
HAL Id: hal-01350713
https://inria.hal.science/hal-01350713

Submitted on 1 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prototyping the graphical user interface for the operator
of the Cherenkov Telescope Array

Iftach Sadeh, Igor Oya, Joseph Schwarz, Emmanuel Pietriga

To cite this version:
Iftach Sadeh, Igor Oya, Joseph Schwarz, Emmanuel Pietriga. Prototyping the graphical user interface
for the operator of the Cherenkov Telescope Array. SPIE Astronomical Telescopes and Instrumenta-
tion, Jun 2016, Edinburgh, United Kingdom. pp.9, �10.1117/12.2231606�. �hal-01350713�

https://inria.hal.science/hal-01350713
https://hal.archives-ouvertes.fr


Prototyping the graphical user interface for the operator of1

the Cherenkov Telescope Array2

I. Sadeha, I. Oyaa, J. Schwarzb, E. Pietrigac, and the CTA Consortiumd
3

a DESY-Zeuthen, D-15735 Zeuthen, Germany4

b INAF - Osservatorio Astronomico di Brera, Italy5

c INRIA Saclay - Ile de France, LRI (Univ. Paris-Sud & CNRS), France6

d http://www.cta-observatory.org/7

ABSTRACT8

The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 1009

imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous10

IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI)11

for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being12

developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is13

based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the14

d3.js Javascript library.15

Keywords: The Cherenkov Telescope Array, graphical user interface, Web technology.16

1. INTRODUCTION17

The Cherenkov Telescope Array (CTA)1–3 is a planned observatory for very high-energy (> 100 GeV) gamma-18

rays. Gamma-rays induce particle cascades in the atmosphere. These are accompanied by Cherenkov radiation,19

which is emitted by the charged particles in the cascade. The Cherenkov light may be detected by imag-20

ing atmospheric Cherenkov telescopes (IACTs).4 Using multiple telescopes in concert, Cherenkov showers can21

stereoscopically be sampled, allowing to reconstruct the properties of the primary gamma-ray.22

CTA will include three different telescope types, sensitive to different gamma-ray energy ranges. The tele-23

scopes will be deployed in two sites, Northern and Southern, which will respectively include about 100 and24

about 20 telescopes. Currently running IACT experiments such as H.E.S.S.,5 MAGIC6 and VERITAS,7 are25

restricted to up to five telescopes. Compared to these instruments, the large number of CTA telescopes will26

improve the sensitivity and the energy coverage of gamma-ray measurements by at least an order of magnitude.27

The large number of telescopes has implications for the development of a graphical user interface (GUI) for28

the operator of a CTA site. The complexity of the system presents new and interesting challenges, requiring29

innovative design. In the following, we detail the development process of the operator GUI. We discuss the30

requirements we have derived for the GUI, and describe our prototype implementation.31

2. DEVELOPMENT PROCESS AND REQUIREMENTS FOR THE GUI32

In order to develop an effective user interface, we have drawn upon the lessons learnt from the Atacama Large33

Millimeter/submillimeter Array (ALMA).8 ALMA is an astronomical interferometer of radio telescopes in the34

Atacama desert of northern Chile. It will be comprised of up to 66 radio antennas, and so will be comparable35

to CTA in complexity.36

During the early stages of ALMA, conventional user interfaces were developed. Early experience operating37

the ALMA array with only a few antennas, indicated that the latter were not adequate. The initial interfaces38

required many unnecessary interactions to access relevant information. This resulted in extraneous cognitive39

The e-mail of I.S., iftach.sadeh@desy.de .

http://www.cta-observatory.org/
mailto:iftach.sadeh@desy.de


load, and was not efficient for quick diagnosis of system problems. The implementation was therefore improved,40

taking into account advances in the field of Human-Computer Interaction (HCI).941

For creating the GUI for the operator of CTA, we are following the design process used for ALMA. The42

GUI is being developed by involving experienced telescope operators and astroparticle physicists on the one43

hand, and experts from the field of HCI on the other. In contrast to ALMA, we have been able to adopt this44

model at the start of the design process for CTA. We will therefore be able to apply HCI input to all aspects45

of the operator interface. The development process includes practical face-to-face meetings, in tangent with46

brainstorming workshops with representatives of the relevant stakeholders. To date, we have held two such47

participatory design workshops. The outcome of the meetings is twofold. For one, the workshops helped us48

to refine the scope of the operator GUI, i.e., answer the question, “what should the GUI enable users to do?”.49

Additionally, we have defined a preliminary set of panels for the GUI. That is, we have began to address the50

question, “how should the GUI be designed?”.51

With regards to the first question, we first note that on-site operations related to observing with CTA will52

normally be automated. Consequently, the GUI for the operator of a CTA site will nominally be used to perform53

the following tasks:54

1. initiate and end observations;55

2. override the automated scheduled operations in order to perform a specific task, or for safety reasons, which56

might require manual control over a given telescope or group of telescopes;57

3. monitor the state of the array during data acquisition, which includes monitoring of low-level hardware58

components, of software processes, and of the output of a near real-time data analysis;59

4. identify and diagnose problems with specific sub-systems or processes, in order to solve minor problems or60

notify technical experts, as needed.61

With regards to the second question, we have defined the following categories, which will be represented by62

different GUI panels (some of which may overlap):63

1. Telescope: monitor the status of telescopes and their respective sub-systems; manually control single64

telescopes and sub-arrays, etc.65

2. Process: monitor and modify predefined operation sequences, such as starting up the array at the begin-66

ning of the night, and performing a scheduled observing task.67

3. Science: monitor the output of a physics analysis on the level of a single telescope or of a sub-array,68

including trigger rates, event-reconstruction metrics, science summary reports, etc.69

4. Infrastructure: monitor the status of auxiliary systems, such as the power grid, as well as other indicators,70

such as alarms and data transfer rates.71

5. Environment: monitor environmental systems, such as weather monitors, all-sky cameras, etc.72

6. Miscellaneous: provide access to terminals, shift logs, expert call sheets, etc.73

With these guidelines in mind, we have identified the following set of initial requirements for the GUI:74

1. the GUI will be able to convey information for various levels of telescope multiplicity; on the level of75

the entire array (∼ 100 telescopes); the level of sub arrays (between 1 and 32 groups); or the level of a76

single telescope and the associated sub-systems. Multi-telescope views for a given sub-system will also be77

available, which will take into account differences between telescope types. The various levels of information78

will be integrated using semantic zooming, as defined below;79

2. the GUI will need to be highly responsive, where the different panels of the GUI will have the option to80

be synchronized;81



3. the GUI will integrate different interfaces to CTA software (databases, live feeds etc.) with various latencies;82

4. the different components of the GUI will be modular, allowing for quick updates and for collaborative83

development.84

In the next section, we illustrate the requirements for the operator GUI using a prototype design. At this85

stage of development, the prototype by no means addresses the complete scope of the GUI. Instead, it acts as a86

proof of concept for those features which were identified as most important.87

3. PROTOTYPING ACTIVITIES88

Our prototype is based on Web technologies. A Web-based framework has the advantage of being lightweight and89

modular. It also naturally allows for remote access, which will enable the GUI to be used for remote monitoring,90

and for remote operation. These will be useful both for physicists and for technical experts, who the operator of91

the array will need to consult.92

The back-end of the prototype is a Python server called Pyramid.∗ A Python framework has the advantage of93

being very versatile, incorporating the ability to use many off-the-shelf libraries for computation, communication,94

multi-threading and multi-processing. The front-end is a web browser. The design is responsive, i.e., adjustable95

according to the width of the display. It is implemented using Polymer,† a Web Component application pro-96

gramming interface (API), developed by Google, based on the Material Design‡ concept. Data are displayed97

using an open-source Javascript library, called d3.js.§ The latter is a data-driven framework, with integrated98

mechanisms for displaying, updating and animating vector graphics. Communication between the back-end and99

the front-end of the GUI is performed using Web Sockets. These allow asynchronous communication, facili-100

tating quick and robust GUI behaviour. For plotting, we also use dc.js,¶ a library based on d3.js and on101

Crossfilter.‖ The latter is a Javascript library, which facilitates exploring large multivariate datasets.102

Figure 1 shows a representation of the layout of a CTA array, where each circle corresponds to a single103

telescope. The relative position of telescopes corresponds to a scaled physical layout on-site, constituting a104

pseudo-geographic display of the array. The attached numerical values and the colour scheme of elements105

correspond to a health metric. This metric may represent different properties according to the visualization106

context. The panel incorporates semantic zooming ,10 which defines the context. Semantic zooming is a technique107

of assigning different layers of information to a given visual element. This behaviour complements the usual108

geometric zooming, where the size of elements changes with the zoom factor. For the type of semantic zoom109

implemented in this example, the level of detail associated with an element increases as one zooms-in. The figure110

shows the evolution of the display for different zoom factors, as follows.111

Zoom factor 1: Figure 1(a) shows a global view of all telescopes, emphasizing physical positions, as well112

as a general health metric. In this example, health corresponds to the combined health of all sub-systems of113

the telescope. For illustration, one of these sub-system, the camera, reports reduced health as the percentage of114

dead pixels.115

Zoom factor 7: Given this zoom level, Fig. 1(b) shows how the display changes for a given element which is116

hovered over. The hover action triggers a transition, where a circle representing a single telescope is replaced by117

a more detailed view of the associated sub-systems. The context from the previous zoom level is preserved during118

the transition. The health metric, which was previously represented by the full circle, has morphed into the red119

circle surrounding the four wedges. Each of the wedges represents one of the sub-systems of a telescope: the120

data-acquisition system (DAQ); the camera; the mirror system; and the mount (the structure of the telescope).121

Each of the latter now also reports its individual health metric. These are represented numerically, by colour122

and by the percentage of filled area within the corresponding wedge.123

∗ See http://docs.pylonsproject.org/projects/pyramid/ .
† See https://www.polymer-project.org/ .
‡ See https://design.google.com/ .
§ See https://d3js.org/ .
¶ See https://github.com/dc-js/dc.js .
‖ See http://square.github.io/crossfilter/ .

http://docs.pylonsproject.org/projects/pyramid/
https://www.polymer-project.org/
https://design.google.com/
https://d3js.org/
https://github.com/dc-js/dc.js
http://square.github.io/crossfilter/


(a) (b)

(c) (d)

Figure 1. Pseudo-geographic display of a CTA array, showing different semantic zoom levels, as described in the text.
The zoom factors are 1 in (a), 7 in (b), and ∼ 14 in (c) and (d).



Zoom factor ∼ 14: Given this zoom level, another transition occurs. Figure 1(c) shows a second level of124

components, which is exposed for each of the four sub-systems. As before, the context from the previous zoom125

level is preserved; the health metric of each of the sub-systems is now represented by a thin outer arc. The inner126

wedges now each have different layouts of components. These are arranged in sunburst diagrams,11 which are a127

hierarchical variation on a pie chart. The change from the view shown in Fig. 1(c) to that shown in Fig. 1(d)128

occurs as the user clicks on the wedge of the mount. The sunburst diagram of the latter then opens up to a129

full 360◦, and the wedges of the DAQ, camera and mirror disappear. The generic names (mount 0, mount 1,130

etc.) are temporary place-holders for different elements of the mount sub-system, such as drivers and PLC131

(programmable logic controller) status indicators.12132

Figure 2 presents another telescope-centric view. In this case, two synchronized panels are provided side by133

side. The panel on the left shows the positions on the sky, at which telescopes point. The polar plot has two134

coordinates. The angular coordinate, denoted by ϕ, represents the azimuth on the sky; it spans the range from 0◦135

(at the top-most position of the circle) to 180◦ (for the right-hand side), and 0◦ to −180◦ (for the left-hand side).136

The radial coordinate, denoted by δ, indicates the zenith, with values between 0◦ (at the centre) and 90◦ (on137

the edge of the figure). Telescopes are represented by full circles. Each one has an intended target position,138

indicated by rings, where faint dashed lines connect telescopes and targets. The display is updated in real-time,139

showing the movement of telescopes from their initial pointing, towards their respective target positions.140

The panel on the right shows a logical grouping of telescopes, as opposed to the pseudo-geographic display141

of Fig. 1. In this case, telescope positions indicate association to a sub-array, which here stands for a group of142

telescopes which all point at the same target on the sky. This type of visualization, called an enclosure diagram,143

is a hierarchical nested layout of elements. In this case, grey-shaded circles represent sub-arrays, with coloured144

circles standing for telescopes.145

Both the panel on the left and that on the right incorporate semantic zooming, as indicated by comparing146

Figs. 2(a), 2(b), and 2(c). For the left panel, the behaviour is a simple scaling of elements. As one zooms in or147

out, the size of telescopes and targets changes very slowly with respect to the changing scale of the coordinate148

system. For the panel on the right, the semantic zoom includes a threshold transition at zoom factor ∼ 2, as149

shown in Fig. 2(b). In this example, each telescope is represented by a circle and an arc; these respectively150

indicate the ϕ and δ coordinates of the telescope and its target, using the same visual language as for the panel151

on the left. Another threshold transition occurs at zoom factor ∼ 14, as presented in Fig. 2(c). In this instance,152

the purpose of the visualization is to provide detailed information regarding the coordinates of the telescope.153

The two panels are synchronized using brushing and linking, following the principles of coordinated multiple154

views.13 In Fig. 2(b), a sub-array is selected on the right panel; this causes the associated elements in the panel155

on the left to become highlighted. Such behaviour allows to quickly identify in the display on the left, which156

telescopes are assigned to which sub-array. In Fig. 2(c), the single selected telescope is similarly the only element157

in focus, both on the right panel and on the left. The interplay between the two panels illustrated here also158

serves to demonstrate an important feature of panel-synchronization. Namely, that synchronization need not159

necessarily work both ways. As in this case, user interactions with the panel on the right affect the panel on the160

left by focusing specific elements, but the reverse does not hold.161

Figure 3 shows three views of a panel featuring monitoring plots. In this example, the data are extracted162

from the database of a weather monitoring station. They include measurements of the temperature inside and163

outside of the weather station, of the speed of the wind near the station, and of the humidity inside of it.164

The monitoring plots are placed inside a container, designated as a Dashboard. Plots may be resized and165

dragged within the Dashboard, or placed in separate Dashboards. The plots are generated using dc.js. They166

are correlated (a feature of Crossfilter), as shown in, e.g., Fig. 3(b). In this case, the user has selected a range167

of values of the wind speed parameter (marked by the blue brush). The other plots reflect the selection, by168

showing only those measurements which have corresponding wind speeds within the chosen range. A side-menu169

may be overlaid on top of the plots, as shown in Fig. 3(c). Several control options exist. To name a few, the170

user may add new plots; the user may select new dates for querying the database; and the user may switch to a171

live-mode, where real-time data are updated every few seconds.172



(a)

(b)

(c)

Figure 2. Synchronized panels, showing the positions on the sky at which telescopes point (left), and the grouping of
telescopes into sub-arrays (right), as described in the text. The zoom factors for the panel on the right are 1 in (a), 2
in (b), and ∼ 14 in (c).



(a)

(b) (c)

Figure 3. Example of a monitoring panel, featuring data extracted from the database of a weather monitoring station.
(a) : A selection of data monitoring plots, including measurements of the temperature inside and outside of the weather
station, of the speed of the wind near the station, and of the humidity inside of it. (b) : Illustration of the synchronization
of plots. A selected range of values of the wind speed parameter (marked in blue), affects the other plots, by excluding
data outside of the chosen scope. (c) : A side-menu with various control options may be overlaid on top of the plots, upon
clicking the purple button on the top right corner. The option also exists (not shown), of pinning the menu alongside the
plots instead.



The main purpose for implementing this visualization, was to create a practical example for a monitoring173

panel. In addition, it was also used as a platform to conduct tests of our prototype. These included the following:174

testing the performance of the dc.js library for generating synchronized plots; testing the performance of an175

interface between the Python web-server and an external database; splitting data processing tasks between the176

Python server and the web-browser client. The results of these tests have so far been encouraging; they have177

indicated that a web-based framework is suitable for the next stages of development of the operator GUI.178

4. SUMMARY179

The planned Cherenkov Telescope Array will be comparably more complex than existing IACT experiments.180

This poses new challenges for creating an effective graphical user interface for the operator of the array.181

The development of the GUI for CTA follows the successful working model of the ALMA experiment. The182

design process brings together experienced telescope operators and astroparticle physicists on the one hand,183

and experts from the field of Human-Computer Interaction on the other. The relevant stakeholders have so184

far conducted two participatory design workshops, in addition to other face-to-face meetings. The outcome of185

the work to date is: a refined definition of the scope of the GUI and of the requirements on its performance; a186

preliminary list of GUI panels; identification of a set of relevant data visualization techniques.187

A preliminary prototype of several GUI panels has been implemented. It is based on Web technologies,188

incorporating a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.189

The prototype illustrates semantic zooming and coordinated multiple views, and serves for performance testing190

of the proposed technology.191

ACKNOWLEDGMENTS192

We would like to thank Caroline Appert, Antonio Cabrera, Francesco Dazzi, Valentina Fioretti, Stafano Gabici,193

Markus Garczarczyk, Rosa Macias and the members of the ACTL team for their helpful comments and insights.194

REFERENCES195

[1] Actis, M. et al., “Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-196

based high-energy gamma-ray astronomy,” Experimental Astronomy 32, 193–316 (Dec. 2011).197

[2] Fuessling, M., Oya, I., et al., “Status of the array control and data acquisition system for the cherenkov198

telescope array,” These proceedings (2016).199

[3] Oya, I., Fuessling, M., et al., “The software architecture to control the cherenkov telescope array,” These200

proceedings (2016).201

[4] Hillas, A., “Evolution of ground-based gamma-ray astronomy from the early days to the cherenkov telescope202

arrays,” Astroparticle Physics 43, 19 – 43 (2013). Seeing the High-Energy Universe with the Cherenkov203

Telescope Array - The Science Explored with the CTA.204

[5] Aharonian, F. et al., “Observations of the Crab nebula with H.E.S.S.,” 457, 899–915 (Oct. 2006).205

[6] Albert, J. et al., “VHE Gamma-Ray Observation of the Crab Nebula and Pulsar with MAGIC,” Astrophys.206

J. 674, 1037–1055 (2008).207

[7] Holder, J. et al., “The first VERITAS telescope,” Astropart. Phys. 25, 391–401 (2006).208

[8] Wootten, A. and Thompson, A. R., “The Atacama Large Millimeter/Submillimeter Array,” IEEE Proceed-209

ings 97, 1463–1471 (Aug. 2009).210

[9] Pietriga, E. et al., “Interaction design challenges and solutions for ALMA operations monitoring and con-211

trol,” in [SPIE Astronomical Telescopes and Instrumentation ], SPIE, ed., Proc. SPIE 8451, Software and212

Cyberinfrastructure for Astronomy II 8451, SPIE (July 2012).213

[10] Perlin, K. and Fox, D., “Pad: An alternative approach to the computer interface,” in [Proceedings of the214

20th Annual Conference on Computer Graphics and Interactive Techniques ], SIGGRAPH ’93, 57–64, ACM215

(1993).216

[11] Stasko, J., Catrambonw, R., Guzdial, M., and McDonald, K., “An evaluation of space-filling information217

visualizations for depicting hierarchical structures,” Int. J. Hum.-Comput. Stud. 53, 663–694 (Nov. 2000).218



[12] Behera, B., Oya, I., Birsin, E., Köppel, H., Melkumyan, D., Schlenstedt, S., Schmidt, T., Schwanke, U.,219

Wegner, P., Wiesand, S., and Winde, M., “Development of the ACS+OPC UA based control system for220

a CTA medium size telescope prototype,” in [Software and Cyberinfrastructure for Astronomy II ], 8451,221

84510H (Sept. 2012).222

[13] North, C. and Shneiderman, B., “Snap-together visualization: a user interface for coordinating visualizations223

via relational schemata,” in [Proceedings of the working conference on Advanced visual interfaces ], AVI ’00,224

128–135, ACM (2000).225


	INTRODUCTION
	DEVELOPMENT PROCESS AND REQUIREMENTS FOR THE GUI
	PROTOTYPING ACTIVITIES
	SUMMARY

