Extreme Rays of the Hankel Spectrahedra for Ternary Forms

Abstract : Hankel spectrahedra are the dual convex cones to the cone of sums of squares of real polynomials, and we study them from the point of view of convex algebraic geometry. We show that the Zariski closure of the union of all extreme rays of Hankel spectrahedra for ternary forms is an irreducible variety of codimension 10. It is the variety of all Hankel (or middle Catalecticant) matrices of corank at least 4. We explicitly construct a rational extreme ray of maximal rank using the Cayley-Bacharach Theorem for plane curves. We work out the rank stratification of the semi-algebraic set of extreme rays of Hankel spectrahedra in the first three nontrivial cases d = 3, 4, 5. Dually, we get a characterisation of the algebraic boundary of the cone of sums of squares via projective duality theory, extending previous work of Blekherman, Hauenstein, Ottem, Ranestad, and Sturmfels.
Type de document :
Communication dans un congrès
MEGA'2015 (Special Issue), Jun 2015, Trento, Italy
Liste complète des métadonnées

https://hal.inria.fr/hal-01350771
Contributeur : Alain Monteil <>
Soumis le : lundi 1 août 2016 - 16:34:53
Dernière modification le : mardi 2 août 2016 - 15:04:38

Lien texte intégral

Identifiants

  • HAL Id : hal-01350771, version 1
  • ARXIV : 1406.1873

Collections

Citation

Grigoriy Blekherman, Rainer Sinn. Extreme Rays of the Hankel Spectrahedra for Ternary Forms. MEGA'2015 (Special Issue), Jun 2015, Trento, Italy. 〈hal-01350771〉

Partager

Métriques

Consultations de la notice

35