
HAL Id: hal-01351439
https://inria.hal.science/hal-01351439

Submitted on 3 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Monocular SLAM With Low Memory
Requirements

Guillaume Bresson, Thomas Féraud, Romuald Aufrère, Paul Checchin,
Roland Chapuis

To cite this version:
Guillaume Bresson, Thomas Féraud, Romuald Aufrère, Paul Checchin, Roland Chapuis. Real-Time
Monocular SLAM With Low Memory Requirements. IEEE Transactions on Intelligent Transportation
Systems, 2015, 16 (4), pp.1827 - 1839. �10.1109/TITS.2014.2376780�. �hal-01351439�

https://inria.hal.science/hal-01351439
https://hal.archives-ouvertes.fr


1

Real Time Monocular SLAM with Low Memory
Requirements
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Abstract—The localization of a vehicle in an unknown envi-
ronment is often solved using Simultaneous Localization And
Mapping (SLAM) techniques. Many methods have been devel-
oped, each requiring a different amount of landmarks (map
size), and so of memory, to work efficiently. Similarly, the
required computational time is quite variable from one approach
to another. In this paper, we focus on the monocular SLAM
problem and propose a new method, called MSLAM, based on
an Extended Kalman Filter (EKF). The aim is to provide a
solution that has low memory and processing time requirements
and that can achieve good localization results while benefiting
from the EKF advantages (direct access to the covariance matrix,
no conversion required for the measures or the state). To do
so, a minimal Cartesian representation (3 parameters for 3
dimensions) is used. However, linearization errors are likely to
happen with such a representation. New methods allowing to
avoid or hugely decrease the impact of the linearization failures
are presented. The first contribution proposed here computes
a proper projection of a 3D uncertainty in the image plane,
allowing to track landmarks during longer periods of time. A
corrective factor of the Kalman gain is also introduced. It allows
to detect wrong updates and correct them, thus reducing the
impact of the linearization on the whole system. Our approach is
compared to a classic SLAM implementation over different data
sets and conditions so as to illustrate the efficiency of the proposed
contributions. The quality of the map built is tested by using it
with another vehicle for localization purposes. Finally, a public
data set, presenting a long trajectory (1.3 km) is also used in
order to compare MSLAM to a state-of-the-art monocular EKF-
SLAM algorithm, both in terms of accuracy and computational
needs.

I. INTRODUCTION

Vehicles able to drive in total autonomy are one of the
main objectives of the Intelligent Transportation Systems
community. One way to fulfill this task is, for a vehicle, to be
able to localize itself in unknown environments. This topic,
often referred to as Simultaneous Localization And Mapping
(SLAM), has been widely studied and is now considered a
key part of the mobile robotics field. Over the last twenty
years, many solutions have been proposed using different
methods and sensors [13]. However, so as to improve accuracy
and efficiency, authors tend to combine sensors [2] therefore
raising costs. In order to extend the use of autonomous
vehicles, it is necessary to build solutions relying on cheap
sensors. In this paper, the proposed solution only uses a single
camera and an odometer.

Estimating the pose of a vehicle can be accomplished in
various ways: particle filters [14], Bundle Adjustment methods
(BAs) [17], Extended Kalman Filters (EKFs) [24] and Un-
scented Kalman Filters [6] being the most common ones. Each

method is different and has a strong impact on how the whole
system should be designed. However, similar localization
results have been achieved with BAs [23] and EKFs [15] for a
comparable computational burden. The choice is also a matter
of compromise: a comparison of monocular SLAM algorithms
[27] has shown that, with important resources, BAs seem
more accurate. Nevertheless, with limited resources filtering
methods seem to be a smarter alternative. With the emergence
of cooperative applications, designing a SLAM algorithm with
low memory and computational power requirements can be
an advantage. Indeed, it implies that sharing the map built
by a team of robots is easier thanks to a low bandwidth
need (which means more vehicles in the fleet) and that the
remaining computational power can be dedicated to other tasks
such as fusing distant information. In this paper, we present
an EKF-SLAM algorithm.

Monocular SLAM processes imply that special attention
is given to the handling of the landmark depth as it cannot
be estimated with a single measurement. Indeed, multiple
observations, with enough parallax, are needed to refine the
position of a point. However, while the depth of a landmark is
uncertain, the whole SLAM process is prone to linearization
errors. With highly non-linear models, a depth estimate far
from the real value means that the linearization process could
easily go wrong. This phenomenon is tightly linked to the
representation chosen for the landmarks. With a classic Carte-
sian representation, each step involving a non-linear function
(projection of a landmark uncertainty in the image or update
of an estimate) can fail. A different representation usually
requires to store more parameters, thus adding to the memory
load. It is important to bear in mind that the issues raised in this
article also affect other variants of Gaussian filtering (such as
Information Filters [28]) and that the solutions proposed here
could be adapted to other filters.

In this paper, we introduce a linearization-free process that
project 3D uncertainties into images and a corrective factor
of the Kalman gain that drastically reduces the possibility
of linearization failures. These two contibutions allow to
achieve similar localization performance to the state-of-the-
art approach of Civera et al. [9], which is based on the
Inverse Depth parametrization (ID), while having a more
computationally efficient and memory thrifty solution due to
the use of a simple Cartesian representation (3 parameters)
instead of the ID (6 parameters). We conducted an extensive
validation of our approach (called MSLAM), with simulations
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and experiments, that demonstrate the quality of the computed
localization and the efficiency of the proposed contributions.
We also evaluated MSLAM over a public data set and provide
a comparison with the ID-SLAM algorithm of Civera et al. [9].

Section II will present the literature. Section III will then
expose our approach starting with the tracking step and how
linearization errors are avoided by computing a proper uncer-
tainty projection (Subsection III-A). Next, Subsection III-B
will introduce the corrective factor of the Kalman gain which
limits linearization failures during the state update. Section
IV will eventually show the trajectories conducted to validate
and compare our algorithm. Section V will conclude and give
some insights about the future of MSLAM.

II. STATE OF THE ART

The unknown depth of points in monocular SLAM al-
gorithms requires careful handling of the landmarks in the
state vector. The community has thus focused on how to
initialize landmarks. Two main solutions can be found in
the literature: delayed initializations and undelayed ones. In
delayed approaches, the idea is to keep landmarks out of the
state estimation process until they are accurate enough [1][11].
This way, linearization problems are avoided inside the filter.
Nevertheless, there is also an important loss of information
while landmarks are not inserted into the filter. Indeed, bearing
information, which helps estimate the heading of the vehicle,
does not need accurate landmarks to be properly computed.
Without these landmarks in the state vector, the orientation of
the robot cannot be properly recovered.

In contrast to these methods, undelayed initializations aim
at integrating landmarks as soon as they are observed even if
totally inaccurate. Then, their positions are refined inside the
estimation process with new observations. Yet, the lineariza-
tions involved by the use of non-linear models are likely to fail
with estimates far from their true values. To counter this effect,
the authors of [18] and [25] create several hypotheses for each
landmark with different depths. With new observations, wrong
hypotheses are progressively discarded. However, each new
hypothesis implies an extra-cost in terms of both memory and
processing time. More convenient representations have been
imagined to avoid that. The Inverse Depth parametrization (ID)
[8][19] is one of the most popular representations for monoc-
ular SLAM. It consists of 6 parameters for each landmark: its
3D position (represented by the azimuth and elevation angles
of the line-of-sight on which the landmark lies and the inverse
of the depth) and 3 more for the position of the vehicle at
the moment of the initialization (anchor). These 6 parameters
allow to get a representation that is more suited to large
uncertainties along an axis. However, this parametrization
is not linearization-error-free [4]. Moreover, it means that a
single landmark takes twice as much memory in the state
vector as does a classic representation. The storage of the
covariance matrix is even more costly as it requires four times
the size of the same matrix with a Cartesian representation.
Landmarks that have converged are often switched from ID to
Cartesian representation [7].

We chose to use a simple Cartesian representation so as to
avoid the cost of the ID parametrization. This implies that it is

necessary to find ways to avoid or reduce linearization errors
[26].

III. MSLAM

First off, the initialization of the 3D point and its uncertainty
must be made depending on the 2D feature extracted in the
image. In our case, we use a Harris detector for distinguishable
features. Let us consider a function hci, which, from a 3D
landmark lc =

(
x y z

)T
in the camera frame <c, allows

to get a point li =
(
u v

)T
in the image plane <i:

u =
cux+ fuy

x

v =
cvx+ fvz

x

(1)

with fu and fv being the focal distances in pixels and cu and
cv the coordinates of the optical center in the image frame.

Initializing a landmark requires the inversion of this pro-
jection function. The goal is to find, from a feature in <i

and its associated noise, a 3D position with its corresponding
uncertainty. Let us consider an observation in the image
(feature) li with its observation noise Pli , a diagonal 2 × 2
matrix composed of σ2

u and σ2
v which are respectively the

variances along the ~u and ~v axes. We are looking for its 3D
representation lc. As hci is not invertible, a fixed depth x = xd
is used in order to initialize the landmark. xd can be chosen
experimentally depending on the environment. More open
areas will require a higher value than urban zones for instance.
However, as will be shown later in the experiments section,
the value of xd does not affect much landmark convergence
when linearizations are handled properly. The uncertainty will
then be built so as to cover the distance between the vehicle
and twice the fixed depth used. Based on the pinhole model,
we can infer: 

x = xd

y =
ux− cux

fu

z =
vx− cvx

fv

(2)

Computing the associated covariance is more complex and
requires the use of the Jacobians associated to the landmark
creation. The idea is to find the uncertainty Plc (a diagonal
3×3 matrix composed of σ2

x, σ2
y and σ2

z which are respectively
the variances along the ~x, ~y and ~z axes) whose projection with
the Jacobians is coherent with the observation noise defined
in the image. Pli can be expressed as follows:

Pli = HciPlcH
T
ci (3)

where Hci is the Jacobian associated to hci (pinhole model):

Hci =

−
fuy

x2
fu
x

0

−fvz
x2

0
fv
x

 (4)

The uncertainty must be computed along the ~x axis (in
front of the camera) in order to reduce the system number
of variables. The uncertainty will then be rotated back on
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the observation line-of-sight. The projection of the landmark
defined in Equation (2) on the ~x axis is computed as follows:(

ρ 0 0
)T

=
(√

x2 + y2 + z2 0 0
)T

(5)

It is then possible to identify the values σy and σz . So as
to accurately translate the physical reality of the uncertainty
in <c, we introduce the variable dmin which is the minimal
distance from which the camera can see. We thus obtain the
following system: 

σx = ρ− dmin

σy =
ρσu
fu

σz =
ρσv
fv

(6)

This initialization aims at representing the physical reality
of the available knowledge about a landmark. It explains why
σx is chosen so as to cover the distance from dmin (a landmark
cannot be any closer otherwise it is not visible by the camera)
to twice ρ (which strongly depends of xd, chosen according
to the environment). Without any other indication about it,
σx is so computed to use at best the physical information we
have about the environment we are evolving in and the vehicle
itself. It will then allow us to compute a tracking window
(see Subsection III-A) which properly translates the ellipsoid
aspect in the image based on its geometric appearance instead
of relying on one computed at a specific confidence interval.

The uncertainty regarding the camera position (and so more
globally, the vehicle) is then taken into account when Plc is
passed into the world frame <w. To do so, we define hcw, a
function allowing to pass a landmark lc expressed in <c to the
world frame (lw). hcw requires the 6D pose of the vehicle v
(3D position and the 3 associated angles):

hcw(lc,Rw,Rv, tw, tv) = Rw(Rvlc + tv) + tw (7)

where Rw and Rv are the rotation matrices computed respec-
tively with the vehicle orientation (vehicle frame <v to <w)
and extrinsic parameters known from calibration (<c to <v).
Similarly, tw and tv are the translation vectors established
with the vehicle position (<v to <w) and extrinsic parameters
(<c to <v) which are also known from the calibration step.
The Jacobian Hcw corresponding to hcw can then be computed
to pass Plc to <w. For the sake of clarity, let us break Hcw

into two parts: Hvcw (3× 6 matrix) and Hlccw (3× 3 matrix)
corresponding respectively to the Jacobians associated to v and
to lc. Pv is the uncertainty associated to v. The uncertainty
of the landmark in <w (Plw ) can be computed as follows:

Plw = Hvcw
PvHT

vcw
+ Hlccw PlcH

T
lccw

(8)

As stated before, linearization failures are likely to happen
with this initialization as the true distance of the landmark
can be far off the estimate. However, the chosen Cartesian
representation has the advantage to be minimal.

A. Tracking window

After its initialization, a landmark is tracked through the
next images. These new observations help estimate the land-
mark depth and thus reduce its uncertainty. The tracking part

is usually done with Zero mean Normalized Cross-Correlation
(ZNCC) [10][12]. When a feature is first selected, a small
patch (11× 11 pixels in our case) is extracted around it. This
descriptor is then tracked in the next images with ZNCC.
However, scanning the whole image looking for a feature is
an unreliable, time-consuming process. Consequently, authors
tend to define a tracking window in the image plane in order
to have a smaller area in which to look for matchings.

Two main approaches can be found in the literature when
it comes to computing a tracking window. In both methods,
the 3D point is projected into the image. In the first one,
the size of the tracking window is similarly set for all the
features based on the maximum displacement that can occur
between two successive frames [20]. It is suitable as long
as the robot does not move too fast or the camera speed is
sufficiently high. Indeed, the size of the tracking window could
be important thus leading to a costly and unreliable tracking
process. Moreover, this approach does not take advantage
of the landmark uncertainty that could help to reduce the
bounding box size.

The other main trend relies on projecting the uncertainty
into the image with the Jacobian of the observation model [12].
It allows to have an area in which a correspondence can then
be sought. During the initialization, we compute an ellipsoid
whose projection by the Jacobians is guaranteed to be the
image uncertainty. However, when defining a tracking window,
the linearization is accomplished around the landmark and
vehicle estimates, which, after the initialization, might have
changed. Consequently, the resulting projection can be wrong
as we cannot ensure that the projection of the ellipsoid will
respect the initial image uncertainty, thus preventing proper
working of the tracking process. Moreover, the correspondence
between an uncertainty in the image and in the world is
difficult to maintain as the projection of an uncertainty from
the image to the camera is not an ellipsoid but a cone. With
this method, landmarks are usually initialized and lost very
quickly, especially in case of high vehicle velocity or low
camera frequency where uncertainties quickly grow. Figure 1
shows how the projection by the Jacobians can be restrictive
compared to the shape of the ellipsoid. The tracking issue
induced by the Jacobians is also depicted in Figure 3 on a
real example. In this last example, the landmark covariance
has been correctly initialized and its evolution depends on the
noise associated to the odometric measurements which has
been properly set.

To avoid the linearization problems, we decided to use a
geometrical approach. By using planes, tangent to the ellipsoid
of uncertainty, MSLAM is able to compute a proper tracking
window. Figure 2 covers the whole process with a 2D example.
We start from the 3D uncertainty and we search for a 2D
ellipse in the image. Let us consider Plc the covariance of a
landmark lc in <c:

Plc =

a b c
b d e
c e f


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Fig. 1. Simulation example of an ellipsoid projection in an image of
resolution 1024 × 768. The ellipsoid is typical of what is obtained after an
initialization and is also slightly off-centered. The blue cross is the projection
of a 3D point in the image. The restrictive blue ellipse is the associated
uncertainty computed with the Jacobians. The red dots are the projections of
the points composing the ellipsoid in <i.

We define its inverse as:

P−1lc
=

1

detPlc

df − e2 ce− bf be− cd
ce− bf af − c2 cb− ae
be− cd cb− ae ad− b2



=

A B C
B D E
C E F


To find the proper ellipse in the image, it is necessary to find

the planes tangent to the ellipsoid. We first identify the points
on the surface of the ellipsoid E generated by the covariance
Plc : x− x0y − y0

z − z0

T

P−1lc

x− x0y − y0
z − z0

 = 1 (9)

where
(
x0 y0 z0

)T
is the center of E . The planes tangent to

the ellipsoid are also orthogonal to the normals of the points on
the surface of this ellipsoid. This constraint can be expressed
by the gradient:

~n = ∇E (x, y, z) =

(
∂E

∂x

∂E

∂y

∂E

∂z

)T

=

2(x− x0)A+ 2(y − y0)B + 2(z − z0)C
2(x− x0)B + 2(y − y0)D + 2(z − z0)E
2(x− x0)C + 2(y − y0)E + 2(z − z0)F


(10)

Points that are part of a plane p orthogonal to the normal
verify the following relationship:xpyp

zp

 ∈ p⇔
xp − xyp − y
zp − z

T

· ~n = 0 (11)

We only keep the points whose tangent planes pass through
the origin (camera): (

x y z
)
· ~n = 0 (12)

The points on the surface of the ellipsoid giving these
tangent planes can then be projected inside the image to obtain
the correct ellipse. However, the uncertainty in the image
is defined by an infinite number of points on the ellipsoid.
Another constraint must be added to the system. A rectangular
window is needed to perform ZNCC. Indeed, it offers better
performance than an elliptical window. It allows us to add
a constraint about the planes that must be selected. Only
four planes are needed for a rectangular window. Furthermore,
these planes must intersect the image horizontally or vertically,
meaning that they must include the ~y or ~z axis:

~y · ~n = 0⇔ (x− x0)B + (y − y0)D + (z − z0)E = 0 (13)

~z · ~n = 0⇔ (x− x0)C + (y − y0)E + (z − z0)F = 0 (14)

(a) Camera, image, landmark
(green) and its uncertainty (red)

(b) Outline of the ellipse

(c) Normals of these points
(examples)

(d) Tangent planes associated
(in blue)

(e) Tangent planes passing
through the origin

(f) Solution in 2D (projection
of the points in the image)

Fig. 2. 2D example of the constraints used to compute a bounding box in
the 3D case.

It gives us the following system to solve for the points
tangent to horizontal planes:

x− x0y − y0
z − z0

T

P−1lc

x− x0y − y0
z − z0

 = 1

(
x y z

)
· ~n = 0

~y · ~n = 0

(15)

And the following one for the points on the vertical planes:

x− x0y − y0
z − z0

T

P−1lc

x− x0y − y0
z − z0

 = 1

(
x y z

)
· ~n = 0

~z · ~n = 0

(16)
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The resolution of these systems is straightforward and will
not be detailed here for lack of space. After resolution, each
system provides a couple of points

(
x y z

)T
which, once

projected inside the image, allows the computation of a proper
bounding box. Thanks to this method, linearization errors
are avoided. More details can be found about the bounding
box method in [5]. The results of a tracking example can be
observed in Figure 3.

(a) Frame 1:
tracking okay

(b) Frame 2:
tracking okay

(c) Frame 3:
tracking failure

(d) Frame 7:
tracking failure

(e) Frame 1:
tracking okay

(f) Frame 3:
tracking okay

(g) Frame 7:
tracking okay

(h) After 18
frames

Fig. 3. (a)-(d): tracking failure due to significant linearization errors
(projection through the Jacobians). (e)-(h): tracking with the method proposed
in this paper. In both cases, the green rectangle is the bounding box of the
covariance projection in the image (area where the point is supposed to be).
The red cross is the estimate of the landmark position. The green circle is the
observation. In this example, the vehicle is moving forward while trying to
track a landmark in the images.

By improving the tracking, we are able to enhance two
major aspects of our SLAM algorithm. Indeed, the most de-
manding step in terms of processing time is feature extraction.
As fewer landmarks are initialized, our algorithm becomes
much faster and requires less memory. The other consequence
is that more landmarks are accurate and thus kept in the
state vector. It means that the vehicle pose can reach a better
accuracy. A validation of the tracking window is proposed in
Section IV.

B. Corrective factor of the update step

After the tracking step, it is necessary to update the state
vector in order to take advantage of the new observation.
However, the update stage relies on the Kalman gain which
itself depends on the linearization of the observation function.
As stated before, the linearization process can go wrong
because it is made around the fictitious 3D point which can
be located far from its true position. The consequence of this
wrong update is that the landmark can pass behind the camera
while it has just been observed. An example of failure during
the update is shown in Figure 4. The data set used is the same
as the one in Figure 3. The point is initialized at 100 meters.
After the second update, the landmark is estimated behind the
observer which is impossible.

This problem has already been noticed in [21] and is also
affecting the Inverse Depth parametrization. However, the
solution proposed by the authors simply consists in discarding

(a) Initialization of the point at 100 meters on
the line-of-sight

(b) First update: integrity is preserved

(c) Second update: landmark updated behind
the observer

Fig. 4. Update failure due to linearization errors. Top view of a point updated.
The blue circle is the position of the vehicle. The red square is the landmark.
The green circle is the real position of the landmark. The black ellipse is the
uncertainty associated to the landmark after its initialization.

an update if the landmark new position is behind the camera.
Some authors rely on a fast camera in order to have several
small updates instead of a big one [11]. It has the advantage to
avoid most of the linearization errors. However, it only works
if the camera frequency is high and the vehicle speed low.

The perturbations generated by a non-linear observation
function can be detected as long as this function can be
expressed as a ratio between two linear functions [15]. It is
the case of the function allowing to project landmarks in <i.
As soon as a linearization error is detected, a corrective can
be applied so as to reduce the linearization influence. This
corrective is used as a multiplicative factor for the Kalman
gain. Indeed, the Kalman gain quantifies the impact that an
observation will have on the current estimate. By modulating
it, it becomes possible to ponder its effect during the update
step of the Kalman filter, thus reducing linearization errors.
To know when the update must be corrected, it is necessary
to understand when a linearization has failed. To do so,
the results expected from an update must be studied. We
have already stated that linearization issues will appear more
frequently shortly after the initialization when the uncertainty
is important. Let us consider a landmark estimate with a
big uncertainty and an observation of this estimate. We an-
alyze two cases: an observation with no uncertainty (perfect
observation) and the same observation but with an infinite
uncertainty (see Fig. 5(a)). With a perfect observation, the
updated landmark should have converged on the observation.
On the other hand, an observation with infinite uncertainty is
useless and should not improve the landmark uncertainty or its
position. As a consequence, we can determine a range in the
image where the updated landmark should be located. Without
any new information (observation with infinite uncertainty),
the projection of the updated landmark must be the same as
before. With the best possible correction (perfect observation),
the projection of the updated landmark must be on the obser-
vation. Considering these extreme cases, if the projection of
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the updated landmark is not between the landmark projection
before the update and the observation, a linearization error has
occurred (see Fig. 5(b)).

(a) Extreme cases for the update in
the image frame: perfect observation
and infinite uncertainty observation.

(b) Update range for the landmark
projection.

Fig. 5. Update of a landmark. The red cross is the projection of the landmark
estimate. The green circle is the observation. The blue crosses represent the
updated projection of the landmark estimate. R is the observation noise
(uncertainty).

When the failure is noticed, the role of the corrective factor
is to bring back the updated projection of the landmark on
the observation. Indeed, the observation noise is very small
compared to the landmark uncertainty. As a consequence, we
can rely on the observation when a linearization error occurs. It
can be mathematically expressed by the following relationship:

zk = h(xk|k) (17)

where zk =
(
zuk

zvk
)T

is an observation in the image
frame, h is the observation function and xk|k is the estimated
state after the update.

So as to make this equation true, we define Ωk the Kalman
gain corrected by the factor r:

Ωk = r ·Kk (18)

where Kk is the Kalman gain.
It is important to observe that this corrective does not change

the ratio between the uncertainties from the observation and
from the projection of the estimate into the image:

Ωk = r ·PkHT
k

(
HkPkHT

k + Rk

)−1
= PkHT

k

(
Hk

Pk

r
HT

k +
Rk

r

)−1 (19)

where Pk is the uncertainty estimate, Hk the Jacobian asso-
ciated to h and Rk the observation uncertainty.

Both uncertainties are similarly affected by r. Moreover, it is
possible to deduce the range of values that r can take. Indeed,
Rk is the best a priori available on the observation noise.
It means that it could not be lower than the value chosen.
Therefore, after applying r, Rk cannot be smaller than it was,
so r cannot be greater than 1. A correction greater than 1
would mean that the projection of the updated landmark is
already in the authorized range and so that the correction
should not be considered. The impact of r on Pk allows to
infer that r must be greater than 0. Pk is a covariance matrix
and so is positive-semidefinite by nature. A negative value for
r would change that. As a consequence, the corrective factor
r must only be applied if between the range (0 1].

The projection of the landmark estimate
(
uk−1 vk−1

)T
is

defined through the observation function h as follows (for a
3D landmark lw in the world frame <w):

uk−1 =
F1R

T
cw(lw − tcw)

F3RT
cw(lw − tcw)

vk−1 =
F2R

T
cw(lw − tcw)

F3RT
cw(lw − tcw)

(20)

with Fi being the ith line of the intrinsic parameters matrix
and Rcw the rotation matrix allowing to pass landmarks from
<c to <w (tcw is the associated translation).

Considering the Kalman state update equation and the
observation function (20), expressing the observation as the
updated landmark projection can be done as follows:

zuk
=

F1R
T
cw(lw + Ωk∆k − tcw)

F3RT
cw(lw + Ωk∆k − tcw)

zvk =
F2R

T
cw(lw + Ωk∆k − tcw)

F3RT
cw(lw + Ωk∆k − tcw)

(21)

where ∆k is the innovation defined as: ∆k = zk−h(xk|k−1).
From there, we can extract the corrective factor by getting

Ωk out of the equation:
ru =

(zuk
− uk−1)F3R

T
cw(lw − tcw)

(F1 − zuk
F3)RT

cwKk∆k

rv =
(zvk − vk−1)F3R

T
cw(lw − tcw)

(F2 − zvkF3)RT
cwKk∆k

(22)

The lowest corrective factor between ru and rv will be kept
to avoid producing overconfident estimates. With this factor,
linearization failures will be avoided most of the time. This can
be observed through the same example as Figure 4 in Figure
6 where the landmark position now properly converges.

The efficiency of this corrective factor will be exposed in
the next section.

IV. EXPERIMENTS

We will first demonstrate the benefits of each new aspect of
our method (Subsection IV-A). Then, other experiments will
illustrate the efficiency of the whole algorithm (Subsections
IV-B and IV-C). We also compared MSLAM to the state-of-
the-art monocular SLAM algorithm of Civera et al. [9] over a
public data set so as to highlight the advantages of our method
(Subsection IV-D).

A. Individual validations

First off, the impact of xd on the number of landmarks
tracked and kept (accurate landmarks whose uncertainty falls
below a threshold, fixed here at 50 centimeters accumulated on
the 3 axes) will be demonstrated in the following experiment.
A vehicle performed a 30-meter trajectory in a static urban
environment. The vehicle was moving at approximately 1
m.s−1 and the camera was running at 10 Hz. In each image,
the algorithm was tracking 10 landmarks (if fewer are visible,
new ones are initialized). Results are visible in Figure 7 with
different initialization distances. It can be seen that the number
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(a) Initialization of the point at 100 meters on
the line-of-sight

(b) First update: integrity is pre-
served

(c) Second update: integrity still
preserved

(d) After 10 updates, the
landmark has converged

Fig. 6. Proper update thanks to our corrective factor. Top view of a point updated. The colors are the same as in Fig. 4.

of landmarks initialized is approximately constant (between
125 and 150) with a similar convergence rate (one out of
two landmark converges) whatever the distance used for the
initialization.

Fig. 7. Number of landmarks initialized (in red) and kept (in blue) according
the initialization distance xd in meters.

In order to illustrate the benefits of this tracking window,
we conducted an experiment based on the same data set as
previously and with the same conditions. The trajectory was
run twice. The first time, an EKF-SLAM using the Jacobians
method for the tracking process was used. The second time,
the same algorithm was applied, this time using our new
geometrical approach. Both algorithms are identical except
for this very specific aspect that is the computation of the
tracking window. The results are summarized in Table I. We
can notice that far fewer landmarks are initialized with our
method. Indeed, as our algorithm is able to track them during
longer periods of time with the proper bounding boxes (1.96
s in the mean, approximately 20 frames, vs. 1.53 s with the
Jacobians, around 15 images, almost a 30% increase), there is
no need to initialize new ones. The convergence rate is also
in favor of the geometrical approach (27% vs. less than 20%
for the Jacobians method). It is necessary to keep in mind
that, in both algorithms, the linearization issues coming from
the update step are not corrected, making the convergence of
landmarks more difficult to achieve.

EKF-SLAM using EKF-SLAM with our
Jacobians for tracking geometrical approach

Landmarks initialized 249 199
Landmarks conserved 49 53
Mean tracking time 1.53 s 1.96 s
Max. tracking time 17.6 s 22.9 s

TABLE I
BENEFITS OF THE TRACKING PROCESS.

Finally, to show the efficiency of the corrective factor, we
used the same 30-meter trajectory as before. During the first
execution of the trajectory, a monocular SLAM without the
proposed correction was applied. The second time, MSLAM
(with the corrective factor proposed here) was used. The
algorithms are, once more, identical except for the corrective
factor. The trajectory, and the landmarks which have converged
in both cases, can be seen in Figure 8 while Table II provides
more detailed results. We can notice the same effect as in the

bounding box experiment: fewer initializations are made while
more landmarks have converged.

(a) Trajectory performed with-
out the corrected Kalman gain.

(b) Trajectory performed with the
corrected Kalman gain.

Fig. 8. 30-meter trajectory illustrating landmarks convergence with and
without the corrected Kalman gain. The trajectory is in black. The red crosses
are the conserved landmarks.

EKF-SLAM without MSLAM
corrective factor (our approach)

Landmarks initialized 384 134
Landmarks conserved 32 75
Divergences 439 0

TABLE II
BENEFITS OF THE KALMAN GAIN CORRECTIVE FACTOR.

Each time a landmark is updated out of the previously
defined proper bounds, we cancel the update and keep the
landmark in the state vector. It explains why the number of
divergences given in Table II is greater than the initializations
as a landmark position can diverge several times in different
updates. Of course, initializing fewer landmarks allows the
algorithm to be faster.

B. SLAM with a low frequency camera

The two experiments that will be presented here share the
same trajectory (of approximately 170 meters). The vehicle
used, an electrical vehicle called VipaLAB (see Fig. 9),
was equipped with a single camera, an odometer (feeding a
kinematic model) and a RTK GPS (ground truth for compar-
ison purposes) and was driven manually at approximately 2
m.s−1 throughout the trajectory. This speed corresponds to
the platooning applications aimed where vehicles are used as
proximity transportation systems in city centers. However, the
methods proposed here could be applied to faster vehicle as
long as they use a higher camera frequency than here. Indeed,
the problem is similar between high speed and low frequency:
successive observations of landmarks are more difficult to find
due to the great displacement occurring between two images.
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Fig. 9. VipaLAB: electrical vehicle used in the experiments here. It is
equipped with a Marlin F-1318 camera (circled in green) and an odometer.

These experiments took place in an urban platform called
PAVIN which is composed of crosswalks, curbs, roads and
roundabouts. Several pictures, illustrating the conditions of the
experiments as well as the platform, can be seen in Figure 10.

The aim of these experiments is to test the robustness of
the proposed solution by using a slow-running camera. With
a low camera speed, linearization failures are more likely to
happen as each new observation will be located far from the
previous one. It means that the bounding box needs to be
properly computed in order to be sure that the matching will be
correct. Moreover, it also means that the Kalman update will
be more subject to linearization errors due to the gap between
the observations and the estimates. In the first experiment,
the camera was acquiring images at 3.75 Hz and only 10
landmarks per image were used (with new ones initialized
when less than 5 are visible). In all the experiments of this
section, landmarks were initialized at 200 meters on the line-
of-sight of their first observation.

In each of these experiments, another implementation of
MSLAM, without the corrected Kalman gain and with the
projection through the Jacobians for the tracking process, was
used in order to compare with MSLAM. Both algorithms are
identical except for the two aspects mentioned. It means that
the same constraints are applied: the bounding boxes computed
have a minimum and maximum size. These constraints limit
the impact of linearization errors on the vehicle pose. The goal
is to show the efficiency of the proposed solutions to counter
linearization errors, in terms of resources and quality of the
computed localization. The results of the first experiment are
visible in Figure 11. It is important to note that loop closures
are not applied here and in any other experiment.

Fig. 11. Localization of the vehicle with a camera running at 3.75 Hz. Black:
ground truth (RTK GPS). Green: odometry-only trajectory. Red: EKF-SLAM
without the proposed corrections. Blue: MSLAM.

The first thing to notice here is that the localization given
by MSLAM is better than the one based on an EKF-SLAM
without the correctives. In this example, the divergence is not
very important and this is mostly due to the fact that our
kinematic model is already quite good and prevents important
errors. Moreover, the controls mentioned before avoid most of
the linearization errors. Still, it can be seen that near the end
of the trajectory, the orientation of the vehicle is not well
estimated which would certainly lead to a more important
divergence if the trajectory was not finished.

As for the previous experiments, Table III indicates the
number of landmarks initialized, having converged and the
mean tracking time.

SLAM without the corrections MSLAM
Landmarks initialized 472 408
Landmarks conserved 267 354
Mean tracking time 2.8 s 3.8 s

TABLE III
BENEFITS OF MSLAM WITH A REAL TRAJECTORY.

Once again, more landmarks have been initialized by the
SLAM not using the corrections introduced in this paper as it is
not able to track points during long periods of time (2.8 s in the
mean vs. 3.8 s with MSLAM) . Similarly, a higher convergence
rate is achieved with MSLAM as most linearization errors
are avoided. Even though the frequency of the camera is
low, many landmarks have been kept with MSLAM. It can
be explained by the fact that with fewer images, the updates
are more important and make the landmarks converge faster.
Without a proper bounding box or Kalman gain, it is difficult
to track and update the landmarks without risking linearization
failures. An interesting point here is the size of the map at
the end of the trajectory. Our goal is to provide a solution
with low memory requirements. Here, with 354 landmarks for
170 meters, less than 34 KB are needed to keep the whole
map (state vector and covariance matrix). With an Inverse
Depth parametrization, the same map would have required
119 KB. Over long distances, a lighter map is an important
asset. Concerning the computational time required, MSLAM
was running in real time and took on average 15 ms per image
of resolution 1024×768 pixels. The two corrections proposed
in this article (computation of the bounding box and corrective
factor of the Kalman gain) do not slow down the process as
they only require around 1 µs each.

The quality of the computed localization is given, for both
MSLAM and the SLAM without corrections, in Figures 12(a)
and 12(b) with the Root-Mean-Square Error (RMSE) and
the Consistency Index (CI) as defined in [22] regarding this
trajectory. This last quality index is based on the Normalized
Estimation Error Squared (NEES) and the Chi-square test (the
desired significance level is set here to 0.05). When CI is lower
than 1, the estimation is consistent with the ground truth and
when the CI is greater than 1, the estimated pose is optimistic
(inconsistent) thus measuring the accuracy of the estimated
covariance.

MSLAM is able to achieve a smaller RMSE in comparison
with a classic SLAM. Also, MSLAM provides consistent
vehicle poses most of the time as opposed to the SLAM
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(a) (b) (c) (d)

Fig. 10. Some examples of typical camera outputs in PAVIN. Some pictures show the important reflections caused by the sun during these experiments.

(a) Root-Mean-Square Error

(b) Consistency Index

Fig. 12. In red are the results of the SLAM without correctives and in blue,
those of MSLAM for a camera running at 3.75 Hz.

without correctives. However, it is worth noting that SLAM
algorithms tend to drift over time because of non-linear models
[3][16] thus requiring special means to counter this effect, such
as loop closing which is not performed here.

For the second experiment, we used our previous trajectory
and slowed down the camera to less than 2 Hz. With such a
setting, the linearization problems are intensified. Figure 13
shows the trajectories performed by both MSLAM and the
SLAM without the corrections introduced in this article.

Fig. 13. Localization of the vehicle with a camera running at less than 2
Hz. Black: ground truth (RTK GPS). Green: odometry-only trajectory. Red:
EKF-SLAM without the proposed corrections. Blue: MSLAM.

The trajectory calculated by MSLAM is very close to
the one in Figure 11 which confirms the robustness of our
approach. Indeed, even with fewer images, it is able to achieve
similar localization results. On the other hand, the approach

which does not use the solutions proposed here is affected
by this low frequency and quickly diverges. Right after the
first bend, the orientation changes a lot and a jump in the
position can also be noticed. These are the consequences of
linearization failures. However, after the first bend most of the
linearization errors are avoided as no sudden hops can be seen
in the trajectory. The different controls added to the algorithm
helped a lot in preventing linearization errors from being too
important.

As for the previous experiment, Figures 14(a) and 14(b)
present the RMSE and the CI for this trajectory.

(a) Root-Mean-Square Error

(b) Consistency Index

Fig. 14. Same color code as previoulsy. This time the camera is running at
less than 2 Hz.

The effect observed before is amplified here by linearization
errors. MSLAM performs similarly despite the lower speed
whereas the SLAM without the correctives has a much higher
RMSE. The CI of MSLAM is almost always lower than 1
meaning that consistency is ensured most of the time. On the
other hand, the SLAM without correctives has a CI which goes
above 100 (not displayed here for the sake of clarity).

C. Localization using a map built by MSLAM

To demonstrate the quality of the maps built, we conducted
another trajectory in which the map of a vehicle was given
to another one. The scenario is simple: a first vehicle builds
a reference map which is then used by a second vehicle. The
task of the second robot is to localize itself inside this map
while following a trajectory similar to the first one. The second
algorithm does not map more landmarks but only uses the ones
in the reference map in order to localize itself. The principle
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is the same: landmarks are projected in the image where
observations are sought with ZNCC. We used a simulator in
order to perform similar trajectories more easily. The simulator
presents realistic physics as well as environments mapped from
real locations. It must be noted that the simulator is only used
to generate sensor data. Indeed, our algorithm is running on a
separate computer as would be the case with a real vehicle. For
this trajectory, the environment is an urban city center (place
de Jaude). All the typical urban features can be found: roads,
building, curbs, crosswalks and so on. Several pictures of the
environment along with some typical camera outputs from the
simulator are exposed in Figure 15.

By measuring the true gap between the paths followed by
both vehicles (with RTK GPS’s for instance) and comparing it
to the gap obtained with MSLAM, we are able to have a clear
indicator of the quality of the localization. Figure 16 shows the
two trajectories performed and their respective ground truth.
Both trajectories were approximately 170-meter long.

Fig. 16. Localization of the vehicles. Green: ground truth for the first
vehicle. Cyan: ground truth for the second vehicle. The two trajectories are
superimposed because very similar, even though not identical. Blue: MSLAM
for the first vehicle. Red: MSLAM for the second vehicle using the map
built by the first. Red crosses: landmarks mapped during the first passage
and tracked in the second.

We can see that the localizations computed by our algorithm
are very close to the ground truth. More landmarks have been
initialized in order to have more points in the reference map
and thus ease the localization in this map for the second
vehicle. Here, around 600 landmarks have been mapped, which
remains quite a low quantity to handle. Figure 16 also shows
that the trajectories computed by MSLAM are rather close
together, only diverging a little bit near the end. A closer look
is given at the localization error in Figure 17.

Fig. 17. Localization error when using the reference map built by the first
vehicle (difference between RTK GPS positions and MSLAM ones).

The error is on average around 10 centimeters which is
suitable for automatic driving. However, some important peaks
can be noticed near the end of the trajectory. It can be
explained by the fact that fewer landmarks are visible at
this point of the trajectory (in bends). It consequently makes
localization using the reference map much more difficult.
Mapping more landmarks in bends could help to reduce this
problem.

These results show that MSLAM can be used in cooperative
applications where the vehicles share their maps. Indeed,
thanks to the use of a classic Cartesian representation, maps
are light and so network requirements are low. The results here
illustrate that good localization results can still be achieved.

D. Comparison with a state-of-the-art SLAM algorithm

The last experiment exposed in this paper aims at comparing
MSLAM with the state-of-the-art approach of Civera et al.
[9] over a public data set. In [9], a monocular EKF-SLAM
using the Inverse Depth parametrization and an odometer is
used. This representation makes it possible to avoid most
linearization errors. Furthermore, a complex data association
method is applied: 1-point RANSAC. This algorithm guides
the data association process by constraining the filter to
perform the first update with the observation allowing to keep
most associations after the fact. The data set used was the
one applied by Civera et al. and comes from the RAWSEEDS
public database (www.rawseeds.org).

The trajectory was recorded on Milan’s campus and is a
mix of classic urban environment and more open areas with
trees, grass or gravel. The small robot used (Robocom) evolves
at a low speed (less than 1 m.s−1) and is equipped with an
odometer and a camera furnishing images of resolution 320×
240 at 30 Hz. The trajectory is about 1360-meter long. Figure
18 shows the estimated path of the robot when only using
proprioceptive sensors.

Fig. 18. In green, the trajectory computed using only odometric sensors.
The blue trajectory is one given by the GPS and used as a ground truth.

We can notice that there is an important odometric drift. It
is also important to note that these results are identical to the
ones obtained by Civera et al. and so that only the implication
of the vision algorithm will be measured. Figure 19 exposes
the trajectory computed by our algorithm next to the one of
Civera et al. published in [9].

We can see that most of the odometric drift has been
corrected. A part of the angular error could not be corrected
in the second half of the trajectory, thus creating this gap with
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(a) Environment (b) Environment (c) Camera output (d) Camera output

Fig. 15. Some examples of pictures taken from the simulator. (a)-(b): overview of the environment used for the simulated scenarios. (c)-(d): some typical
camera outputs taken with the simulated camera.

(a) Localization results of MSLAM (b) Localization results from [9]

Fig. 19. Localization results of monocular SLAM algorithms. In both cases,
the blue curve is the ground truth and the red one the trajectory computed by
the SLAM algorithm.

the GPS. The measure of the gap between the GPS and the
position computed by MSLAM gives a good indication of
the localization quality. On the whole trajectory, an average
0.84% drift has been measured. The approach of Civera et
al. is able to reach a 0.7% drift. The results are thus close.
The use of a more efficient data association algorithm (like 1-
point RANSAC) in MSLAM could further improve our results.
Figure 20 shows the localization error throughout the trajectory
(difference between MSLAM vehicle pose and the RTK GPS).

Fig. 20. Distance between the computed position and the ground truth
according to the distance traveled.

Concerning the processing time, we measured the time
required per image. As for the comparison to be fair, both
algorithms were running on hardware equipped with the same
processor: a i7 at 2.67 GHz. MSLAM took in the mean 7 ms
per image (ranging from 3 ms to 13 ms) whereas the one of
Civera et al. is closer to 18 ms per image (ranging from 14
ms to more than 40 ms). Similarly, both algorithms tracked
25 landmarks per image but the ID parametrization requires
twice as much memory to store the state vector and four times
as much for the covariance matrix compared to MSLAM.

V. CONCLUSION

An EKF-SLAM solution (MSLAM) relying only on a
camera and an odometer has been presented. A minimal
Cartesian representation is used, allowing to have a memory-
thrifty algorithm thus making MSLAM suited for all kinds
of cooperative approaches. Linearization issues, involved by
the light Cartesian representation that we have chosen, are
corrected. During the tracking step, a new method to compute
a proper bounding box has been introduced and validated.
A corrective factor in the update step, reducing the impact
of linearization problems on the Extended Kalman filter, has
been presented and tested. The benefits of MSLAM over a
classic approach have been extensively evaluated with several
experiments.

Satisfying localization results are achieved within a small
computing time. MSLAM was tested with several trajectories
under different conditions and camera frequencies. The local-
ization inside a reference map built by our algorithm has also
been presented. It shows that the maps produced by MSLAM
are suitable for automatic driving scenarios as the localization
accuracy obtained is sufficient. Finally, a comparison with the
state-of-the-art approach of Civera et al. has been made. It
illustrates that MSLAM behaves similarly while being faster
and needing less memory.

However, data association should be investigated to rein-
force our algorithm. It would avoid losing track of a landmark
when its aspect undergoes too much changes (illumination or
slow running camera). Another interesting perspective is to de-
velop new multi-vehicle approaches using MSLAM favorable
characteristics.
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