshick/py-faster-rcnn
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Table 1: Evaluation of di�erent training and testing scales. All detections from
di�erent scales are combined by the NMS, and RGB-1 and Flow-5 streams are
combined by score averaging. We report results for UCF-Sports and J-HMDB,
split 1.

RGB-1 Flow-5 RGB-1 + Flow-5
Test scales Train scales UCF-Sports J-HMDB UCF-Sports J-HMDB UCF-Sports J-HMDB

f 600g
f 600g 65.30 38.05 74.24 46.71 - -

f 480, 600, 800g 68.07 38.71 73.62 47.74 - -

f 480, 600, 800g
f 600g 68.47 39.90 76.77 47.05 - -

f 480, 600, 800g 69.29 40.02 75.81 48.60 82.30 56.60

appearance and motion faster R-CNN with one or multiple frames for frame-
level detection (mean AP), see �gure 4. For this evaluation, the training/testing
scale is �xed to 600 which corresponds to the shorter side of aninput image. We
can observe that appearance R-CNN extracted for one frame (RGB-1) outper-
forms motion R-CNN extracted for one frame (Flow-1) on both UCF-Sport and
J-HMDB. Increasing the number of frames for the appearance model (RGB-5)
does not improve the performance. However, using 5 frames for ow signi�cantly
improves the performance for motion R-CNN, i.e. we gain 10.27% on UCF-Sports
and 17.39% on J-HMDB split 1. This is mainly due to the fact that motion infor-
mation from one frame is not discriminative enough, see a similar observation for
action classi�cation in [22]. Stacking more ows (Flow-10) decreases the result
signi�cantly on UCF-Sports, and slightly on J-HMDB partly due to the degraded
proposals as mentioned in Sec. 3. We observe that the decrease in performance
is more important on the strongly moving actions such as \Diving", \Swinging
at the high bar", \Kicking", and \Jump". This can be explained by the fact
the stacking does not align the actors and hence the detected bounding boxes
are more imprecise. In summary, Flow-5 performs best and is complementary to
RGB-1. We discuss di�erent combination schemes next.
Two streams combination. We explore two schemes for combining the ap-
pearance and motion R-CNN: box-level non maximum suppression (NMS) and
score fusion with a RoI fusion layer (our end-to-end pipeline, see Figure 1). The
NMS method perform detection for appearance and motion R-CNN separately,
and then fuses all the detected bounding boxes from both streams with NMS.
As shown in Figure 4, for the fusion of RGB-1 and Flow-5 streams, the score
fusion (indicated by \Ours") obtains 2.02% improvement over the NMS fusion
on J-HMDB and performs on par on UCF-Sports. Compared to the NMS fusion,
the score fusion uses both appearance and motion information for bounding box
scoring which is more discriminative. In the remained of this paper, we use score
fusion for the combination of appearance and motion R-CNNs, and use \RGB-1
+ Flow-5" for two-stream R-CNN by default.
Multi-scale training and testing. An action can occur on arbitrary scales.
Here we explore robustness to scale changes by using multi-scale training and
testing. We �x the scale to 600 for single scale training/testing, and to f 480,
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Table 2: Per-class frame-AP of individual regions and multi-region two-stream
faster R-CNN on UCF-Sports.
Region Diving Golf Kicking Lifting Riding Run SkateBoarding Swing1 Swing2 Walk mAP
Org 94.68 66.34 72.06 98.53 97.5484.04 59.67 79 98.20 72.87 82.30
Upper half 95.84 80.44 33.61 99.10 97.51 81.45 17.08 60.78 98.08 69.8773.38
Bottom half 88.34 48.12 67.62 96.86 97.61 79.75 57.98 84.16 98.12 72.91 79.15
Border 95.91 69.54 66.74 99.95 97.02 80.18 50.53 52.14 98.1576.52 78.67
Multi-region 96.12 80.47 73.78 99.17 97.56 82.37 57.43 83.64 98.54 75.99 84.51
Gkioxari et al. [8] 75.8 69.3 54.6 99.1 89.6 54.9 29.8 88.7 74.5 44.768.1
Weinzaepfel et al. [9] 60.71 77.55 65.26 100.00 99.53 52.60 47.14 88.88 62.86 64.4471.9

Table 3: Per-class frame-AP of individual regions and multi-region two-stream
faster R-CNN on J-HMDB (average on 3 splits).
Region brushHair catch clap climbStairs golf jump kickBall pick pour pullup push run shootBall shootBow shootGun sit stand swingBaseball throw walk wave mAP
Org 70.5 39 60.1 60.2 99.3 11.2 35.9 59.1 97 97.4 78 32.4 52.9 90.1 52.4 29.2 49.3 53.9 27.8 60.5 38.1 56.9
Upper half 77.9 33.1 60.8 48.6 94.7 5.40 20 44 89.6 93.9 62.9 24.5 46.4 83.5 57.936.7 38.2 62.6 20.5 49.4 29.3 51.4
Bottom half 36.4 29.4 32.3 68.1 97.3 6.90 32.9 26.5 87 93.7 67.1 31.9 33 72.6 21.7 20.8 41.3 44.3 18 38.1 24.944.0
Border 64.9 34.6 58.9 52.6 99.5 11.4 35 49.6 94.6 95.2 71.3 32.4 46.5 83.8 50.9 25.1 46.9 45.6 22.9 56.1 32.352.9
Multi-region 75.8 38.4 62.2 62.4 99.6 12.7 35.1 57.8 96.8 97.3 79.6 38.1 52.8 90.8 62.7 33.6 48.9 62.2 25.6 59.7 37.158.5
[8] 65.2 18.3 38.1 39.0 79.4 7.3 9.4 25.2 80.2 82.8 33.6 11.6 5.6 66.8 27.0 32.1 34.2 33.6 15.5 34.0 21.936.2
[9] 73.3 34.0 40.8 56.8 93.9 5.9 13.8 38.5 88.1 89.4 60.5 21.1 23.9 85.6 37.8 34.9 49.2 36.7 16.8 40.5 20.545.8

600, 800g for the multi-scale case. The results are shown in Table 1. The results
of multi-scale training is on par of single-scale training when testing on one scale
only. However, multi-scale training with multi-scale testing achieves consistent
better results than the other settings. In particular, it improves the single-scale
training and testing by 4% for the RGB-1 R-CNN model on UCF-Sports. Our
two-stream R-CNN with multi-scale setting obtains 82.3% and 56.6% on UCF-
Sports and J-HMDB, respectively. In the remained of the paper, we �x the
setting to multi-scale training and testing.
Multi-region R-CNN. For the multi-region evaluation, we use the two-stream
model RGB-1 + Flow-5 and the multi-scale setting for all part R-CNN models.
We report the per-class results of our region R-CNN models in Table 2 for UCF-
Sports and in Table 3 for J-HMDB. Among all the R-CNN models on both
datasets, the Org R-CNN achieves the best performance in mean AP, which
indicates the whole body is essential for an action. On UCF-Sports, theBottom
half and Border models get similar results as theOrg model, while the Upper
half model is worse than theOrg model by a margin of 9%. In contrast, on
J-HMDB the Bottom half model gets the worst result and the other region
models obtain similar results with the Org model. This reects the di�erent
type of actions in the two datasets, i.e., J-HMDB is dominated by upper body
actions (everyday actions), while for UCF-Sports the bottom part of the action is
most characteristic (sport actions). The multi-region two-stream R-CNN (MR-
TS R-CNN) model improves the Org R-CNN model by 2.21% and 1.6% on
UCF-Sports and J-HMDB datasets, respectively. It also outperforms the state-
of-the-art methods [8, 9] with a large margins on both datasets.

Furthermore, we observe that individual part R-CNN models perform better
than the Org model for some actions. For example, theUpper half model gains
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Fig. 5: Examples of action detection with di�erent region R-CNN models. We
only show the top two detections after performing NMS. Overlayed yellow regions
indicate the regions invisible for the part R-CNN models.

14.1% for \Golf" on UCF-Sports and 8.7% for \swingBaseball" on J-HMDB
over the Org model. Also, the Bottom half model gains 5.16% for \Swing 1" on
UCF-Sports and 7.9% for \climbStairs" on J-HMDB. Figure 5 illustrates this
with a few examples. Actions in row (a) and (b) are better detected byUpper
half R-CNN model, while row (c) and (d) by Bottom half R-CNN model. We can
observe that the detected boxes and their scores vary signi�cantly between the
di�erent models. By focusing on the bottom part, the example of \climb stairs"
(row d, column 3) gets a high con�dence detection due to the discriminative cue
of stairs and legs.
Linking and temporal localization. We evaluate our linking and temporal
localization methods for both the two stream R-CNN model and its multi-region
version. Table 4 shows the video mAP results with IoU threshold of� on UCF-
Sports, J-HMDB, and UCF101 datasets. Both of our approaches obtain excel-
lent video-level performance on these datasets which is mainly due to the high-
quality frame-level detections. We obtain 94.82% and 70.88% on UCF-Sports
and J-HMDB (split 1) with our linking method, respectively. The corresponding
numbers are 94.81% and 68.97 when implementing the linking method of [8].
Results improve on J-HMDB, but are the similar for UCF-Sports, where de-
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Table 4: Video mAP on UCF-Sports, J-HMDB and UCF101 (split 1) 2 with
varying IoU thresholds. UCF101(w/o) assumes that the action spans the entire
clip, i.e., does not perform temporal localization.

UCF-Sports J-HMDB UCF101 (with temporal loc) UCF101 (w/o)
� 0.2 0.5 0.2 0.5 0.05 0.1 0.2 0.3 0.2

TS R-CNN 94.82 94.82 71.1 70.6 78.12 76.81 71.78 64.51 69.78
MR-TS R-CNN 94.83 94.67 74.3 73.09 78.76 77.31 72.86 65.70 69.56

Table 5: Classi�cation results on UCF-Sports and J-HMDB by detection.
FAT [8] IDT+FV [2] P-CNN (w/o GT) [21] TS R-CNN MR-TS R-CNN

UCF-Sports - 88.0 - 91.49 95.74
J-HMDB 62.5 65.9 61.1 70.52 71.08

tections are near perfect. Multi-region TS R-CNN consistently outperforms the
original TS R-CNN model on J-HMDB and UCF101, and performs similarly on
UCF-Sports. The lack in improvement on UCF-Sports might be explained by
the mistakes in the spatio-temporal annotation, which explains why the classi�-
cation performance actually does improve for UCF-Sports. Note that we perform
temporal localization only on UCF101. We also evaluate the performance with-
out temporal localization, i.e., we assume that the action spans the entire clips.
As most of the action classes cover almost the entire clips, the average gain is
3.0% with MR-TS R-CNN model for an IoU threshold of 0.2. However, it is sig-
ni�cant for some of the short actions, i.e., for \Basketball", \BasketballDunk",
\TennisSwing", and \VolleyballSpiking", we gain 23.5%, 5.8%, 20.0%, and 8.8%,
respectively.
Classi�cation by detection. Similar to [8], our approach can be also extended
to action classi�cation of the videos. We leverage the best action track (i.e., the
track with maximum action score) in a video to predict the action label. Table 5
reports the average class accuracy on UCF-Sports and J-HMDB. Both of our
models achieve outstanding performance, with the multi-region version improv-
ing the results in both cases. In particular, our MR-TS R-CNN model obtains
95.74% and 71.08% on UCF-Sports and J-HMDB, respectively. The results are
signi�cantly better than those of the IDT method [2] and the pose-based CNN
method [21] which perform only classi�cation. This suggests that classi�cation
can be improved byprecise localization and detection-aware features.

6.4 Comparison to the state of the art

We conclude the experimental evaluation with a comparison to the state of the
art in Table 6. In both frame-level and video-level mAP, our TS R-CNN already
outperforms the state-of-the-art results on all three datasets. In particular, our

2 The UCF101 results are updated, as there was a problem with the annotations used
initially. Note that the results improved by a signi�cant margin.
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Table 6: Comparison to the state of the art on three datasets2. The IoU threshold
� for frame-mAP is �xed to 0.5.

video-mAP

UCF-Sports J-HMDB UCF101 (split 1)
� 0.2 0.5 0.2 0.5 0.05 0.1 0.2 0.3
Gkioxari et al. [8] - 75.8 - 53.3 - - - -
Weinzaepfel et al. [9] - 90.5 63.1 60.7 54.3 51.7 46.8 37.8
Yu et al. [44] - - - - 49.9 42.8 26.5 14.6
Our TS R-CNN 94.8 94.8 71.1 70.6 78.12 76.81 71.78 64.51
Our MR-TS R-CNN 94.8 94.7 74.3 73.1 78.76 77.31 72.86 65.70

frame-mAP
Gkioxari et al. [8] 68.1 36.2 -
Weinzaepfel et al. [9] 71.9 45.8 35.84
Our TS R-CNN 82.3 56.9 64.77
Our MR-TS R-CNN 84.5 58.5 65.73

MR-TS R-CNN approach outperforms the state of the art by 12.6%, 12.7% and
29.89% in frame-mAP, 4.3%, 12.4% and 26.06% in video-mAP on UCF-Sports,
J-HMDB and UCF101, respectively. Both [8] and [9] also make use of frame-
level action detection with R-CNN. Weinzaephel et al. [9] select the top two
frame-level detections for each class from the entire video and then track with
them based on class-level and instance-level scores. Compared to [8] and [9],
our method bene�ts from two key points: (1) the high-quality proposals from
both appearance and motion RPN and (2) the discriminative frame-level action
representation based on stacked optical ows and multiple parts.

7 Conclusion

This paper introduces a multi-region two-stream R-CNN action detection ap-
proach, which takes full advantage of three recent methods, namely faster R-
CNN, two-stream CNNs with optical ow stacking and multi-region CNNs. We
propose a novel framework for action detection which builds on these methods.
It signi�cantly outperforms the state of the art [8, 9]. In our experiments on
UCF101, we observed that a limitation lies in handling low-quality videos and
small bounding boxes, which will be addressed in future work.
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