Prior-based Coregistration and Cosegmentation

Abstract : We propose a modular and scalable framework for dense coregistration and cosegmentation with two key characteristics: first, we substitute ground truth data with the semantic map output of a classifier; second, we combine this output with population deformable registration to improve both alignment and segmentation. Our approach deforms all volumes towards consensus, taking into account image similarities and label consistency. Our pipeline can incorporate any classifier and similarity metric. Results on two datasets, containing annotations of challenging brain structures, demonstrate the potential of our method.
Complete list of metadatas

https://hal.inria.fr/hal-01349189
Contributor : Enzo Ferrante <>
Submitted on : Tuesday, July 26, 2016 - 9:43:30 PM
Last modification on : Tuesday, February 5, 2019 - 1:52:14 PM

Links full text

Identifiers

  • HAL Id : hal-01349189, version 1
  • ARXIV : 1607.06787

Citation

Mahsa Shakeri, Enzo Ferrante, Stavros Tsogkas, Sarah Lippe, Samuel Kadoury, et al.. Prior-based Coregistration and Cosegmentation. MICCAI 2016, 2016, Athens, Greece. ⟨hal-01349189⟩

Share

Metrics

Record views

183