A relaxed characterization of ISS for periodic systems with multiple invariant sets

Abstract : A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system's periodicity explicitly into account. The new result is established by using the framework of cell structure introduced in [24] and it complements the methods developed in [3], [4] for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01351139
Contributeur : Denis Efimov <>
Soumis le : mardi 2 août 2016 - 17:35:05
Dernière modification le : mercredi 25 avril 2018 - 15:43:44
Document(s) archivé(s) le : mardi 8 novembre 2016 - 21:04:02

Fichier

LeonovISS_J.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01351139, version 1

Citation

Denis Efimov, Johannes Schiffer, Nikita Barabanov, Romeo Ortega. A relaxed characterization of ISS for periodic systems with multiple invariant sets. 2016. 〈hal-01351139〉

Partager

Métriques

Consultations de la notice

332

Téléchargements de fichiers

208