On the link between infinite horizon control and quasi-stationary distributions

Abstract : We study infinite horizon control of continuous-time non-linear branching processes with almost sure extinction for general (positive or negative) discount. Our main goal is to study the link between infinite horizon control of these processes and an optimization problem involving their quasi-stationary distributions and the corresponding extinction rates. More precisely, we obtain an equivalent of the value function when the discount parameter is close to the threshold where the value function becomes infinite , and we characterize the optimal Markov control in this limit. To achieve this, we present a new proof of the dynamic programming principle based upon a pseudo-Markov property for controlled jump processes. We also prove the convergence to a unique quasi-stationary distribution of non-linear branching processes controlled by a Markov control conditioned on non-extinction.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, In press
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01349663
Contributeur : Nicolas Champagnat <>
Soumis le : jeudi 28 juillet 2016 - 11:42:08
Dernière modification le : jeudi 6 décembre 2018 - 11:07:06
Document(s) archivé(s) le : samedi 29 octobre 2016 - 11:04:43

Fichier

ControlQSD.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01349663, version 1
  • ARXIV : 1607.08046

Données associées

Citation

Nicolas Champagnat, Julien Claisse. On the link between infinite horizon control and quasi-stationary distributions. Stochastic Processes and their Applications, Elsevier, In press. 〈hal-01349663〉

Partager

Métriques

Consultations de la notice

539

Téléchargements de fichiers

114