Standard Bases in mixed Power Series and Polynomial Rings over Rings

Abstract : In this paper we study standard bases for submodules of a mixed power series and polynomial ring $R[[t_1,\ldots,t_m]][x_1,\ldots,x_n]^s$ respectively of their localization with respect to a $t$-local monomial ordering for a certain class of noetherian rings $R$. The main steps are to prove the existence of a division with remainder generalizing and combining the division theorems of Grauert--Hironaka and Mora and to generalize the Buchberger criterion. Everything else then translates naturally. Setting either $m=0$ or $n=0$ we get standard bases for polynomial rings respectively for power series rings over $R$ as a special case.
Type de document :
Communication dans un congrès
MEGA'2015 (Special Issue), Jun 2015, Trento, Italy
Liste complète des métadonnées

https://hal.inria.fr/hal-01350996
Contributeur : Alain Monteil <>
Soumis le : mardi 2 août 2016 - 14:16:02
Dernière modification le : mercredi 3 août 2016 - 01:00:59

Identifiants

  • HAL Id : hal-01350996, version 1
  • ARXIV : 1509.07528

Collections

Citation

Thomas Markwig, Yue Ren, Oliver Wienand. Standard Bases in mixed Power Series and Polynomial Rings over Rings. MEGA'2015 (Special Issue), Jun 2015, Trento, Italy. 〈hal-01350996〉

Partager

Métriques

Consultations de la notice

16