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Abstract: Cyber-physical systems (CPSs) are embedded systems that are tightly integrated
with their physical environment. The correctness of a CPS depends on the output of its computa-
tions and on the timeliness of completing the computations. The increasing use of high-performing
and low-power multi-core processors in embedded systems is pushing embedded programmers to
be parallel programming experts. Parallel programming is challenging because of the skills, experi-
ences, and knowledge needed to avoid common parallel programming traps and pitfalls. This paper
proposes the ForeC language for the deterministic, parallel, and reactive programming of embedded
multi-cores. The synchronous semantics of ForeC is designed to greatly simplify the understanding
and debugging of parallel programs. ForeC allows programmers to express many forms of parallel
patterns while ensuring that ForeC programs can be compiled e ciently for parallel execution and
be amenable to static timing analysis. ForeC's main innovation is its shared variable semantics
that provides thread isolation and deterministic thread communication. All ForeC programs are
correct by construction and deadlock-free because mutual exclusion constructs are not needed.
Through benchmarking, we demonstrate that ForeC can achieve better parallel performance than
Esterel, a widely used synchronous language for concurrent safety-critical systems, and OpenMP, a
popular desktop solution for parallel programming. We demonstrate that the worst-case execution
time of ForeC programs can be estimated to a high degree of precision.

Key-words: programming language, semantics, parallelism, synchronous, determinism, reac-
tive, multi-core, worst-case execution time, code generation.



Programmation parallele, synchrone et déterministe de
multi-coeurs avec ForeC: langage de programmation,
sémantique et génération de code

Résumé :  Les systemes cyber-physiques sont des systéemes embarqués qui sont tres fortement
couplés a leur environnement. La correction d'un tel systeme dépend a la fois des sorties cal-
culées et des dates auxquelles ces sorties sont produites. L'usage croissant de processeurs haute
performance multi-c+urs dans les systémes embarqués pousse les programmeurs a devenir des
experts en programmation paralléle. La programmation paralléle représente un dé en raison
des compétences, de I'expérience, et des savoirs qui sont requis a n d'éviter les pieges classiques.
Dans cet article, nous proposons le langage de programmation ForeC pour la programmation
déterministe, paralléle et réactive des processeurs embarqués multi-c+urs. La sémantique syn-
chrone de ForeC a été congue pour simpli er grandement la compréhension et la mise au point des
programmes paralléles. ForeC permet aux programmeurs d'exprimer de nombreuses formes de
schémas paralléles tout en garantissant que les programmes ForeC peuvent étre compilés e cace-
ment pour une exécution paralléle, et que leur temps d'exécution peut étre calculé statiguement.
La principale innovation de ForeC réside dans la sémantique des variables partagées, qui garan-
tit l'isolation des Is d'exécution et une communication déterministe entre les Is d'exécution.
Tous les programmes ForeC sont correct par construction et sans inter-blocage car les construc-
tions d'exclusion mutuelle ne sont pas nécessaires. Grace a des benchmarks, nous démontrons
gue ForeC peut obtenir de meilleures performances paralléles qu'Esterel, un langage synchrone
largement utilisé pour les systémes concurrents a sdreté critique, ainsi qu'OpenMP, une solu-
tion utilisée classiquement pour la programmation parallele. Nous démontrons que le temps
d'exécution au pire cas des programmes ForeC peut étre estimé avec un trés haut degré de
précision.

Mots-clés : langage de programmation, sémantique, parallélisme, synchronisme, détermin-
isme, réactif, multi-c+ur, génération de code.
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1 Introduction

People interact daily with many embedded systemswhich are digital systems embedded into a
product to add speci ¢ functionality, such as those shown in Figure 1. An embedded system
is safety-critical if its failure to operate correctly may lead to catastrophic consequences [1].
Safety-critical embedded systems [72] must be dependable and functionally safe [26, 102, 41] and
certi ed against safety standards, such as DO-178B [115], IEC 61508 [61], and ISO 26262 [63].
Certi cation is a costly and time consuming exercise and is exacerbated by the use of multi-core
processors to create more e cient designs. Safety-critical embedded systems typically monitor
and control physical processes in the environment that in turn a ects the computations of the
embedded systems. Because the computations and physical processes are tightly coupled, these
embedded systems need to be real-time and reactive, computing new outputs as soon as new
inputs are detected. For example, an unmanned aerial vehicle must react continuously to its
surrounding environment to avoid obstacles while it ies to its intended destination. The cor-
rectness of an embedded system depends on the output of its computations and on the timeliness
of completing the computations [79, 145].

A key to building successful embedded systems using multi-core processors is the under-
standing of the timing behaviors of the computations [8] and physical processes. Unfortunately,
the timing behavior of computations modeled in the C programming language [62], a popular
language for programming embedded systems, is complex because it depends on the underlying
architecture. The timing of C programs is typically validated by static worst-case execution time
(WCET) analysis [145]. The understanding of the timing behavior of C programs on multi-core
processors can be greatly enhanced by the following methods: (1) introducing timing constructs
that allow programmers to control time as a rst-class resource, e.g., enforcing that the execution
time between two programming points must be less than the inter-arrival time of inputs; and (2)
de ning a deterministic parallel execution semantics for multi-threaded C programs that commu-
nicate over shared memory. This paper tackles these two points by bringing together the formal
semantics of synchronous languages [13] and the bene ts of C's control and data structures. The
resulting language, called ForeC, is suitable for the deterministic parallel programming of multi-
cores. The following sections review the parallel programming of embedded multi-cores and the
programming restrictions for easing the certi cation process.

Figure 1: Examples of embedded systems and those with safety-critical concerns.

Inria
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1.1 Parallel Programming of Embedded Systems

Programs can be executed directly by the hardware (bare-metal) or by a real-time operating
system (RTOS) [147]. The bare-metal approach allows all of the system's resources to be used to
execute the program, but code must be included to manage the hardware. By contrast, an RTOS
manages the hardware and provides a consistent environment for developing and executing pro-
grams, thus, enabling code portability across a range of systems. Hence, the RTOS must be taken
into account when analyzing programs. C [62] is a popular language for programming embedded
systems with support for multi-threading and parallelism provided by third-party libraries, com-
pilers, and runtime support [38]. Notable examples include Pthreads [132], OpenMP [100], and
MPI [90]. These multi-threading solutions are inherently non-deterministic [78] because they
allow non-deterministic constructs, such as race conditions over shared variables in the case of
Pthreads and OpenMP. The lack of formal semantics for the programming model can also lead
to ambiguous behaviors.

Parallel programming is challenging because it requires programmers to have speci c skills,
experience, and knowledge to avoid the common parallel programming traps and pitfalls [88].
For example, parallel accesses to the same shared variable will interfere and corrupt the value
of the shared variable. It is the programmer's responsibility to identify the regions of code that
can interfere, calledcritical sections, and ensure that they are executed sequentially at mutually
exclusive times. Hence, programmers need to be aware of the data dependencies in their speci c
program and to choose the appropriate solution to manage the dependencies. Studies have shown
that, without careful tuning [80], parallel programs executed on multi-cores can perform worse
than their sequential counterparts. The next section describes the use dfynchronous languages
as an alternative to creating concurrent programs that are deterministic.

1.2 Synchronous Languages

Synchronous languages [13] are based on sound mathematical semantics, which facilitates system
veri cation by formal methods [13] and the generation of correct-by-construction implementa-
tions [44, 94]. Figure 2 depicts a synchronous program, de ned as a set of concurrent threads,
within its physical environment. Synchronous programs react continuously to inputs from the
environment by producing corresponding outputs. Each reaction is triggered by a hypothetical
(logical) global clock At each global tick, the threads in the program sample the environment,
perform their computations, and emit their results to the environment. When a thread com-
pletes its computation, we say that the thread has completed itslocal tick. When all threads in
the program have completed their local tick, we say that the program has completed itgylobal
tick. Central to synchronous languages is thesynchrony hypothesis[13], which states that the
execution of each reaction is considered to be atomic and instantaneous. The sampling of in-
puts avoids the need to use interrupts which are sources of unpredictable delays that degrade
the system's timing predictability. Concurrent threads communicate instantaneously with each
other (dashed arrows in Figure 2) due to the synchrony hypothesis. Once the embedded system
is implemented, the synchrony hypothesis has to be validated. That is, the worst-case execution
time [144] of any global tick must not exceed the minimal inter-arrival time of the inputs.

We use the Esterel synchronous language [18] to illustrate some features of the synchronous
paradigm in Figure 3a. It contains two threads (starting from lines 4 and 7 respectively), scoped
between the square brackets and separated by the parallel operatde (line 6). The parallel op-
erator is commutative and associative and speci es that both threads are executed concurrently.
The execution of a thread can be divided over multiple global ticks with the pause statement
(e.g., lines 5, 8, and 11). Thepause statement pausesthe execution of its enclosing thread,
demarcating the end of the thread's local tick. All executing threads must pause or terminate
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Figure 2: Synchronous model of computation.
1 |int A=0, B= 0;
2 | thread main( void ) {
module main: 3 PAR (tO, t1);
signal A, B 4 |}
[ 5 | thread tO() {
emit A; 6 A=1;
pause 7 EOT ;
Il 8 |}
present A then emit B end; 9 | thread t1() {
pause ; 10 if A=1) {B=1;}
abort 11 EOT ;
emit B; 12 abort {
pause ; 13 B =1;
emit A; emit B 14 EOT ;
when immediate A 15 A=1; B=1,
] 16 } when (A= 1);
end module 17 |}

(b) PRET-C

Figure 3: Examples of synchronous programs.
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to complete the global tick. Thus, the pause acts as a synchronization barrier. At the next
global tick, the threads resume from their respectivepauses. In Esterel, threads communicate
by emitting signal s and threads can test for their presence or absence For example, line 2
declares two signals,A and B, that are emitted by the emit statement when execution reaches
lines 4, 7, 10, and 12. An emitted signal lasts until the global tick ends, becoming absent in the
following global tick unless it is emitted again. Note that an emitted signal is logically present
from the start of the global tick to ensure that all the threads see the same signal statuses, even
if the emit statement occurs later in the global tick. In the rst global tick, the rst thread
emits the signal A At the same time, the second thread tests positively for the presence of\
and emits B. Using the abort statement, a body of code can bereempted by the presence of
a signal. Preemption provides a convenient way to model the transitions and states of a state
machine. In the second global tick of the example program, the second thread enters abort
(line 9) that preempts its body (lines 10 12) if Ais present. Because\is not present, the body is
not preempted and B is emitted. Meanwhile, the rst thread terminates because it has reached
the end of its body.

Synchronous programs are considerably di cult to parallelize [48, 66, 153] due to the need
to resolve instantaneous thread communication and associated causality issues. At runtime, all
potential signal emitters must be executed before all testers of a signal. If this is not possible, then
a causality issue arises. Thus, concurrency is typicallgompiled awayto produce only sequential
code [44]. The common approach for parallelizing synchronous programs is to automatically
parallelize an intermediate representation of the program [48, 66, 153, 10]. The techniques di er
in the heuristics used to partition the program to achieve su cient parallelism.

Esterel only supports basic data computations and delegates complex data computations to a
host language, for instance C. Consequently, C-based synchronous languages have been developed
to provide data handling at the language level. These languages extend C with a range of syn-
chronous constructs to support concurrency, preemption, and thread communication. C-based
synchronous languages appeal to C programmers because the learning barrier for synchronous
languages is reduced. PRET-C [4] is one such example and Figure 3b is the PRET-C version
of the Esterel example (Figure 3a). The two threads 0 and t1, de ned on lines 5 and 9) are
arguments to the parallel operator PAR(line 3). The EOTstatement demarcates the end of a
thread's local tick (e.g., lines 7, 11, and 14). Unlike Esterel, threads in thePARs argument are
executed in a left-to-right (static) order. The thread's local tick must be executed entirely before
the next thread can be executed. In the example programt0 always executes its local tick
beforetl. In PRET-C, threads communicate using globally declared C-variables, not signals.
Because threads are always executed in a static order, the local ticks always execute in a mutu-
ally exclusive manner. Hence, threads can safely access shared variables without needing to use
mutual exclusion constructs; all PRET-C programs are thread-safe by construction. In the rst
global tick of Figure 3b, t0 executes rst and assignsl to the shared variable A (line 6). Then,
t1 executes and checks the conditiorA==1 which is true, and assignsl to B. PRET-C does not
su er from causality issues because global variables are always present and variables are always
accessed sequentially (within a thread and across threads). PRET-C supports preemption with
the abort statement but its behavior di ers from Esterel's abort. Preemption occurs when
the associated C-condition evaluates tarue. The condition is always checked before theabort
body is executed. In the second global tick of the example programt0 terminates because it
has reached the end of its body. Thentl executes and the conditionA==1(line 16) is checked
before theabort body (lines 13 15) is executed. The condition istrue, so the body is preempted.
Execution jumps to line 15 andtl terminates.

Other C-based synchronous languages exist, such as Synchronous C [138] and Esterel C Lan-
guage [77], and are reviewed in Section 2. However, these languages are not designed to take
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advantage of parallel execution. This paper focuses on developing a C-based, synchronous lan-
guage for writing parallel programs that perform well on multi-core processors and are amenable
to static timing analysis.

1.3 Programming Safety-Critical Embedded Systems

Safety-critical embedded systems need to be certi ed against stringent safety standards, such as
DO-178B [115] or IEC 61508 [61], before they can be deployed and used in the eld. Although the
C language is popular for programming safety-critical embedded systems, its semantics [62] in-
cludes unspeci ed and unde ned behaviors [73]. Strict coding guidelines [91, 57, 64] are typically
used by safety-critical programmers to help write well de ned programs that are deterministic,
understandable, maintainable, and easier to debug [47, 56]. The coding guidelines can be grouped
into three main areas:

Code clarity: These guidelines suggest a style for writing programs free of ambiguous state-
ments and to structure code for readability. For example, the use of braces to clarify the
nesting of if else statements or the forbidding of goto statements. Code clarity helps
static analyzers parse the program and attain greater analysis precision.

Defensive programming: These guidelines help minimize the use of unspeci ed and unde ned
behaviors, which contribute to non-determinism. For example, the C semantics does not
specify the evaluation order of multiple expressions, e.g., in function arguments. Thus,
function arguments with side-e ects may evaluate to dierent values depending on the
evaluation order used by the implementation. To ensure deterministic evaluation [97], ex-
pressions must not contain any assignment operators, e.g.=, +=, or ++. Furthermore,
the sequencing operator, must not be used in expressions.

Runtime reliability: These guidelines help prevent runtime errors from occurring, even when
the program is written correctly. For example, a runtime error occurs when a program
requests for more memory than is available in the implemented system. To prevent it,
memory is always allocated statically at the start of the program. Static veri cation tools,
such as Parasoft [104], Polyspace [109], and Parallel Lint [68], can be used to identify
possible runtime defects.

1.4 Contributions

We propose the ForeC parallel programming language for simplifying the deterministic parallel
programming of embedded multi-core systems. Execution platforms have evolved from single-
cores to multi-cores. Hence, all the synchronous languages designed for the single-core era must
be reinvented to address the multi-core challenges. To this end, ForeC is a C-based synchronous
language designed speci cally for the programming of multi-cores. ForeC brings together the
formal deterministic semantics of synchronous languages and the bene ts of C's control and data
structures. A key innovation is ForeC's shared variable semantics that provides thread isolation
and deterministic thread communication. Moreover, many forms of parallel patterns can be
expressed in ForeC. We show that ForeC programs are reactive and deterministic by construction.
ForeC can be compiled for direct execution on embedded multi-cores or for execution by an OS
on desktop multi-cores. Through benchmarking, we demonstrate that ForeC can achieve better
parallel performance than Esterel and OpenMP, while also being amenable to static timing
analysis.

Inria
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1.5 Paper Organization

This paper is organized as follows. Section 2 provides a detailed literature review of parallel and
synchronous programming languages. Section 3 describes the multi-core architecture considered
by this paper. Section 4 introduces the ForeC language, de nes the formal semantics, and
provides proofs for determinism and reactivity. Section 5 describes our compilation approach for
generating code that delivers good parallel performance and that is amenable to static timing
analysis. Section 6 presents benchmarking results for ForeC's performance on multi-cores and
the time predictability of its execution. Section 7 concludes the paper.

2 Related Work

Designing embedded systems that are time-predictable remains an open challenge [8]. Moreover,
the growth of embedded multi-cores is pushing more programmers to be parallel programming
experts. Table 1 highlights di erent approaches for enforcingmutual exclusion on shared vari-
ables, usually by interleaving the parallel accesses to enforce a sequence of accesses tafikieal
sections As argued by Lee [78], the adoption of parallelism in sequential languages, like C [62],
discards important properties, such as determinism, predictability, and understandability. Thus,
programmers spend large amounts of time taming the non-determinism in their parallel pro-
grams [85]. Instruction reordering is regularly employed by compilers and processor cores to
maximize execution parallelism, but this can cause wrong values for shared variables to be ob-
served. C provides the programmer with memory fences to enforce a partial ordering on variable
accesses between threads: all side-e ects ofraleasing thread are committed before theacquiring
thread leaves the fence. To help tame non-determinism, runtime environments that enforce de-
terministic thread scheduling and memory accesses can be used. Such runtime environments have
been developed for Linux processes (DPG [15]), Pthreads (Grace [16], Kendo [99], CoreDet [14],
and Dthreads [84]), OpenMP (DOMP [7]), and MPI (DetMP [154]). For DPG, Kendo, Core-
Det, and Dthreads, all thread interactions are mapped deterministically onto a logical timeline
(which progresses independently of physical time). Program execution is divided into alternating
parallel and serial phases, similar to the Bulk Synchronous Parallel (BSP) [136] programming
model. In the parallel phase, threads execute in parallel until they all reach one of the following
synchronization points: a lock, memory access, or statically de ned number of executed instruc-
tions. Then, in the serial phase, threads take turns to resolve their memory accesses or lock
acquisitions. Threads in CoreDet and Dthreads also maintain their own version of the shared
memory state, which is resynchronized in every serial phase. This concept is used and formally
de ned in concurrent revisions [27]. DOMP and Grace di er in that the resynchronization only
occurs when threads reach a synchronization construct. However, understanding the program's
behavior at compile time remains di cult because the determinism is only enforced at runtime.
Thus, if the program is modied, e.g., to x a bug, then a vastly di erent runtime behavior

is possible. An alternative is to directly extend and modify the C language with deterministic
parallelism, such as SharC [116]CAT [45], SHIM [131], C [51], and ForkLight [70]. These
solutions allow the asynchronous forking and synchronized joining of threads, but lack a conve-
nient mechanism for preempting groups of threads. However, their timing predictability has not
been demonstrated, which is required for programming safety-critical embedded systems.

The classic synchronous languages are Esterel [18], Lustre [53], Signal [52], and the recent ex-
tension based on functional programming such as Lucid Synchrone [35], and are well suited to the
modeling of control-dominated systems [30] and safety-critical systems [13]. To increase their up-
take with embedded programmers, C-based synchronous languages have been developed, such as
Reactive Shared Variables [23], Esterel C Language (ECL) [77], PRET-C [4] and Synchronous C
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Programming Constructs: These are constructs written in the host language to provide
mechanisms for the programmer to achieve mutual exclusion. Examples include: locks, monitors,
memory fences, transactional memory, message passing, and parallel data structures. Using these
constructs correctly can be tedious and error prone for large programs and may lead to other
errors [78, 88, 85], e.g., deadlocks, starvation, or priority inversion.
Language Semantics: The language semantics can have a memory model that de nes how
threads interact through memory, what value a read can return, and when the value of a write
becomes visible to other threads. Although the memory model can prevent race conditions, it may
only be suitable for a few types of applications. Examples include: synchronous languages [13],
PRET-C [4], Synchronous C [138], SharC [5], Deterministic Parallel Java [21], SHIM [137]
C [51], concurrent revisions [27], and Reactive Shared Variables [23].

Static Analysis: A compiler or static analyzer can identify and alert the programmer regard-
ing the race conditions in their program (e.g., Parallel Lint [68]) and may try to resolve them
by serializing the parallel accesses for the programmer (e.g., Sequentially Constructive Con-
currency [139]). However, programmer guidance is needed for race conditions that cannot be
resolved.

Runtime Support: Programs are executed on a runtime layer that dynamically enforces de
terministic execution and memory accesses. Examples include: dOS [15], Grace [16], Kendo [99],
CoreDet [14], Dthreads [84], DOMP [7], and DetMP [154]. However, understanding the pro-
gram's behavior at compile time remains di cult because the determinism is only enforced at
runtime.

Hardware Support:  Parallel accesses can be automatically detected and resolved by the hard-
ware, preventing race conditions from happening. Examples include: Ultracomputer's combine
hardware [124] and certain shared bus arbitration (e.g., round-robin, TDMA, and priority).
However, the timing of the parallel accesses a ects how they are interleaved.

Table 1: Existing solutions for avoiding race conditions.

(SC) [138, 139]. The inherent sequential execution semantics of SC, Reactive Shared Variables,
and PRET-C renders them unsuitable for multi-core execution. Moreover, concurrency in syn-
chronous languages is a logical concept to help the programmer handle concurrent inputs, rather
than a speci cation for parallel execution. Thus, compilers typically generate only sequential
code [44, 112], although some generate concurrent tasks [31, 93, 101, 94] for execution on single-
cores. Yuan et al. [153, 151] o er a static and dynamic scheduling approach for Esterel on
multi-cores. For the static approach, threads are statically load-balanced across the cores and
signal statuses are resolved at runtime. For the dynamic approach, threads that need to be
scheduled for execution are inserted into a custom hardware queue accessible to all cores. The
dynamic approach has been shown to provide better average-case performance compared to the
static approach [151]. This is because the static approach uses worst-case execution times to
load-balance the threads, even though the actual execution times may be shorter.

The common approach for parallelizing synchronous programs is to parallelize an intermediate
representation of the sequentialized code [48, 66, 153, 9, 29, 150, 103]. Multi-threaded OpenMP
programs can be generated from the Synchronous Guarded Actions intermediate format [10]. The
techniques di er in the heuristics used to partition and distribute the program to achieve su cient
parallelism. The Synchronized Distributed Executive (SynDEX) [111] approach considers the
cost of communication when distributing code to each processing element. When distributing
a synchronous program, some desynchronization [12, 49, 24] is needed among the concurrent
threads. That is, the concurrent threads execute at their own pace, but su cient inter-thread

Inria



Synchronous Deterministic Parallel Programming for Multicores with ForeC 13

communication is used to preserve the original synchronous semantics. The use faftures has
been proposed as a method for desynchronizing long computations in Lustre [34]. future is
a proxy for a result that is initially unknown but becomes known at a later time and can be
computed in parallel with other computations.

Once a synchronous program is implemented, it is necessary to validate the synchrony hy-
pothesis. That is, the worst-case execution time [145, 144] (WCET) of any global tick must
not exceed the minimal inter-arrival time of the inputs. This is known as worst-case reac-
tion time (WCRT) analysis [22, 89] and various techniques have been developed for single-
cores [89, 67, 140, 117, 32, 3, 22, 75] and multi-cores [66, 149].

2.1 Discussion

This section has presented a snapshot of the current e orts in the programming of time-predictable
CPSs. Many of the attempts at providing deterministic parallelism have used concepts found in
synchronous languages. C-based synchronous languages have much to o er to embedded pro-
grammers in terms of deterministic concurrency and formally veri able implementations, but
lack support for parallel execution. This paper tackles the lack of a C-based synchronous parallel
programming language that o ers both time-predictability and good parallel execution perfor-
mance.

3 Multi-Core Architecture

Embedded systems continue to explode in complexity and functionality [74]. To meet the size,
weight, and power (SWaP) concerns, the advent of a ordable embedded multi-core processors [19,
126] o er designers the opportunity to achieve better performance than single-core processors.
Figure 4 illustrates the architecture of a general-purpose multi-core. In pursuit of increasing
average-case performance, the cores typically include speculative features [105] such as out-of-
order execution, branch prediction, data forwarding, superscalar execution, and on-chip caches.
However, such optimizations can causéiming anomalies [86] where a local worst-case execution
time does not lead to the program's worst-case execution time. Thus, speculation leads to the
degradation of time-predictability and is undesirable for embedded systems. The PREcision
Timed (PRET) machine [43, 42] and PRedictability Of Multi-Processor Timing (PROMPT) [36,

69] design philosophies aim to tackle this issue by advocating the design pfedictable hardware
architectures, while not sacri cing performance. In particular, the architecture should provide
timing isolation between the cores, i.e., the actions of the cores must not in uence each other's
timing behavior. The architecture should be timing compositional, i.e., with repeatable timing
behavior and free of timing anomalies. The following are examples of unpredictable hardware
features with possible predictable alternatives [146, 98, 11]:

Replace caches with fast software managed memories, called scratchpads [143]. The
selection of data and instructions to be allocated to a scratchpad is determined entirely at
compile time [134, 129, 71, 113, 96]. In the static allocation scheme, the contents of the
scratchpad cannot be changed at runtime. In the dynamic allocation scheme, the contents
of the scratchpad can be changed at runtime by using compile time decisions. Importantly,
the replacement policy of scratchpads is controllable, whereas with caches the replacement
policy is controlled by the hardware, sometimes with unpredictable behaviors (e.g., with
the PLRU policy). The memory address spaces of scratchpads and global memory are
mutually exclusive.
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Figure 4. General multi-core architecture. Figure 5. Example of a predictable multi-
core embedded architecture.

Replace out-of-order execution with better code generation from the compiler [1086,
123, 40, 39, 135]. A processor's ability to reorder a group of instructions is limited by the size
of its instruction bu er. The compiler does not have this limitation because it has access to
the entire program and can make better judgments when reordering instructions. However,
it may not have the runtime execution information which may a ect the performance.

Deactivate high-performance bus features, such as burst transfers or pipelining, and
use fair time-sharing arbitration policies, such as round-robin or time division
multiple access (TDMA) [125]. The round-robin policy cycles through a static list of
cores, granting them access to the bus. If the granted core does not need the bus, then the
grant is given to the next core on the list. The TDMA policy cycles through a static list
of cores, granting them access for a xed amount of time (a time slot), whether the core
needs it or not. If the granted core does not need the bus, then some policies [125, 6, 76,
108, 54] will grant the slot to the other cores in a round-robin manner, thus improving the
throughput. Fairness of the arbitration is important to ensure that all accesses complete
within a bounded length of time.

Embedded systems designed using the PRET [42] or PROMPT [69] philosophies are simpler to
understand, model, and analyze. Many predictable single-core processors have been proposed,
such as the MACS [33], MCGREP [142], Patmos [122], PTARM [83], and FIexPRET [155]
processors. MERASA [135] is a predictable multi-core processor that supports hard and non-real-
time threads. Hard real-time threads access scratchpads for predictability, while non-real-time
threads access caches for performance. An analyzable memory controller is used to arbitrate
shared bus accesses from the cores. For Java programs, there is the JOP [121] processor and its
multi-core variant [114] that uses scratchpads and a shared TDMA bus.

The execution of synchronous programs can be accelerated bgactive processors[118, 81],
which have hardware support for signal resolution, concurrency, preemptions, and global tick
synchronization. A key feature is their ability to execute programs in a time predictable manner.
Single-core multi-threaded reactive processors include KEP [81] and STARPro [152]. Reactive
multi-processors include EMPEROR [37] and HiDRA [120]. However, these reactive processors

Inria



Synchronous Deterministic Parallel Programming for Multicores with ForeC 15

and associated compilers do not support the execution of host functions written in a host lan-
guage, such as C. As a compromise between e ciency and host language support, a general
purpose processor can be patched with a reactive functional unit to accelerate the execution of
synchronous constructs. The ARPRET [2] processor is a patched Xilinx MicroBlaze [148] proces-
sor tailored for executing PRET-C. Java-based reactive single-core processors include RJOP [92]
and TP-JOP [82]. GALS-HMP [119] is a Java-based reactive multi-processor.

3.1 Predictable Embedded Multi-Core Architecture

The architecture of the predictable multi-core used in this paper is representative of existing
designs. It is a homogeneous multi-core processor [36, 121] that we have designed using identical
Xilinx MicroBlaze [148] cores, illustrated in Figure 5. Each MicroBlaze core has a three-stage,
in-order, timing anomaly-free pipeline connected to private data and instruction scratchpads.
The scratchpads are statically allocated and loaded at compile time. A shared bus with TDMA
arbitration connects the cores to shared resources, such as global memory and peripherals. Due
to the resource constraints of existing FPGA devices, we developed a multi-core MicroBlaze
simulator for benchmarking purposes. We extended an existing MicroBlaze simulator [141] sig-
ni cantly to support cycle-accurate simulation, an arbitrary number of cores, and a shared bus
with TDMA arbitration.

4 The ForeC Language

Execution platforms have evolved from single-cores to multi-cores. Hence, all the synchronous
languages designed earlier (e.g., Esterel [18], Lustre [53], Signal [52], Esterel C Language [77],
Reactive Shared Variables [23], and PRET-C [4]) must be remodeled to address the challenges
raised by multi-cores. Over 30 years of synchronous programming languages have demonstrated
that they are very well suited to the design of safety-critical real-time systems [25, 127]. Moreover,
the ideal modeling of time brought by the synchrony hypothesis makes them good candidates
for PRET programming. This motivates our proposed ForeC language that is dedicated to
the programming of multi-cores. ForeC inherits the bene ts of synchrony, such as determinism
and reactivity, along with the bene ts and power of the C language, such as control and data
structures. This is unlike conventional synchronous languages, which treat C as an external host
language. A key goal of ForeC is in providing deterministic shared variable semantics that is
agnostic to scheduling. This goal is essential for the reasoning and debugging of parallel programs.
This section presents ForeC with a UAV running example. The formal semantics of ForeC is
then detailed and important proofs concerning program reactivity and determinism [87, 130] are
provided.

4.1 Overview and Syntax

ForeC is a synchronous language that extends a safety-critical subset of C [20, 65] (see Section 1.3)
with a minimal set of synchronous constructs. We brie y describe the statements, type speci ers,
and type quali ers allowed in the C subset:

C statements ( c_st ): Expressions in a statement can only be constants, variables, pointers,
and arrays that are composed with the logical, bitwise, relational, and arithmetic operators
of C. Although the use of pointers and arrays is allowed, they can make static data ow
analysis di cult [28] because of pointer aliasing. Thus, we assume that pointers are never
reassigned to point to other variables. All C control statements, exceptgoto, can be used.
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c_st | pause | par( st, st)
| weak? abort st when immediate? (exp)
| st; st

Statements: st

Type Quali ers: tq c_tq | input | output | shared

Figure 6: Syntactic extensions to C.

input : Type quali er to declare an input, the value of which is updated by the environment at
the start of every global tick.

output : Type quali er to declare an output, the value of which is emitted to the environment
at the end of every global tick.

shared: Type quali er to declare a shared variable, which can be accessed by multiple threads
pause: Pauses the executing thread until the next global tick.

par(st, st): Forks two statements st as parallel threads. Thepar terminates when both threads
terminate (join back).

weak? abort st when immediate? (exp): Preempts its body st when the expressiorexp evaluates
to a non-zero value. The optionalweakand immediate keywords modify its temporal behavior.

Table 2: ForeC constructs and their semantics.

These are the selection statementsi{ else and switch ) and loop statements (while ,
do while , and for ).

C type speciers: All the C primitives can be used, e.g.,char, int , and double. Custom data
types can be de ned usingstruct , union, and enum

C type qualiers ( c_tq ): All the C const, volatile , and restrict quali ers can be used.

C storage class speciers: The C typedef , extern , static , auto, and register speci ers
can be used.

Figure 6 gives the extended syntax of ForeC and Table 2 summarizes the informal semantics.
A statement (st) in ForeC can be a traditional C statement (c_st), or a barrier (pause), fork/join
(par), or preemption (abort ) statement. Using the sequence operator ( ; ), a statement in ForeC
can be an arbitrary composition of other statements. Like C, extra properties can be speci ed
for variables using type quali ers. A type quali er ( tq) in ForeC is a traditional C type quali er
(c_tg), an environment interface (input and output ), or a shared variable amongst threads
(shared). The input , output , and shared type quali ers precede the C type qualiers in
variable declarations.

As a running example to illustrate the ForeC language, we describe the design of an unmanned
aerial vehicle (UAV) inspired by the Paparazzi project [95]. A UAV is a remotely controlled
aerial vehicle commonly used in surveillance operations. Figure 7 presents the functionality of
the UAV as a block diagram of tasks. The UAV consists of two parallel tasks calledFlight and
Avoidance. The Flight task consists of two parallel tasks calledNavigation and Stability
The Navigation task localizes the UAV with on-board sensors, updates the ight path, and sends
the desired position to the Stability  task. The Stability task controls the ight surfaces to
ensure stable ight to the desired position. The Avoidance task consists of two parallel tasks
called FindL and FindR. These tasks use on-board sensors to detect obstacles around the UAV
and sends collision avoidance data to théNavigation task.
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Figure 7: Tasks of the UAV.

Figure 8 is a ForeC implementation of the UAV example given in Figure 7. Figure 9 is a
possible execution trace of Figure 8 to help illustrate the execution of ForeC programs. Sec-
tions 1.2 described the execution behavior of synchronous programs. To recap, the threads of
a synchronous program execute in lock-step to the ticking of ajlobal clock In each global tick,
the threads sample the environment, perform their computations, and emit their results to the
environment. When a thread completes its computation, we say that it has completed itslocal
tick. When all the threads complete their local ticks, we say that the program has completed its
global tick In Figure 9, the rst three global ticks are demarcated along the left-hand side.

In Figure 8, the UAV program starts with the inclusion of a C header le (line 1) for the
functions used in the program and the global variable declarations (lines 2 3) to interface with
the environment. Line 2 declares inputs to capture sensor readings. Inputs are read-only and
their values are updated by the environment at the start of every global tick. Line 3 declares
outputs for the actuation commands for the ight motors and surfaces. Outputs emit their values
to the environment at the end of every global tick. Inputs and outputs can only be declared in
the program's global scope. The left-hand side of Figure 9 shows the sampling of inputs and
emission of outputs at the start and end of each global tick, respectively.

Like traditional C programs, the function main (line 5) is the program's main entry point and
serves as the initial thread of execution. Lines 6 7 declare variables that can be shared amongst
threads (see Section 4.1.3). In Figure 9, the states of the shared variables are given inside solid
round boxes at speci c points in the execution trace. Line 6 declares a shared variablebst
to store the distance and angle of the closest obstacle as an encoded integer. Line 7 declares a
shared variable newPosto store the UAV's desired position.

On line 8, the par statement forks the Flight (line 11) and Avoidance (line 30) functions into
two parallel child threads. We refer to the threads by their function names, e.g., theFlight and
Avoidance threads. The forking of threads is represented in Figure 7 as triangles. On line 12,
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#include <uav.h>
input int posl,pos2,proxL,proxR; /I Inputs.
output int motors=0, flaps=0; /I Outputs.

void main(void ) {
shared int obst=0 combine new with min;;
shared int newPos=0 combine new with plus;
par (Flight(&newPos,&obst) ,Avoidance(&obst));

void Flight( shared int *newPos,shared int *obst) {
par (Navigation (newPos, obst), Stability (newPos)) ;

}
void Navigation( shared int *newPos,shared int *obst) {
while (1) {
*newPos=plan (posl, obst);
pause ;
}
}
void Stability ( shared int *newPos) {
while (1) {
motors=thrust(pos2,newPos);
flaps=angle (pos2,newPos);
pause ;
}
}
void Avoidance( shared int *obst) {
while (1) {
par (
{* obst=find (proxL);}, /I Thread FindL.
{* obst=find (proxR) ;} /I Thread FindR.
)
pause ;
}
}

int min(int thl,int th2) {
if (thi<th2) {
return thil;
} else {
return th2;
}

}

int plus(int thl,int th2) {
return  (thl+th2);
}

Figure 8: Example ForeC program for the UAV running example.
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Figure 9: Possible execution trace for Figure 8.
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the Flight thread forks two more parallel child threads, Navigation (line 15) and Stability
(line 22), creating a hierarchy of threads. Thepar statement can also fork blocks of code, e.g.,
line 32 forks the FindL and FindR threads. The par is a blocking statement and terminates
only when both its child threads have terminated and joined together. The joining of threads is
represented in Figure 9 as inverted triangles.

After the Navigation , Stability , FindL, and FindR threads have forked, they start execut-
ing their respective body. For example, theNavigation thread enters the while -loop (line 16)
and computes a new desired position. Next, thgpause statement pausesthe thread's execution
(line 18), acting as a synchronization barrier. In Figure 9, the pause statements are shown as
black rectangles and the program completes a global tick when all the threads pause. This is
indicated by the dotted horizontal lines across thepause statements.

Every time a thread starts its local tick, it creates local copiesof all the shared variables that
its body accesses (reads or writes). The local copies are initialized at the start of the global tick
with the values that have been resynchronized at the end of the previous global tick. We use
combine functions to compute these resynchronized values (details below). The shared variables
declared in the program remain distinct from the threads' local copies. When a thread needs to
access a shared variable, it accesses its local copies instead. Thus, the changes made by a thread
cannot be observed by others, yielding mutual exclusion and thread isolation. Moreover, only
sequential reasoning is needed within a thread's local tick. In Figure 9, the states of a thread's
copies are shown inside dotted round boxes throughout the execution trace. For example, when
the Navigation thread starts its rst local tick, it has a copy of obst and newPos(values equal
to 0). When its local tick ends, its copy of newPoshas been set to56.

To enable thread communication, the copies of each shared variable are automaticallgom-
bined into a single value when the threads join and when the global tick ends. This is achieved
by a programmer-speci ed combine function. In Figure 8, the combine function for obst (line 6)
is min (line 40), speci ed by the combine clause, which returns the closest obstacle. Theombine
clause also speci es that only the copies with new values are combined (new since the last global
tick). In global tick one of Figure 9, the FindL and FindR threads set new values 2 and 3) to
their copies ofobst. When these threads join, the new values are combined t@ and assigned to
their parent thread Avoidance. Meanwhile, the Navigation thread only reads its copy ofobst.
Thus, when global tick one ends, the value of the shared variablebst is set to 2 by the min func-
tion. Had there been more copies with new values, then these copies would have been combined
and assigned toobst before the next global tick started. We say that the shared variables are
resynchronized at the end of each global tick. In Figure 9, the resynchronized values are shown
inside solid round boxes, e.g.pbst = 2 and newPos= 56. The shared variables start each global
tick with their resynchronized values. For the rst global tick only, the resynchronized value of
a shared variable is its initialization value.

Appendix A describes more examples of combine functions and how more than two copies
are combined. The following sections elaborate on the details of local and global ticks, fork/join
parallelism, shared variables, and preemption.

4.1.1 Local and Global Ticks

We say that a thread completes itslocal tick when it pauses, terminates, or forks at least one
thread that completes its local tick without terminating. For example, in Figure 8, the Avoidance
thread starts its rst local tick by forking the child threads FindL and FindR (line 32). Assuming
that the find function does not pause, both child threads complete their local tick by terminating.
After the child threads join, the Avoidance thread reaches apause (line 36) and completes its
rst local tick. A program completes its global tick when all its threads have completed their
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main: Parent of Flight and Avoidance.

Flight : Parent of Navigation and Stability

main and Flight : Ancestors of Navigation and
Stability

FindL and FindR: Siblings of each other.
Navigation : Relative of Avoidance, FindL, FindR,
and Stability

(a) Thread genealogy. (b) Descriptive examples.

Figure 10: Thread genealogy for Figure 8.

respective local ticks. At the next global tick, the paused threads start their next local tick from
their respective pauses. For brevity, we shorten global tick into tick and use local tick as
before.

4.1.2 Fork/Join Parallelism

The par statement enables the forking of parallel threads. We use the well known terminology
related to parallel programming. The parent thread is the thread that executes thepar statement
to fork its child threads. The parent thread is also the ancestor of its child threads and their
nested child threads. Child threads forked by the samepar statement are siblings Because the
par is a blocking statement, threads always execute sequentially with respect to their ancestors.
Threads that are not ancestors of each other areelatives and can execute in parallel.

The thread genealogy of a program can be determined statically by inspecting the program's
control- ow. Figure 10a shows the thread genealogy of the UAV program. Each node is a thread
and arrows are drawn from the children to their parent thread. Figure 10b exempli es the thread
genealogy.

4.1.3 Shared Variables

All variables in ForeC follow the scoping rules of C. By default, all variables areprivate and can
only be accessed (read or write) by one thread throughout its scope. To allow a variable to be
accessed by multiple threads, it must be declared as shared variable by using the shared type
quali er. Thus, any misuse of private variables are easy to detect at compile time. Appendix A.1
describes how shared variables are passed by value and by reference into functions. The semantics
we propose for ForeC makes sure that the shared variables can be safely accessed by the parallel
threads without the need of mutual exclusion constructs. The goal is to provide a deterministic
shared variable semantics that is agnostic to scheduling, which is essential for the design and
debug of parallel programs. Within each tick, the accesses to a shared variable from two threads
may occur in sequence or in parallel:

De nition 1.  Accesses from two threads are inrsequence if both threads are not relatives or if
the accesses occur in di erent ticks.

De nition 2.  Accesses from two threads are inparallel if both threads are relatives and the
accesses occur in the same tick.

Improperly managed parallel accesses to a shared variable can cause race conditions, leading
to non-deterministic behavior. For example, two parallel writes to a shared variable can non-
deterministically and partially overwrite each other's value. A parallel read and write to a shared
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variable can result in the read returning the variable's value before, during, or after the write has
completed. Table 1 in Section 2 reviewed the solutions that exist for enforcing mutual exclusion
on shared variables, usually by interleaving parallel accesses into a sequence. Parallel accesses
can be interleaved in many ways (in uenced by the programmer, compiler, and runtime system),
and relying on a particular interleaving for correct program behavior is brittle and error prone.

We propose a shared memory model that permits shared variables to be accessed determinis-
tically in parallel, without needing the programmer to explicitly use mutual exclusion. The goals
of the model are:

Isolation: Provide isolation between threads to enable the local reasoning of each thread. That
is, the execution of a thread's local tick can be understood by only knowing the values of
the variables at the start of the thread's local tick.

Determinism [87]:  Ensure deterministic execution regardless of scheduling decisions. This
guarantees that deterministic outputs are always generated at the end of each tick.

Parallelism: Minimize the need to serialize parallel accesses to shared variables. This maxi-
mizes the amount of parallel execution that can occur at runtime, which is important for
improving the program's performance.

We propose the following mechanisms for achieving our shared memory model: All threads access
their own local copies of the shared variables, and these copies amesynchronized every time
threads join and when the tick ends.

4.1.4 Copying of Shared Variables

Every time a thread starts its local tick, it creates local copiesof all the shared variables that its
body accesses (reads or writes). When a thread is forked, its initial copy of a shared variable is
created from its parent's copy if it exists, otherwise, from the shared variable's resynchronized
value. A parent thread that is blocked on apar statement does not create any copies of the shared
variables until the par statement terminates. For example, in tick two of Figure 9, the threads
main, Flight , and Avoidance make no local copies. The child thread$\Navigation , Stability
FindL, and FindR must create their local copies from the shared variables' resynchronized values,
e.g.,obst =2 and newPos= 56. A shared variable declared inside a thread can be shared among
its child threads by passing a reference(using a pointer) into the child threads (e.g., obst on
line 8 of Figure 8). When a shared variable is passed by reference into an ordinary function (e.g.,
obst on line 17), the function uses the calling thread's copy of the shared variable.

4.1.5 Resynchronization of Shared Variables

The copies areresynchronized every time the program completes its tick (before outputs are
emitted). Resynchronizing at speci ¢ program points ensures that the semantics of shared vari-
ables is agnostic to scheduling. We use combine functions to compute the value of resynchronized
shared variables. Combine functions must be deterministic, associative, and commutative. That
is, the combine function produces the same outputs from the same inputs, regardless of previous
invocations and how the copies are ordered or grouped. The signature of any combine function is
C :Val Val! Val. The two input parameters are the two copies to be combined. When gar
statement terminates, the copies from the terminating child threads are combined and assigned
to their parent thread's copies of shared variables. For example, in Figure 9, theAvoidance
thread gets a copy ofobst every time FindL and FindR terminate. Appendix A describes more
examples of combine functions and how more than two copies are combined.
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Expressions: exp:= val | var | ptr[exp] | (exp) /I Constants, variables, and grouping.
| u_op exp | exp b_op exp /I Unary and binary expressions.

Unary

Operators: uop =*|&|!|-]~ /I Indirection, address, negation,

negative, and one's complement.

Binary

Operators: bop:=| |&&|"]|]| |&]<<|>> /I Logical and bitwise operators.
=== | <|>]|<=]|>= /I Relational operators.
[+]-1*|/]% /I Arithmetic operators.

Figure 11: Syntax of preemption conditions.

It can be useful to ignore some of the copies when resynchronizing a shared variable. This is
achieved by specifying acombine policythat determines what copies will be ignored. The combine
policies arenew modand all . The combine policy of a shared variable is speci ed during variable
declaration in the combine clause, e.g..combine new with. The newpolicy ignores copies that
have the same value as their shared variable, i.e., which has not changed during the tick. The
modpolicy ignores copies that were not assigned a value during the tick, i.e., have not appeared
on the lefthand side of an assignment. The default policy is all where no copies are ignored.
Note that the combine function is not invoked when only one copy remains. Instead, that copy
becomes the resynchronized value. Appendix A provides extensive illustrations comparing the
behavior of the combine policies.

4.1.6 Hierarchical Preemption

Inspired by Esterel [18], the abort st when(exp) statement provides preemption [17], which is
the termination of the abort body st when the condition exp evaluates to true. Preemption
can be used to model state machines succinctly. The conditiomxp must be a side-e ect free
expression produced from the syntax shown in Figure 11. In Figure 12, thenain function of
the UAV has been extended to respond to external commands through the inputommsgline 2).
The value of commsan be OK ERRQRNVARNr TERMline 1). The abort statement on line 7
preempts the execution of all the UAV tasks whenTERNMs received. A possible execution trace
of the program of Figure 12 is given in Figure 13. Theitalicized line numbers in Figure 13 refer
to the line numbers in Figure 8, while the non-italicized line numbers refer to the line numbers
in Figure 12. We now explain the semantics of theabort statement. The preemption of the
abort must be triggered before the abort body can be terminated. Preemption is never taken
when the abort body executes for the rst time (e.g., tick one in Figure 13). At the start of each
subsequent tick, the condition exp is evaluated before theabort body can execute. This allows
shared variables in the condition to be evaluated with their resynchronized value. Iexp evaluates
to true (any non-zero value following the C convention), then the preemption is triggered and
the abort statement is terminated. At the start of tick two in Figure 13, preemption is triggered
because the preemption condition evaluates tdrue. The abort statement also terminates if its
body terminates normally.

Preemptions in ForeC dier from those in Esterel because Esterel uses signals for thread
communication rather than shared variables. As explained in Section 1.2, signals in Esterel
are either present or absent in each tick and this information is propagated instantaneously

1This diers from the newpolicy because an assignment of the form x=x will be taken into account by the
modpolicy, but not by the newpolicy.
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1 |shared int s=0 combine all with plus;

2 |int plus(int thl,int th2) { return (thl+th2); }

3 |void main(void ) {

4 s=1; printf(""%d'"',s);

5 [ *weak*/ abort {

6 par ({s=2; pause ;s=3; pause ;s=4;},

7 {s=5; pause ;s=6; pause ;s=7;});

8 } when /*immediate */ (s>0);

9 printf(*"%d"'',s);

10 |}

(a) Example code.

Tick 1: 1 printed. s = plus (2,5) = 7. Tick 1: 1 printed. s = plus (2,5) =7.
Tick 2:  Preemption is triggered and the Tick 2: Preemption is triggered.

abort body is terminated. 7 printed.

s = plus (3,6) = 9. The abort body is ter-
minated. 9 printed.

(b) Non-immediate and strong abort .

(c) Non-immediate and weak abort .

Tick 1: 1 printed. Preemption is trig-
gered and the abort body is terminated.
1 printed again.

Tick 1: 1 printed. Preemption is trig-
gered. s = plus (2,5) = 7. The abort body
is terminated. 7 printed.

(d) Immediate and strong abort . (e) Immediate and weak abort .

Figure 14: Abort variants.

among the threads without delay. Thus, preemptions in Esterel are triggered instantaneously,
whereas preemptions in ForeC are triggered with a delay of one tick because the conditioexp
is evaluated using values computed in the previous tick. Like Esterel [17], the optionalveakand
immediate keywords change the temporal behavior of preemptions. Theveak keyword delays
the termination of the abort body until the body cannot execute any further, e.g., reaches a
pause statement. The immediate keyword allows preemption to be triggered immediately when
execution reaches theabort for the rst time. That is, the preemption condition exp is evaluated
immediately when execution reaches theabort . This is similar to Esterel's immediate abort
behavior. To illustrate these four di erent preemption behaviors, Figure 14a presents anabort
with the optional keywords commented out.

Non-immediate and strong abort : The weakand immediate keywords are commented out
in Figure 14a. This gives the default preemption behavior, summarized in Figure 14b. In
tick one, the main thread sets its copy ofs to 1 and prints 1. Next, the threads t0 and t1
set their copies ofs to 2 and 5, respectively. When the tick ends, using the combine policy
all , the resynchronized value ofs is 7. In tick two, the abort 's preemption is triggered
and the abort body is terminated, resulting in 7 being printed.

Non-immediate and weak  abort : Only the weak keyword is uncommented in Figure 14a.
Figure 14c summarizes the preemption behavior. The execution of tick one proceeds iden-
tically to the non-immediate and strong abort variant. In tick two, the abort 's preemption
is triggered. However, the termination of the abort body is delayed until threadst0 and
tl complete their local ticks. This allows tO and t1 to set their copies ofs to 3 and 6,
respectively. Thus, 9 is printed.

Immediate and strong  abort : Only the immediate keyword is uncommented in Figure 14a.

RR n° 8943



26 Yip & Roop & Girault & Biglari-Abhari

void main( void ) {

int x=1;

weak abort  {
X=2;
abort { x=3; pause ;x=4; } when immediate (x==2);
x=5; pause ;
X=6;

} when immediate (x==1);

printf (" %d"'"' ,x);

QOWoO~NOUA~WNE

=

}

Figure 15: Nesting of preemptions.

Figure 14d summarizes the preemption behavior. In tick one, themain thread sets its copy

of sto 1 and prints 1. Next, the abort 's preemption condition is evaluated immediately.
Intuitively, because 1 was printed for the value of s, the condition s>0 should evaluate to
true. The counter-intuitive result of false would occur if the resynchronized value ofs was
used. Thus, when execution reaches an immediatabort , the condition exp is evaluated
immediately with the thread's copies of the shared variables. In subsequent ticks, the
resynchronized values of the shared variables are used. In tick one of Figure 14d, because
the preemption has been triggered, theabort body is terminated without executing.

Immediate and weak abort : Both the weakand immediate keywords are uncommented in
Figure 14a. Figure 14e summarizes the preemption behavior. In tick one, thenain thread
sets its copy ofs to 1 and prints 1. Next, the abort 's preemption is triggered immediately.
However, the termination of the abort body is delayed until threadstO0 and t1 complete
their local ticks. This allows t0 and t1 to set their copies of s to 2 and 5, respectively.
Hence, 7 is printed.

The abort statements can be nested to create a hierarchy of preemptions with the outer
abort executing before the inner aborts. Thus, the preemption behavior of the outembort takes
precedence over the innembort s. Figure 15 is an example of an immediate and weakbort
(line 3) with a nested immediate and strongabort (line 5). In tick one, preemption is triggered
for the outer weak abort . The variable x is set to 2 and the inner strong abort preempts
immediately without executing its body. Next, x is set to 5 and the outer weakabort takes its
preemption when it reaches thepause on line 6. Finally, 5 is printed.

4.1.7 Bounded Loops

In addition to the strict C-coding guidelines described in Section 1.3, ForeC forbids the use of
unbounded recursionof function calls and thread forking to ensure static WCRT analyzability.
The synchrony hypothesis requires each tick to execute in nite time, which means that all
statements need to have bounded execution times. Unfortunately, loop constructsf¢r and
while ) can have unbounded iterations, leading to unbounded execution times. Thus, if a loop
construct is used, then the programmer must guarantee that it always terminates or executes
a pause in each iteration. Guaranteeing that a loop always executes gpause may not be
possible whenpause statements are enclosed byf -statements. The compiler makes conservative
assumptions to prove whether a loop always executes pause in each iteration. For example, a
loop is assumed to always execute pause in each iteration if its body has at least one statement
that always executes apause. An if -statement is assumed to always execute gause if both
its branches always execute gause. An abort statement is assumed to never execute pause.
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Bounded Loop Translation
for (init; cond; update) #n int cnt=0;
{st} for (init; cond && (cnt<n); (update,cnt++)) {st}
while (cond) #n {st} for ( ; cond;) #n {st}
do {st} while (cond) #n int first=1;
for (; cond && (first==0); first=0) #n {st}

Table 3: Structural translations of bounded loops.

A par statement is assumed to always execute pause if at least one of its child threads always
executes apause. The compiler can perform structural induction on the program's control- ow

to conservatively prove whether every loop in the program will always execute gause in each
iteration.

Inspired by PRET-C [4], we have extended the syntax of loops to also allow the programmer
to write bounded loops, shown in the rst column of Table 3. The #n after the loop header
speci es that only up to n iterations can be executed. The second column of Table 3 gives the
structural translation of bounded loops.

4.2 Semantics of ForeC

This section presents the semantics of ForeC as rewrite rules in the style of structural operational
semantics (SOS) [107]. The semantics is inspired by that of other synchronous programming
languages (Esterel [112] and PRET-C [4] in particular). The semantics is de ned on a set of
primitive ForeC constructs (the kernel of Table 4) from which the full ForeC constructs are
derived. The kernel constructs are not used for compiling and only consider a subset of the C
language: the assignment operator %), the statement terminator ( ;) for sequencing, and theif
and while statements. Table 5 shows how the ForeC constructs (Table 2) are translated into
the kernel constructs (Table 4). This is exempli ed by the translation of the ForeC constructs
in Figure 16b into the kernel constructs in Figure 16c. The translations forinput , output , and
pause are straightforward. A shared variable is translated into a global variable and a copy
kernel statement that is placed at the start of every thread body in the scope of the shared
variable. The copy kernel statement initiates the copying of the shared variables when the
threads are forked and when the threads start their local ticks. Thepar statement is translated
by pre xing each thread body f with a unique identi er t to allow the semantics to distinguish
the body of one thread from another. Thepar kernel statement handles the resynchronization of
the shared variables. Traditionally, trap s [112] are used to translateabort s and other complex
preemption statements. In contrast, a simplerabort translation is possible in ForeC because
abort is the only type of preemption statement. Eachabort is assigned a unique identi era
and translated into the status and abort kernel statements. Thestatus kernel statement is
needed to de ne the immediate behavior of anabort and it takes the unique identi er a and an
expression. The expression is 0 (zero) for a non-immediatabort , but is exp (the preemption
condition) for an immediate abort . The abort kernel statement takes the unique identi er a and
the abort body f. The following section describes the assumptions on ForeC kernel programs
to simplify the presentation of the formal semantics. The notations, semantic functions, and
rewrite rules are then presented.
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Kernel Construct

Short Description

nop
f, f

var = exp

while (exp) f

if (exp) f else f
copy

pause

par (t:f, t:f)

status (a, exp)
wealk? abort (a, f)

Empty statement

Sequence operator

Assignment operator

Loop

Conditional

Creates copies of shared variables
Barrier synchronization

Fork/join parallelism

Initial preemption status

Abort

Table 4: ForeC kernel constructs. f is an arbitrary composition of kernel constructs, var is a
variable, exp is an expression,t is a thread identi er, and a is an abort identi er. A question
mark means that the preceding symbol is optional.

ForeC Construct ForeC Kernel Constructs

input and output Translated into global variables.

shared Translated into global variables and copy ker-
nel statements that are placed at the start of
every thread body.

pause pause

par (f, f) par(t:f, t:f)

weak? abort f when(exp) status (a, 0); weak? abort (a, f)

weak? abort f when immediate (exp) | status (a, exp); weak? abort (a, f)

Table 5: Structural translations of the ForeC constructs (Table 2) to kernel constructs (Table 4).

4.2.1 Assumptions

We make the following assumptions about ForeC programs. (1) All programs follow safety-critical
coding practices, as discussed in Sections 1.1 and 4.1. Dynamic memory allocation (emalloc )
and unstructured jumps (e.g., goto) cannot be used, and loops must be bounded. Moreover,
C expressions may only be constants, variables, pointers, and arrays composed with the logical,
bitwise, relational, and arithmetic operators of C. Arguments of functions and the right-hand side
of assignment statements must not contain any assignment operators. The sequencing operator

, of C must not be used. These assumptions limit us to a deterministic subset of the C
language. (2) All recursive function calls or forking of threads are bounded. This assumption
prevents the unbounded execution of functions and threads, leading to unbounded memory use
and execution time.

To simplify the presentation of the semantics, we assume that the following transformations
have been performed on ForeC programs. (1) Inlining of functions at their call sites, so that
the semantics can ignore function calls. (2) Renaming variables uniquely and hoisting their
declarations up to the program's global scope, so that the semantics can ignore (static) memory
allocation and focus on the semantics of private variables (accessible to only one thread) and
shared variables. (3) Replacing pointers with the variables they reference, so that the semantics
can ignore pointer analysis [28, 55]. Consider the program of Figure 16a that is transformed into
the equivalent program of Figure 16b. The shared variable declaration fos (line 4 in Figure 16a)
is hoisted to the global scope (line 3 in Figure 16b). The functionf (line 8 in Figure 16a) is
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input int i; output int 0=0; 1 |input int i; output int 0=0;
int plus(...) {...} 2 |int plus(...) {...}
void main( void ) { 3 |shared int s combine all with plus;
shared int s=1 combine all with plus; 4 |void main(void ) {
par ({s++ pause ;}, {s=1}}); 5 s=1;
abort {f(&s);} when (s>3); 6 par ({s++; pause ;}, {s=1;});
7 abort {s=2;} when (s>3);
void f(shared int *x) {*x=2;} 8 |}
(a) Original program. (b) Transformed program.
1 |int i; int 0=0;
2 |int plus(...) {...}
3 |int s;
4 |void main(void ) {
5 copy ; s=1,;
6 par (t1:{ copy ; s++; pause ;}, t2:{ copy ; s=1;});
7 status (al,0); abort (al, {s=2;});
8 |}

(c) Translated kernel program.

Figure 16: Example of transforming and translating a ForeC program into the kernel constructs.

inlined into the abort body (line 7 in Figure 16b) and the pointer inside f is replaced by the
variable x it references.

4.2.2 Notation

The rewrite rules have the following form in the style of structural operational semantics (SOS) [107]:
hSi t : 1 |k rsY% t : O

This notation describes a program fragmentf belonging to thread t, in the program state S and

with inputs |, which reacts and modi es the program state to S° generates the completion code
k, and becomes the new program fragment? All the (globally declared) input s are stored in

I. Let T be the set of all threads in the program. LethSi = HE; Ai, where:

~ E is an environment that maps the program's global scope to the program's global variables
and maps the threads' scopes to their local copies of shared variables. Speci call is
a partial function that maps the global scope (denoted byG) and threads (t 2 T) to a
store (Store) of variables. Letld = T [fGg, then E : Id ] Store. E[{ stores all
the output, shared, and private variables in the program, which are all globally declared
thanks to the program transformations of Section 4.2.1. E[t] stores threadt's copies of
shared variables. The store $tore) is a partial function that maps variables (var 2 V ar)
to values (v 2 V al) and statuses §ts 2 Sts), Store: Var ! (Val;Sts). Statuses are used
to de ne the behavior of the combine policies and can bepre (previous resynchronized
value), mod(modi ed value), cmb(combined value), or pvt (for a private variable). In
E[Q], the status of a private variable is alwayspvt and the status of a shared variable is
alwayspre. In E[t], a thread's copy of a shared variable always starts each local tick with
the status pre.
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For example, E = fG!f s! (1;pre)g;tl!f s! (3;modgg for a program that has a
shared variable s with value 1 in the global scope and modi ed value 3 in the scope of
thread t1. We use the notation E[t1][s] to look up the value and status (3;mod of s in
t1's store. We use the notationsE [t1][s]:v and E[t1][s]:sts to look up its value and status,
respectively. We use the notationS:E to retrieve E from the program state S.

A is a partial function that maps abort identi ers (a2 A) to values (v 2 V al) representing
their preemption status, A : A! Val. An abort with a non-zero value means that its
preemption condition is true and that it has been triggered.

For example, A = fal! 1;a2! Og for a program that has abort s al and a2 with the
statuses 1 and 0, respectively. We use the notatio[al] to look up the status of abort al.
We use the notation S:A to retrieve A from the program state S.

The transition of a program fragment from f to f°is encoded by the completion codé, where:

8
2 0 If the transition terminates.
k = S 1 If the transition pauses.
" ? Otherwise (the transition continues).

4.2.3 Semantic Functions

The following sections describe the semantic functions that are used by the rewrite rules to ensure
semantic conciseness.

4.2.4 Statically Known Information

The following semantic functions return statically known information about the program:
" GetParent (t): Returns the parent of thread t. If t = main, then main is returned.
GetShared (G): Returns the set of all shared variables declared in the program.

GetShared (t): Returns the set of all shared variables that the body of threadt accesses
(reads or writes).

GetCombine (var): Returns the combine function of shared variablevar.
GetPolicy (var): Returns the combine policy of shared variablevar.
GetExp (a): Returns the preemption condition exp of abort a.

Figure 17 below exempli es the use of these functions on the program in Figure 16c.

GetParent (main) = main GetParent (t1)= main GetParent (t2)= main
GetShared (G) = fsg GetShared (t1)= fsg GetShared (t2)= fsg
GetCombine (s) = plus GetPolicy (s) = all GetExp (al) = s>3

Figure 17: Retrieving statically known information about Figure 16c.
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425 Eval

The semantic function Eval (E;I; id;exp) follows the evaluation rules of C to evaluate the ex-
pressionexp and return its value. The expressionexp has a classical tree structure: it can be
an atom (a constant, a variable, a string, ...), a unary arithmetic or Boolean operation ¢, & !,
-, ), a binary arithmetic or Boolean operation (|| , && , |, & <<, >> ==, 1=, < >, <= >= +,
-, *, 1, %, a function call with its arguments passed by value and by reference, an array, and
so on. For the sake of simplicity, we do not give the details here [20, 97] and will just write the
string of the expression when calling theEval function. Finally, the Eval function returns the
value of exp. Unlike in C, where expressions can have side-e ects (which would be captured by
the function Eval returning a pair (E%v) instead of just v), we have assumed that ForeC ex-
pressions and functions are side-e ect free. During the evaluation, a variable's value is retrieved
with the semantic function GetVal (E;I; id;var) described by Algorithm 1. The inputs to the
algorithm are: the program's environment E, the inputs |, the identi er id of the store to try
and retrieve the value from, and the variablevar of interest. The output is a value v. If var is
an input, then line 2 returns its value. Otherwise, if var is in id's store, then line 4 returns its
value. Otherwise, line 6 returns the global value ofvar.

Algorithm 1 GetVal (E;l; id;var): Gets the value of a given variable.

Input:  Program's environment E, inputs |, identi er id of the store to search, and variablevar
of interest.

Output:  Value of var.

1. if var 2 | then . If var is an input.
2: return | [var] . Return the input value of var.
3: else if var 2 EJ[id] then . Otherwise, if a local copy ofvar exists.
4 return E[id][var]:v . Return the value of var from id's store.
5. else

6: return E[G][var]:v . Otherwise, return the global value of var.
7: end if

42.6 Copy

The semantic function Copy (E;t) creates in threadt the local copies of each shared variable
var 2 GetShared (t) that it does not have. That is, if thread t already has a copy of the
shared variablevar, then Copy skips the copying ofvar. This conditional behavior is needed
because the semantic functionCopy may be invoked for a threadt that already has a subset
of its required local copies. For example, when local copies are created for a parent thread that
is resuming from the termination of a par, the combined values from its child threads must not
be overwritten. The Copy function is described by Algorithm 2. The inputs to the algorithm
are: the program's environmentE and a thread t. The output is an updated environment E.
Line 1 considers each shared variables that is accessed in the thread's body. For each shared
variable!, line 2 checks if a copy already exists. If it does not exist, then lines 45 copy the
parent thread's copy if available, otherwise from the shared variable (line 7). Line 11 returns the
updated environment E .

1Recall from Section 4.2.2 that E maps the global and thread scopes to their own store of variables, E :Id |
Store. Variables are mapped to a value and status, Store : Var,! (Val; Sts) where Sts = fpre;modcmbpvtg. A
private variable has the status pvt, a shared variable has the status pre, and a thread's copy of a shared variable
starts each local tick with the status pre. The notation E[t][var] looks up the value and status (v;sts) of thread
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Algorithm 2 Copy (E; t): Copies all the shared variables needed by a thread.

Input:  Program's environment E, and thread t.
Output:  Updated environment E.

1: for all var 2 GetShared (t) do . For all shared variables needed by thread.
2 if var 2 E[t] then . If thread t does not have a copy.
3 if var 2 E[GetParent (t)] then . If its parent has a copy.
4: v ;= E[GetParent (t)][var]:v . Value of its parent's copy.
5 Eft][var  (v;pre)] . Copy its parent's copy.
6 else . Otherwise, its parent does not have a copy.
7 Eft]lvar E[Q][var]] . Copy the shared variable from the global scope.
8 end if

9 end if

10: end for

11: return E

4.2.7 Combine

The semantic function Combine (E; t;;t,;tg) combines all the copies of shared variables from
two threads and is described by Algorithm 3. The inputs to the algorithm are: the program's
environment E, two threads t; and t, to combine, and thread ty to store the combined values.
The output is an updated environment E. Line 1 considers each shared variablevar. Line 2
gets the shared variable'spre value (preVal ). For the combine policy all , the copies from both
threads are combined if they exist. Thus, line 3 gets the set of thread¥ that have a copy of
the shared variable. If the combine policy isnew then line 6 keeps only the copies with values
that di er from the shared variable's pre value (E[t][var]:v 6 preVal) or copies that have been
combined (E[t][var]:sts = cmb). If the combine policy is mod then line 9 keeps only the modi ed
or combined copies E[t][var]:sts 2 f modcmly). If two copies are found, then line 13 gets the
shared variable's combine function €f) and line 14 computes the combined value. Line 15 assigns
the combined value to threadty with the status cmbbecause it is now a combined value. If only
one copy is found, then line 17 assigns the value of that copy to thread, with the status cmb
Line 21 returns the updated environment E restricted to to (i.e., without thread t; and t,'s
store).

t's copy of var.
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Algorithm 3 Combine (E; t1;t2;tp): Combines the copies of shared variables from two threads.

Input:  Program's environment E, threads t; and t, to combine, and thread to to store the
combined values.

Output: Updated environment E.

1. for all var 2 GetShared (G) do . For all shared variables.
2 preVal := E[G][var]:v . Get the pre of var.
3 T:=ftjt2fty;tog;var 2 Et]g . Set of threads with a copy ofvar.
4 if GetPolicy (var)= newthen

5: /I Keep only the copies that di er from preVal or have been combined.

6 T:=ftjt2 T;EJ[t][var]:v 6 preVal _ E[t][var]:sts = cmly

7 else if GetPolicy (var) = modthen

8 /l Keep only the modi ed or combined copies.

9: T:=ftjt2 T,;EJ[t][var]:sts 2 f modcmigg

10: end if

11:

12: if jTj=2 then . If there are two copies to combine.
13: cf := GetCombine (var) . Get the combine function of var.
14: v = cf (E[ty][var]:v; E[t2][var]:v) . Combine the copies.
15: Elto]lvar  (v;cmBb] . Assign the combined value tot,.
16: else if jTj=1 then . Otherwise, there is only one copy.
17: Efto]lvar (E[t 2 T][var].v;cmb] . Assign the only copy totg.
18: end if

19: end for

20: EO= f(id;store) j (id;store) 2 E " id 6 t; " id 6 t,g
21: return E°
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4.2.8 The Structural Operational Semantics

This section presents the operational semantics of the kernel constructs presented in Table 4.

4.2.9 The nop Statement

The nop statement does nothing and terminates instantly:

hE;Ai t : nop! :) hE;Ai t: (nop)

4.2.10 The copy Statement

The copy statement copies the shared variables needed by threat and terminates instantly.
The combining of the copies is handled by thepar statement:

hE;Ai t : copy! :) hCopy (E; t); Ai t: (copy)

4.2.11 The pause Statement

The pause statement rewrites into the copy statement and pauses. Thecopy statement ensures
that thread t starts its next local tick by copying the shared variables it needs (thepre values
are copied):

hE; Ai t : pause! |l hE; Ai t : copy (pause)

4.2.12 The status Statement

Recall that the abort statement is mapped to astatus statement that evaluates the preemption
status, followed by an invocation of the abort kernel statement that accesses the result of the
evaluated preemption status.

The status statement setsabort a's preemption status to the value of the expressiorexp,
and then it terminates instantly:

hE; Ai t : status (a;exp)! ? hE;Ala Eval (E;l; t;exp)i t: (status)

4.2.13 The abort Statement

The abort of a executes its bodyf if its preemption has not been triggered. The body may have
paused k = 1) or may have executed some instantaneous statementk (= ?):

k2f 1;?g

FE:Ait:f! HE%AG t:f0

(A[a] =0) (abort-1)
HE; Ai t : weak? abort (a;f)! :( HEC AG t : weak? abort (a;f9

The abort terminates normally if its body terminates and its preemption has not been triggered:

0

HE; A t:f! HE%AG t:

(Ala] =0) (abort-2)
HE; Ai t : weak? abort (a;f)! :) HEG%AG t:
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The weak abort terminates normally if its body terminates, even if its preemption has been

triggered:

0

hE;Ai t:f! HECAG t:

.(A[a] 60) (abort-3)

° HEOAQ t:

hE;Ai t : weak abort(a;f)!

The weak abort allows its body to execute instantaneous statementsk = ?), even if its pre-
emption has been triggered:

hE;AIt:fl 7 HECAG t:fO0
! (A[a] 6 0) (abort-4)

hE;Ai t : weak abort(a;f)! T HE% AG t : weak abort(a;f9

The weak abort terminates if its body pauses and its preemption has been triggered, and then
it rewrites into the copy statement because it may be the start of threadt's local tick?:

hE; At f! Il HECAG t:£O

(A[a] 6 0) (abort-5)
HE; Ai t : weak abort(a;f)! T hE% AY t : copy

The strong abort terminates without executing its body if its preemption has been triggered,
and then it rewrites into the copy statement because it may be the start of threadt's local tick?:

Ala] 60
hE; Ai t : abort (a;f)! T hE;Ai t : copy

(abort-6)

4.2.14 The Assignment Operator ( =)

The assignment operator evaluates the expressioexp into a value v = Eval (E;l; t;exp). If

var is a shared variablé (rule assign-shared), then the valuev and status modis assigned to the
thread's copy in E[t]. Otherwise, if var is a private variable (rule assign-private), then the value
v and status pvt is assigned to the global variable inE[G]:

var 2 GetShared (t)
hE;Ai t : var=exp! IO hE[t][var  (v;modq];Ai t:

(assign-shared)

var 2 GetShared (t)

. 0 - (assign-private)
hE; Ai t : var=exp! | FE[Gllvar  (v;pvt)];Ai t:

2The abort may have had a par statement that paused. In this case, when the abort kernel statement
preempts, thread t will start its local tick.

31n addition to footnote 2, the strong preemption prevents the execution of a copy statement inside the abort
body.

4Recall from Section 4.2.2 that E maps the global and thread scopes to their own store of variables, E :Id |
Store. Variables are mapped to a value and status, Store : Var,! (Val;Sts) where Sts = fpre;modcmbpvtg. A
private variable has the status pvt, a shared variable has the status pre, and a thread's copy of a shared variable
starts each local tick with the status pre. The notation E[t][var] looks up the value and status (v;sts) of thread
t's copy of var.
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4.2.15 The if else Statement

A conditional construct is rewritten into one of its branches, depending on the value of its
condition exp:
Eval (E;l; t;exp) 6 0

hE:Ai t:if (exp) f, else f,! | hE: Aty

(if-then)

Eval (E;l; t;exp) =0
FE:Ai t:if (exp) f, else fp! T hE:AIt:f,

(if-else)

4.2.16 The while Statement

The body of a loop statement is either unrolled once or it terminates, depending on the value of
its condition exp:

Eval (E;l; t;exp) 6 0
hE;Ai t : while (exp) f! T hE;Ai t : f; while (exp) f

(loop-then)

Eval (E;l; t;exp)=0
hE: Ai t : while (exp) f! ? hE; At

(loop-else)

4.2.17 The Sequence Operator ( ;)

For a sequence of program fragments, the rst fragmentf; must terminate before the second
fragment f, can be rewritten. In other words, the (seg-left) rule applies up to the micro-step
during which f; emits the completion code0. At this point, the (seg-right) rule applies. The
(seq-left) rule emits the completion code of the rst fragment:

HE:AT t:f 1257 HEOAG ¢ 0
” (seq-left)
HE; Al t:f; fo! | hEGAG t:f2f,
HE:Ait:f! ° HECAS t:
! (seg-right)

FE:AI t:fp; f! T HECAG t : 1,

4.2.18 The par Statement

The par statement allows both of its child threads, t; and t,, to execute instantaneous statements
in parallel. The parent thread is to:

hE; Aty : fy! T FECAG t, @ 0 HE; A tp : f,! 'I’ FE A% t, : 2

(par-1)
HE; Ai tg @ par(ty : fy; to 1 fo)! T hEA; AR to 1 par(ty 1 2 tp 1 D)

EA and A” are the aggregatedenvironment and preemption statuses, respectively, and are re-
quired for the following reason. Threadst; and t, always modify the starting environment E
in a mutually exclusive manner. Indeed, the (assign-shared) rule only allows a thread to access
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its own copies of shared variables and the (assign-private) rule only allows a thread to access its
own private variables. This means that thread t;'s new program environment E° contains the
old variables of thread t, and t,'s nested child threads, and vice versa folE® Thus, variables
that changed in E° or E®are aggregated to formE” by taking the union of the changes inE°
(i.e., E°n(E°\ E)) and in E®(i.e., E®n (E®\ E)) with the remaining unchanged variables
(i.e., EO\ E%. Note that intersecting two environments, e.g., E°\ E% produces a new envi-
ronment containing the variables that have the same values and statuses iE° and E® Thus,
EA = (E%N(E®\ E)) [ (E®(E® E)) [ (E°\ EY. Similarly, the preemption statuses that
changed inA°and A%are aggregated to formA” = (A%n (A%\ A))[ (AN (A A))[ (A°\ A%,
In Esterel, such aggregation is not required because signals are broadcasted instantaneously
among all threads.

If a child thread can complete its local tick, by pausing or terminating, then it will wait for
its sibling to complete its local tick. The waiting is captured by stopping the child thread from
taking its transition:

ATt f 1 O RECAG ¢ £0 FE:Ait,:fo! © HE®QA%N ¢, : 0
| _ ! (par-2)
hE; Al to : par(ty : fi; to:f))! | hEO AOQ to : par(ty : fr; to: f))
HE At f! 7 FECAY g ;£ HE; ATty fo1 ¥ P19 HE A ¢, ;£
! ! (par-3)

hE; Ai to : par(ty : fy; to 1 fp)! T hEC AT to : par(ty : 3 tp 1 fp)

The par pauses if both of its child threads pause. The changes made #© and A are aggregated
into EA and A”, respectively, as de ned for the (par-1) rule. The copies of shared variables
from the child threads are combined and assigned to their parent thread, thanks to the semantic
function Combine :

HE; Aty : ! |l FECGAY ty : 0 HE; A tp : ! |1 FEA% t, : 2

HE; Ai to : par(ty : f1; tp: f))! |1 hCombine (EA;ty;t2;t0); AAT to : par(ty : f5 ta 1 D)

(par-4)
Otherwise, the par terminates if both of its child threads terminate. The completion code is?
because the parent threadty resumes its execution. Thepar rewrites into the copy statement
because it may be the start of the parent thread's local tick:

hE:Ai ty : fp! |° hECAG ¢t hE: Ai tz:lelO hE A t,

(par-5)
hE; Ai to : par(ty : f; to 1 f)! T hCombine (EA;t1;t2;tg); AAi to : copy

If only one child thread terminates while the other pauses, then the terminated child thread
rewrites into the nop statement and the par pauses:

HE; Aty 1 fy! |° FECAG t; : HE; A tp : f! .l FE® A t, : £2

hE; Ai to @ par(ty : fy; to: fo)! |1 hCombine (EA;t1;t2;t0); AR to @ par(ty : nop; tp : )
(par-6)

5The par statement may have paused. In this case, when the par terminates, the parent thread to will start
its local tick.
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HE; Aty : ! |1 FECAY ty @ 0 HE; A tp : f,! |° FEC A t, :

hE;Ai to : par(ty : fy; to @ f)! Il hCombine (EA;ty;t2;t0); AAi tg @ par(ty :flo; t2 : nop)
(par-7)

4.2.19 Tick Completion

A tick completes if the main thread pauses or terminates. If themain thread is executing apar
statement, then a tick completes when all its child threads and nested child threads have paused
or terminated. The shared variables are resynchronized (fronkE °to E?, the preemption statuses
are reevaluated (fromA°to A%, the outputs are emitted, and the inputs are resampled:

FE: Ai main : £1°%" %9 pEO AG main : £0
! (tick)

hE; Ai main : f! :< hE 06 A0 main : fO

The rules for the par statement ensures that, when the tick completesmain's store in E° has the
combined values from all its child threads. The shared variable%are resynchronized by assigning
the combined values fromEmain] to their corresponding shared variables in the global store
EYG]. The main's store is then removed fromE® Thus, for all var in E9main], we have
E%= EqQ@[var (E9main][var]:v;pre)]nfmaing. All the preemption statuses are updated by
evaluating their preemption conditions with the resynchronized shared variables inE °JG]. Thus,
for all ain A% we haveA®= A%a Eval (E%I; G;GetExp (a))].

4.2.20 lllustrations

This section provides two examples of how ForeC programs execute. The executions are given
as sequences of rewrites.

4.2.21 Example One

The rst program illustrates parallel execution using the par statement. Figure 18a presents the
ForeC program, and Figure 18c illustrates the program's control- ow. In Figure 18c, the triangle
represents the forking of threads while the inverted triangle represents the joining of threads.

In the program's rst tick, the parent thread main begins its local tick by forking two child
threads, t1 and t2. The child threads start their local ticks by copying the shared variable s.
Thread t1 pauses while threadt2 assigns4 to its local copy of s and terminates. The rst tick
ends and the shared variables is resynchronized. Using the combine policyall , the new value
(or the resynchronized value) ofs becomesplus (0;4) = 4. In the second tick, thread t1 starts
its local tick by creating a copy of s, assigning3 to its copy of s, and then terminating. The
par terminates because threadsl and t2 have now joined. Because only threadl has a copy
of s, that copy is assigned directly to its parent thread main. The main thread starts its local
tick which results in the program terminating. The second tick ends and the shared variables
is resynchronized with the value3 because only themain thread has a copy ofs.

Before we apply the rewrite rules to the program, it is structurally translated into Fig-
ure 18b (see the start of Section 4.2). Note that the semantic functiongGetShared (main),
GetShared (t1), GetShared (t2) and GetShared (G) all return fsg. The set of preemption

6Recall from Section 4.2.2 that E maps the global and thread scopes to their own store of variables, E :Id |
Store. Variables are mapped to a value and status, Store : Var,! (Val;Sts). In E[G], shared variables have the
status pre. The notation E[t][var] looks up the value and status (v;sts) of thread t's copy of var.
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shared int s=0 combine all with plus;
void main( void ) {
par ({ pause ; s=3;},{s=4:});

A WNBRE

(a) ForeC program.

int s=0;
void main( void ) {
copy
par (t1:{ copy ; pause ; s=3;},
t2:{ copy ; s=4;});

OO WNBE

(b) Translated kernel program.
(c) Control- ow graph.

Figure 18: lllustrative example one.

E = fG!f s! (0;pre)gg

E! = fG!f s! (0O;pre)g;main!f s! (0;pre)gg

E2 = fG!f s! (0O;pre)g;main!f s! (O;pre)g;tl!f s! (O;pre)gg

E3 = fG!f s! (O;pre)g;main!f s! (0;pre)g;t2!f s! (0;pre)gg

E* = fG!f s! (O;pre)g;main !f s! (O;pre)g;tl!f s! (O;pre)g;t2!f s! (0;pre)gg
ES = fG!f s! (O;pre)g;main !f s! (O;pre)g;tl!f s! (O;pre)g;t2!f s! (4;modgg
E6 = fG!f s! (O;pre)g;main!f s! (4,cmbgg

E’7 = fG!f s! (4;pre)gg

E® = fG!f s! (4;pre)g;tl!f s! (4;pre)gg

E® = fG!f s! (4;pre)g;tl!f s! (3;modgg

E® = fG!f s! (4;pre)g;main !'f s! (3;cmbgg

E® = fG!f s! (3;pre)gg

Figure 19: Initial program environment and its derivatives.

statusesA is initially ;. The program's environmentE and its derivatives are de ned in Figure 19.

Step 1: Start the tick by applying the (seg-right) and (copy) rules.

(copy) — 5 —
hE; Ai main:copy ! hEL; Ai main:
(seq-right) e | ——
hE; Ai main:copy;par(t1:{copy; 2 hE; Ai main:par(tl:{copy;
pause;s=3;},t2:{copy;s=4:}) "1 pause;s=3;},t2:{copy;s=4;})

Step 2: Both threads of the par execute sequential statements. Apply the (par-1) rule. Ad-
ditionally, apply the (seqg-right) and (copy) rules to both threads. The environments of both
threads, E? and E 3, are aggregated intoE*.
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(copy) . 5 : : 0 .
hE®; Ai tl:copy ! | hEZ; Ai t1: hE; Ai t2:copy ! | hE3; Al t2:
seg-right
(seq-right) FE®; Ai tlicopy; | 2  hEZAI L FEL A 2: | 2 FE3AI 2
( 1 pause;s=3 T pause;s=3 copy;s=4; | s=4;
ar-
P hE; Ai main:par(tl:{copy; , 2 PE*Ai main:par(tl:{pause;
pause;s=3;},t2:{copy;s=4;}) T s=3;},t2:{s=4;})

Step 3: Apply the (tick) and (par-7) rules. Additionally, apply the (seqg-left) and (pause) rules
to the rst thread and the (assign-shared) rule to the second thread. The program completes

the tick. Note that when the (par-7) rule is applied, the aggregated environment is the same
as E®, which is then combined to beE®. When the (tick) rule is applied, E® is resynchronized
to be E’.

ause
P ) FE4 AL | 1 FEYSAIL
ause co 2f
(seq-left) p' l - d (assign-shared) - sc7'sg
HE4; Ai t1; 1 hE%AI HE4: A t2: 0 5 At o
R e o hES; Ai t2:
(par-7) pause;s=3 [ copy;s=3 s=4;

hE*; Ai main:par(tl:{pause; |, 1  hE®;Ai main:par(tl:{copy;
s=3;}t2:{s=4;}) T s=3;},t2:nop)

hE#; Ai main:par(tl:{pause; 1 hE’; Ai main:par(tl:{copy;
s=3;}t2:{s=4;}) T s=3;},t2:nop)

(tick)

Step 4: Start the next tick by applying the (par-3) rule. Additionally, apply the (seg-right) and
(copy) rules to the rst thread and the (nop) rule to the second thread.

(copy) : 5 _

hE7; Ai tl:copy ! hES; Ai t1:
(seq-right) —————— (nop) —————

e "_A‘I_tl' 1 7 hES;Aj tlis=3 EGALL: ) o hE7; Ai t2:
copy;s=3 [ nop

(par-3) hE 7; Ai main:par(tl:{copy; 2

) . . , | 8. A T fe=2-1tD-
s=3:},t2:n0p) - hE®; Ai main:par(t1:{s=3;},t2:nop)

Step 5: Apply the (par-5) rule. Additionally, apply the (assign-shared) rule to the rst thread
and the (nop) rule to the second thread. Note that when the (par-5) rule is applied, the aggre-
gated environment is the same asE®, which is then combined to beE1°.

2f
(assign-shared) A 1.s =0 (nop) T TNE
AT 0 e A 1y AT 0 s A
s=3 I nop
(par-5) ,)
hE8; Ai main:par(t1:{s=3;},t2:nop) ! | hE 1%; Ai main:copy

Step 6: Apply the (tick) and (copy) rules. The environment E° is resynchronized to beE*!.
The tick ends and the program terminates.

(copy)

hE 19; Ai main:copy ! % HE10: Aj main:
(tick) '0
hE 1%; Ai main:copy ! |

HE1L: Ai main:
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int x=1;
void main( void ) {
weak abort {
X++; pause ;
} when immediate (x==1);

U WNPRF

}

(a) ForeC program.

int x=1;
void main( void ) {
status (al, x==1);
weak abort (al, {x++; pause ;});

O WN P

}

(b) Translated kernel program. (c) Control- ow graph.

Figure 20: lllustrative example two.

E = fG!f x! (1;pvt)gg A = falg
El = fG!f x! (2;pvt)gg Al = fal! 1g
A2 = fall Og

Figure 21: Initial program state and its derivatives.

4.2.22 Example Two

The second program illustrates the preemption by using an immediate wealabort statement.
Figure 20a presents the ForeC program and Figure 20c illustrates the program's control- ow. In
Figure 20c, the pair of decorated diamonds represents the scope of tlaort body.

In the program's rst tick, the main thread reaches the immediate and weakabort and
immediately evaluates the preemption condition (x==1) . The condition evaluates to true and
the preemption is triggered. Since theabort is weak, the preemption is taken only when execution
reaches thepause, after the variable x has been incremented. Theabort terminates and, as a
result, the main thread terminates. The rst tick ends.

Before we apply the rewrite rules to the program, it is structurally translated into Figure 20b
(see the start of Section 4.2). Thecopy kernel statement is not inserted into the program be-
cause no shared variables are used. Note that the semantic functionSetShared (main) and
GetShared (G) all return ;. The program's environment E, preemption statusesA, and their
derivatives are de ned in Figure 21.

Step 1: Start the tick by applying the (seg-right) and (status) rules. Note that the abort's
preemption is triggered because the conditiork==1 evaluates to 1.

(status) 5
HE;Ai main: status(al,x==1) ! HE; Ali main:
(seq-right) - . - -
hE; Ai main:status(al,x==1); ;o hE; Ali main:weak abort
weak abort(al,{x++;pause;}) T (al,{x++;pause;})

Step 2: Apply the (abort-4), (seg-right), and (assign-private) rules.
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X 2;

. . 0 . .
HE; Ali main:x++! hEL: Ali main:
|

(assign-private)

(seg-right) .
hE; Ali main:x++;pause ! | HE®: Ali main:pause

(abort-4) (Al[al] & 0)

HE; Ali main:weak abort , » hE®: Ali main:weak abort
(al,{x++;pause;}) "1 (al{pause;})

Step 3: Apply the (abort-5) and (pause) rules. Note that the preemption is taken because the
abort 's body has reached gause.

(pause)
FEL; Ali main:pause! ©  hEL;Ali main:copy
(abort-5) ! . (Al[al] 6 0)
hE®; Ali main:weak abort(al{pause;}) ! | hE®; Ali main:copy

Step 4: Apply the (tick) and (copy) rules. The preemption statuses in A' are updated to beAZ?.
The tick ends and the program terminates.

(copy) — 5 —
hE®; Ali main:copy ! hE®; Ali main:

(tick) 1)

hE®; Ali main:copy ! |

HEL: A2i main:

4.3 De nitions and Proofs

The semantics of the ForeC kernel constructs (Section 4.2.8) can be used to formally prove two
desirable properties of safety-critical programs, calledreactivity and determinism [87, 130]. A
program is reactive if it always responds to changes in the environment, i.e., does not deadlock
and produces outputs. A program is deterministic if, for a given set of inputs from the envi-
ronment, there is at most one set of outputs produced by the programs. In terms of semantic
derivation rules, a program is deterministic if there is at most one derivation tree in response to
the environment. The de nitions for reactivity and determinism are normally based on a pro-
gram's tick, which is a sequence of transitions. Because the state of a ForeC program depends on
the initial valuations of its variables, we de ne a stronger notion of reactivity and determinism
based on program transitions.

De nition 3. A program t : f is reactive if, in any state S, for any input con guration 1|, there
exists at least one transition (i.e., the program never deadlocks):

8S;1: 9S%f%k suchthat hSit:f! :‘ hsY t:f°
Theorem 1. All ForeC programs are reactive .

Proof. The proof can be shown by structural induction ont : f.
Base cases: The (nop), (copy), (pause), (status), (assign-shared), (assign-private), (if-then),
(if-else), (loop-then), and (loop-else) rules imply that the following kernel constructs have at least
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one transition:

hSi t : nop! |° ISt :
hSi t : copy! lo hsY t:
hSi t : pause! ll hSi t : copy
hSi t : status (a;exp)! lo hsY t:
hSi t : var=exp! |O hsY t:

ISi t:if (exp) f, else f,! T hSit:f, or hSit:if (exp)f; else fy! T hSit:f,
hSi t : while (exp) f! T hSi t:f; while (exp) f or HKSit:while (exp) f! IO hSi t:

Induction step:  The sequence operator j(), abort , and par kernel statements allow the
composition of kernel constructs. For some; : f; and t, : f, that are arbitrary compositions of
kernel constructs, assume the induction hypotheses that they each have at least one transition:

k1

959, S%: 1% 1% ki; ko such that hSgi tg : fy! |

i ty : f (H1)

hSi tp : f! k| hSSi tp : 2 (H2)
Next, we show that the remaining sequence operator;(), abort , and par kernel statements have
at least one transition.

1. Considert; : fi; f,. Due to the induction hypotheses, the table below shows that at least
one sequence rule can be applied to all possible completion codies of the rst program
fragment f;. Note that the sequence rules do not consider the completion codk, of the
second program fragmentf,:

K1
0 1] 2
(seq-right) (seq-left)

If k; = 0 and the premise is true by the induction hypothesis (H1), then from the (seq-right)
rule we have:

0

hSii ty :fll"f hS9i ty

(seq-right) 5
l’S]_i 11 :fl; f2' I }'S:?I 1 :f2

If ky 2 f1;,?g and the premise is true by the induction hypothesis (H1), then from the
(seq-left) rule we have:

. ky2f 1;729
hSqi tp : fy ! ' |

r'S% 11 :flo
(seq-left)

k1

I"S]_i 11 : fl; le I"S](?I 11 : flo; f2
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Thus, any sequential composition of reactive programs has at least one transition and is,
therefore, reactive.

2. Considert; : weak? abort (ag;f1). Due to the induction hypotheses, the table below shows
that at least one abort rule can be applied to every combination ofk; and preemption
status Al[ay]:

Strong abort , k1 Weak abort , k1
0 1 \ ? 0 1 \ ?
Alas] =0 | (abort-2) (abort-1) (abort-2) (abort-1)
60 (abort-6) (abort-3) | (abort-5) [ (abort-4)

For example, if k; = 0 and Af[a;] = 0 and the premise is true by the induction hypothe-
sis (H1), then from the (abort-2) rule we have:

FSyi ty 1™ hstity
(abort-2) : 5 (Ala1] = 0)
hS;i t; : weak? abort (ag;fy)! | hsdi ty -

The other cases are similar. Thus, any preemptive composition of reactive programs has
at least one transition and is, therefore, reactive.

3. Considert : par(t; : f1; to : f2). Due to the induction hypotheses, the table below shows
that at least one par rule can be applied to every combination ofk; and k:

K2
0 1 ?
0 | (par-5) | (par-6)
ki 1 | (par-7) | (par-4) (par-2)
? (par-3) (par-1)

For example, ifk; = 0 and k, = 0 and the premise is true by the induction hypotheses (H1)
and (H2), then from the (par-5) rule we have:

MSi t; :fll"fo hS9i ty hSi tp : lekfo hS9i t,

(par-5) S
hSi t : par(ty : f1; to @ f,)! | hsS% t : copy

The other cases are similar. Thus, any parallel composition of reactive programs has at
least one transition and is, therefore, reactive.
O

De nition 4. A program t : f is deterministic  if, in any state S, for any input con guration 1|,
there exists at most one transition such that:

kO

8S:1: if KSit:f! hsOj t:fO°

and PSit:f! "I°° HS% t:f% then S0= S f0= 00 0= |00
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Only the rewrite rules of the par statement allow state S to be changed in parallel by multiple
transitions. The (par-1) rule aggregates the changes into a single state. The (par-4), (par-5),
(par-6), and (par-7) rules use the semantic functionCombine (Algorithm 3) to combine the
copies in the aggregated state. The (par-2) and (par-3) rules only allow one of the changed
states to take e ect. Before proving that all ForeC programs are deterministic, we prove that
the aggregation of states and the semantic functionCombine are both deterministic. This is
captured by Lemmas 1 and 2 below with the assumption that all the combine functions are
deterministic.

De nition 5. A combine function cf is any C function with two input values v; and v, of
identical type, which returns a value of the same type.

Hypothesis 1. Each combine functioncf always returns the same value regardless of the current
state, provided that the input values,v; and v,, are identical:

8S;S%I; tivi; o
Eval (S:E;l; t;cf (vi;v2)) = Eval (S%E;l; t;cf (vi; Vo))

Because the combine functions are de ned in C, we require that the combine functions always
terminate without error.

Lemma 1. For any initial state” S = hE; Ai, let S°= hE%AG and S%°= hE® A%} be the states
of two threads after their transition. If the threads can only change their own private variables
and copies of shared variables, then the aggregation 8f and S®is deterministic  if there exists

only one aggregated state:

8S = hE; Ai;S%= HE%AY;S%= HEECOA :
if Ef =(E°n(E°\ E))[ (E®n(E™™ E))[ (E®\ EY
and E2 =(E°n(E°\ E))[ (E®(E®™ E))[ (E°\ E®Y then Ef = E»
if AL =(An(A°\ A) [ (A% (A% A))[ (A% A%
and A% =(An(A%\ A) [ (A% (A A)[ (A®\ A% then A%} = A%

Proof. We begin by proving that the aggregation of environmentsE® and E®is deterministic.

If the threads can only change their private variables and copies of shared variables, then their
changes toE are always mutually exclusive. That is, for any two threadst®and t° wheret®6 t %
the threads never access each other's store becauggt’ 6 E[t°]. Moreover, by de nition, the
threads never access each other's private variables iB[G]. Intersecting two environments, e.g.,
EO\ E, always gives a new environment containing the variables that have the same values and
statuses inE% and E, i.e., have not changed. E°n (E°\ E) always gives a new environment
containing the variables that have changed inE® Operations on sets are deterministic because
two variables are either identical or not. The aggregation always takes the union of the changes
in E® (i.e., EOn(E°\ E)) and in E®(i.e., E®n (E®\ E)) with the unchanged variables in E°
and E®(i.e., E®\ E%). Because the changes irfE? and E®are always mutually exclusive, the
aggregation always takes the union of three disjoint environments.

“Recall from Section 4.2.2 that E maps the global and thread scopes to their own store of variables, E :1d |
Store. Variables are mapped to a value and status, Store : Var,! (Val;Sts). The notation E[t][var] looks up
the value and status (v;sts) of thread t's copy of var. Recall that A maps the abort identi ers to their preemption
statuses, A : A! Val. The notation A[a] looks up the preemption status v of abort a.
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We now prove that the aggregation of two sets of preemption statusef\° and A®is deter-
ministic. Threads can only changeA by executing a status statement (the (status) rule). By
construction, each status statement has a uniqueabort identier a. Thus, changes toA are
always mutually exclusive. Intersecting two sets of preemption statuses, e.gA% A, always gives
a new set containing the statuses that have the same values iA° and A, i.e., have not changed.
A°n(A°\ A) always gives a new set containing the statuses that have changed i°. Operations
on sets are deterministic because two statuses are either identical or not. The aggregation always
takes the union of the changes inA° (i.e., A°n (A% A)) and in A%(i.e., A% (A% A)) with the
unchanged statuses inA® and A®(i.e., A°\ A%. Because the changes iA® and A®are always
mutually exclusive, the aggregation always takes the union of three disjoint sets. O

Lemma 2. If all combine functions are deterministic, then the semantic function Combine is
deterministic  if, in any state S = hE; Ai, for any three threadst,, t,, and tg, there exists only
one environment that can be returned:

8S = hE;Ai;8t1;to;tg: if E® = Combine (E;t1;ts; o)
and E%= Combine (E;t1;to;to) then E°= E®

Proof. The semantic function Combine is an algorithm that intializes all its local variables
(preval, T, cf, v), that is side-e ect-free, and that uses only deterministic instructions. In par-
ticular, line 14 in Algorithm 3 is deterministic due to the hypothesis that all combine functions cf
are deterministic (Hypothesis 1). Hence, the semantic functionCombine is deterministic. O

Theorem 2. If all combine functions are deterministic, then all ForeC programs are deter-
ministic .

Proof. The proof can be shown by a structural induction ont : f.

Base cases: The (nop), (copy), (pause), and (status) rules imply that the following kernel
statements have at most one transition:

hSit:nop!IO hSi t :
hSi t : copy! IO hSY t : nop
hSi t : pause! Il hSi t : copy
hSi t : status (a;exp)! IO hSY t : nop

The assignment,if else, and while kernel constructs are each described by a pair of rewrite
rules with complementary premises that do not depend on other transitions: (assign-shared)
and (assign-private), (if-then) and (if-else), and (loop-then) and (loop-else). The premises are
complementary in the sense that, if the premise of one rule ifrue, then the premise of the other

rule must be false and vice versa. This implies that these kernel constructs have at most one
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transition:
if var 2 GetShared (t) then hSi t : var=exp! |0
otherwise ISi t : var=exp! |O

if Eval (S:E;l; t;exp) 60 then ©Si t:if (exp) f; else f;! hSit:f;

—_ 0 =

otherwise hSi t:if (exp) f; else f;,! hSit:f,

if Eval (S:E;l; t;exp) 6 0 then ISi t:while (exp) f! hSi t : f; while (exp) f

?

|
otherwise hSi t : while (exp) f! |0 hSit:
Of the rewrite rules considered in the base case, only the (copy), (status), (assign-shared), and
(assign-private) rules make direct changes to stateS. The (copy) rule changes only the store
E[t] of the executing threadt. This can be veri ed by inspecting Algorithm 2 of the semantic
function Copy . By construction, each status statement has a uniqueabort identier a. Thus,
the (status) rule never changes the status of the samabort identi er. The (assign-shared) rule
changes only the storeE [t] of the executing threadt. The (assign-private) rule changes only the
private variables in E[G of the executing thread.

Induction step:  The sequence operator j(), abort , and par kernel statements allow the

composition of kernel constructs. For some; : f; and t, : f, that are arbitrary compositions of
kernel constructs, assume the induction hypotheses that they each have at most one transition:

0
If 952, SP0f2 10Kk, k?° such that hSii ty:f! k|1 Sl tg : £ (H3)

00
and 1Sty : fp! kl % ty : £0

then S¥= S 0= £ K9 = kX

If 9S9;5202£0k9:k%° such that hSyi t, : fy! klz hSdi t, - £ (H4)
and Sty : fy! k|°° s t, : 120
then S9= S0 0= £ k9= k°

Next, we show that the sequence operator;(), and the abort and par kernel statements have at
most one transition.

1. Consider the fragmentt; : f;; f,. Due to the induction hypothesis (H3), there is only one
possible transition for the fragmentt; : fq,

=0 rS:?I 11 :

ki2f 1,29

which is either hSyi t; : fllkll
or rSll t1: f]_l I’SJ(_)I 11 :flo

The table below shows that at most one sequence rule can be applied depending on the
completion codek;:
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k1
0 1 | ?
(seq-right) (seq-left)

So, thanks to the induction hypothesis (H3), the sequence operator; is deterministic.

. Consider theabort kernel statement in the fragmentt; : weak? abort (a;;f;). Due to the

induction hypothesis (H3), there is only one possible transition for the program fragment
t1: f]_,

k1:0

which is either hS;i t; : fy! hsdi ty

i ty : £

. kq2f 1;?
or }'Sllt]_:fllll 9

The table below shows that at most oneabort rule can be applied depending on the
completion codek; and the preemption status A[a;]:

Strong abort , k3 Weak abort , k1
0 1 | 2 0 1 | 2
Alas] =0 | (abort-2) (abort-1) (abort-2) (abort-1)
780 (abort-6) (abort-3) | (abort-5) | (abort-4)

So, thanks to the induction hypothesis (H3), the abort kernel statement is deterministic.

. Consider the par kernel statement in the fragmentt : par(ty : fi; to @ f,). Due to the

induction hypotheses (H3) and (H4), there is only one possible transition for the program
fragment t; : fq,

0

which is either ;i ty : fll"f Mty :

i ty : £

. Ky 2f 1;2
or hSlltl:flllI 9

and there is only one possible transition for the program fragmentt, : f,,

=0

which is either hSyi t; fg!kzl hSdi t,

ko 2f 1,79

or }'Szl to: fz! hSSl to: f20

The table below shows that at most onepar rule can applied depending on the completion
codesk; and k»:

Ko
0 1 ?
0 | (par-5) | (par-6)
ki 1 | (par-7) | (par-4) (par-2)
? (par-3) (par-1)

So, thanks to the induction hypotheses (H3) and (H4), thepar kernel statement is deter-
ministic.

O
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Property Esterel PRET-C ForeC Concurrent
revisions

Causal Programs Not always Yes, by construction

Use for Parallelism Control Control and data Data

Model of Computation Synchronous Asynchronous

Reactive Interface Yes No

Preemption Yes No

Parallelism is Dynamic No Yes

Thread Communication Pure and valued Shared Variables

Method signals

Thread Communication Instantaneous Instantaneous | Delayed to the end Delayed to thread

Speed (sequential) of each tick termination

Resynchronization  of Combine func- Not required Combine func- Merge functions

shared variables or tions ( modvalues) tions with policies (all values)

valued signals

Parallelism is Commu- Yes No Depends on com- | Depends on merge

tative and Associative (Sequential) bine functions functions

Table 6: Comparing ForeC with Esterel, PRET-C, and Concurrent revisions.

4.4 Comparison with Esterel, PRET-C, and Concurrent Revisions

This section compares ForeC with Esterel [18], PRET-C [4], and Concurrent revisions [27] and
Table 6 summarizes this qualitative comparison. Concurrent revisions is a programming model
that supports the forking and joining of asynchronous threads. When a thread is forked, a
shapshot of the shared variables is created and any changes performed by the thread are only
applied to its snapshot. This ensures thread isolation during execution. When two threads join,
their snapshots are merged together using a deterministiecnerge function.

ForeC and PRET-C are intended for applications that have control and data parallelism.
Control parallelism is not a strength of concurrent revisions because its semantics does not con-
sider (reactive) inputs and outputs. In Concurrent revisions, threads are forked asynchronously,
allowing a parent thread to execute alongside its children. Hence, the parent thread can vary the
amount of parallelism that is needed at runtime (e.g., fork more threads when there are more
input data). The rjoin construct can be used to force the parent thread to wait for its children
to terminate. In contrast, threads are forked synchronously in ForeC, Esterel, and PRET-C,
meaning that the parent thread blocks until of all its children have terminated. Hence, the
parent thread cannot vary the amount of parallelism at runtime.

Threads in PRET-C are executed in a strict sequential order, which is unsuitable for multi-
core execution. However, the strict order ensures that only one thread is executing at any
time and that shared variables are accessed in a thread safe manner. Consequently, thread
communication is instantaneous in the sequential order (instantaneous in the synchronous model
of computation, that is, occurring in the same global tick), but delayed by one tick in the reverse
order. Similar to ForeC, threads in Concurrent revisions communicate over shared variables.
When a child thread is forked, it creates a snapshot of the shared variables from its parent thread.
When the child thread joins back with its parent, the snapshots of both threads are merged with
a programmer-speci ed merge function The merge function always considers both copies, i.e.,
equivalent to ForeC's combine policyall . Thus, thread communication is always delayed until
the child thread terminates. In contrast, ForeC threads may execute over several ticks and
thread communication is only delayed to the end of each tick. Esterel threads communicate
instantaneously by emitting and receiving pure or valued signals during each tick. Pure signals
are either present or absent and carry no value. All potential signal emissions must be performed
by the concurrent threads before the signal status (present or absent) can be read. Compilers [48,
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44, 153] typically compile away the parallelism to create a sequential program that resolves the
causality, but this restricts the execution onto single cores. Valued signals are like pure signals
except that each emission has an associated value. Before a valued signal can be read, all the
emitted values are combined using a programmer-speci ed commutative and associative combine
function. The combine function only considers the emitted values, i.e., equivalent to ForeC's
combine policy mod

Esterel's parallel construct for forking threads is commutative and associative, thanks to the
requirement that all combine functions must be commutative and associative. PRET-C's parallel
construct is not commutative or associative because threads communicate in a strict sequential
order. For ForeC and Concurrent revisions, the commutativity and associativity of their parallel
construct depends on their combine and merge functions, respectively.

Preemptions in ForeC and PRET-C are inspired by Esterel, but behave slightly di erently.
Preemptions in Esterel are triggered instantaneously, whereas preemptions in ForeC are triggered
with a delay of one tick. Preemptions in PRET-C are triggered instantaneously, but the non-
immediate behavior is not supported. Concurrent revisions do not support preemptions. Esterel
programs may be non-causal [13] because of instantaneous feedback cycles. Thanks to delayed
communication, ForeC and Concurrent revisions programs are always causal by construction.
PRET-C programs are always causal by construction because threads communicate in a strict
sequential order.

45 Discussion

This section has introduced the ForeC language that enables the deterministic parallel pro-
gramming of multi-cores. The language features of ForeC help bridge the di erences between
synchronous-reactive programming and general-purpose parallel programming. ForeC makes de-
terministic parallelism accessible to traditional embedded C programmers. ForeC o ers shared
variable semantics that removes the burden of ensuring mutual exclusion from the programmer
and guarantees deadlock freedom. Thread isolation is guaranteed by stipulating that threads
work on local copies of the shared variables. Resynchronizing the shared variables when the
threads have nished their respective local ticks makes program behavior agnostic to scheduling
decisions. These features simplify the understanding and debugging of ForeC programs. Im-
portant de nitions and proofs for ForeC were given for reactivity and determinism. Finally, a
critical comparison showed that ForeC merges the bene ts o ered by synchronous languages,
such as Esterel [18], with those o ered by deterministic runtime solutions such, as Concurrent
revisions [27].

Traditional synchronous programming languages [13] are notoriously di cult to distribute or
parallelize [48] due to their signal communication model. The key advantage of the synchronous
model of computation is that it removes the need to use thread synchronization mechanisms such
as mutual exclusion. However, the need to maintain monotonic signal values [153, 10] makes it
very di cult to parallelize these programs. Moreover, static analysis is needed to ensure that
the presence or absence of all signals can be determined exactly in each tick of the program (a
corollary is that programs can react to the absenceof signals). In contrast, communication in
ForeC is delayed using shared variables, the values which are only resolved when threads complete
their local ticks, hence allowing threads to execute in parallel and in isolation (but preventing
the reaction to absence).

Section 5 presents a straightforward compilation approach for ForeC. Benchmarking in Sec-
tion 6 reveals that our compilation approach o ers good parallel execution that is amenable
to static timing analysis. To our knowledge, no other synchronous language achieves parallel
execution and timing predictable as good as ForeC.
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ForeC's combine functions are inspired by Esterel [112] but similar solutions can be found
in other parallel programming frameworks, e.g., OpenMP'sreduction operators [100], MPI's
MPI_Reduceand MPI_Gatherfunctions [90], Intel Thread Building Blocks' tbb::parallel_reduce
function and tbb::combinable data type [59], Intel Cilk Plus' reducer data types [58], and Uni-
ed Parallel C's collective functions [133]. Solutions developed for these frameworks could be
reworked into ForeC combine functions. Appendix A provides more extensive examples of com-
bine functions. A description of how the combine policies and combine functions work together
to combine more than two copies of a shared variable is given.

Determinism in ForeC is guaranteed by the formal semantics, and preserved by the com-
piler. This is unlike the deterministic runtime solutions developed for Pthreads [16, 99, 14, 84],
OpenMP [7], and MPI [154], where determinism is only enforced at runtime and can be sensitive
to changes in the program code. However, the behaviors of the deterministic runtimes are not
described with formal semantics. Moreover, program execution in Pthreads, OpenMP, and MPI
is not portable across the runtime solutions because each deterministic runtime enforces its own
notion of determinism.

5 Compiling ForeC for Parallel Execution

The previous section described the language. To be useful, the ForeC program must be com-
piled appropriately to exploit the parallelism of the target hardware architecture. This section
describes how the ForeC compiler generates code for direct execution on a predictable parallel
architecture described in Section 3.1. The chosen compilation strategy generates code that is
amenable to static timing analysis and achieves good execution performance, as benchmarking
results in Section 6 reveal.

5.1 Overview

The ForeC compiler can generate code for direct (bare metal) execution on the Xilinx MicroBlaze
embedded multi-core (Section 3.1) processor. Later in Section 5.9, we extend the compiler to
generate code for execution on an operating system. Figure 22 is an overview of the compilation
process. The rst step checks the syntax of the ForeC source code. This includes checking
whether all threads have been de ned and whether all variables accessed by multiple threads
have been declared with theshared quali er. The second step translates the ForeC statements
into equivalent C code. Bootup and thread scheduling routines are generated for each core. The
ForeC threads are statically allocated and statically scheduled on each core. The nal step is to
compile the generated C program with the GNU C compiler (GNU's computedgoto extension
is used to implement fast context-switching). This section describes the generation of C code.
For brevity, we omit inputs and outputs because we follow existing approaches [112] for creating
the reactive interface.

5.2 Static Thread Scheduling

This section deals exclusively with ForeC threads. We illustrate the static thread scheduling
with the example of Figure 23a. The programmer statically allocates the threads to the cores
and passes the allocations into the compiler. The scheduling istatic and non-preemptive (coop-
erative). Thus, threads execute without interruption until they reach a context-switching point;

a par or pause statement, or the end of their body. The semantics of shared variables (see
Section 4.1.3) ensures that threads execute their local ticks in isolation, e.g., independently of
their siblings or their parent's siblings. The compiler de nes a total order for all the threads.
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Figure 22: Overview of compiling ForeC programs.

The total order is based on the depth- rst traversal of the thread hierarchy. Figure 23b depicts
the thread hierarchy of the ForeC program from Figure 23a, where numbers indicate the total
order. A lower number means higher execution priority. Figure 23c shows a possible thread
allocation chosen by the programmer for two cores, in their thread scheduling order. When a
thread reaches gpar statement, its child threads are forked for execution on their allocated cores.
The core that executes the parent thread is called themaster core. The cores that execute the
child threads are called theslave cores. Depending on the thread allocations, a core could be
the master core of one thread and be the slave core of another thread. For thear statement on
line 6 of Figure 23a, core 1 is the master core and core 2 is the slave core.

Based on the the thread allocation and scheduling order shown in Figure 23c, Figure 23d is a
possible execution trace. The trace for both cores (Core 1 and Core 2) progresses downwards
from the top of Figure 23d. Thread executions are shown as white segments in the trace and each
one has the thread's name and the executed lines of code from Figure 23a. The compiler generates
synchronization routines to manage the thread executions on the master and slave cores. These
routines are shown as shaded segments in the trace and each one has the routine's name. The
names are pre xed with m or s to identify whether a routine is for a master or slave core,
respectively. The names are su xed with an integer to identify the unique id assigned to each
par (with a depth- rst traversal of the thread hierarchy starting from the root). For example,
the mForkl, sForkl, mJoinl, and sJoinl routines in Figure 23d all manage the threads forked
by thread main. Table 7 summarizes the behavior of the routines. ThanForkand sFork routines
manage the forking of child threads (Section 5.4). ThemJoin and sJoin routines manage the
joining of child threads (Section 5.4). The mSyncand sSync routines manage the global tick
synchronization of all the cores (Section 5.8). In Figure 23d, the synchronization between the
routines are shown as arrows marked with the information that is sent. The information is
an integer value that encodes the following execution states of a thread: OTERMfor thread
termination, 1 and greater for the unique id of the par statement that is executing, and -1
(OTHERfor executing a pause statement or for not executing a par statement.

The threads and synchronization routines are statically scheduled on each core witbdoubly
linked lists. Each node (de ned in Figure 24) of a linked list represents a thread or a synchro-
nization routine and stores its continuation point (pc) and the links to its adjacent nodes (prev
and next). A node's pc is initially set to the start of the thread or routine's body. Each core
starts its scheduling by jumping to the pc of its rst node. When a context-switching point is
reached during the execution of a thread or routine, a jump is made to thepc of the next node.

A core will only execute the threads and routines in its linked list. Thus, inserting or removing
a thread or routine from the list controls whether it is included or excluded, respectively, from
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shared int x=0 combine all with
void main( void ) {
abort {
x=1;
pause ;
par (tA() ,tB()); /I id =
} when (x > 1);

}

void tA( void ) {
X=xX+1;
pause ;
X=X+1;
}
void tB( void ) {
par (tC() ,tD()); /I id =

void tC(void ) { int a=1;
void tD(void ) { ... }

int plus(int thl,int th2) {
return  (thl+th2);
}

plus;

1

2

}

(b) Total order.
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(a) Example ForeC program.

Core 1 Core 2
main tB
tA tD
tC

(c) Thread allocation.

(d) Possible execution trace of the compiled program.

Figure 23: Example ForeC program to be compiled.
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mFork Uses a non-blocking send to notify the slave cores whether or not the parent thread has
forked.
sFork: Blocks until it receives whether or not the parent thread has forked.

mJoin: Blocks until it receives whether the child threads on other cores have terminated. Then,
it noti es the slave cores whether the parent thread has resumed.

sJoin : Uses a non-blocking send to notify the master core whether or not its child threads have
terminated. Then, it blocks until it receives whether the parent thread has resumed.

mSync Synchronizes with all the cores, performs the housekeeping tasks, and then synchronizes
with all the cores again to start the next global tick.

sSync. Synchronizes with all the cores and waits for the next synchronization to start the next
global tick.

mAbort and sAbort : Evaluates the preemption condition of anabort .

Table 7: Summary of the synchronization routines.

1 |// Node definition

2 |typedef struct _Node {

3 void *pc;

4 struct _Node *prev, *next;

5 |} Node;

6 |/l Insert node n2 after nl

7 |#define insert(nl,n2) \
8 n2.prev = &nl; \
9 n2.next = nl.next; \
10 nl.next >prev = &n2; \
11 nl.next = &n2

12 |// Remove node n2 from the list
13 |#define remove(n2) \
14 n2.prev >next = n2.next; \
15 n2.next >prev = n2.prev

Figure 24: De nition of a linked list node and its operations in node.h.
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execution. The remainder of this section describes how a ForeC program is compiled into a C
program and how the linked lists are created and used to implement the ForeC semantics.

5.3 Structure of the Generated Program

Figure 25 shows a simpli ed version of the C program generated for the ForeC program in
Figure 23a. All line numbers in section refer to Figure 25. The generated C program contains:

The global declarations and functions from the ForeC program (lines 4 6).

The global declarations for storing the execution states of the threads and implementing
the shared variables (lines 9 13).

The main function (line 16) with the bootup routine (lines 34 41), the synchronization
routines (lines 44 138), and the threads (lines 141 186).

Although the scheduling routines dominate the generated code in Figure 25, their code remains
constant whatever the size of the user-de ned threads (which could be arbitrarily large). When
the cores enter themain function, they execute the bootup routine to initialize their linked lists.
First, a node is created for each thread and each synchronization routine (lines 18 32). Second,
the nodes are linked together to create the initial linked list for each core (lines 34 41). These
initial lists are illustrated in the second row of Table 8. The threads and routines are inlined into
the main function because fast context-switching is implemented by jumping between C labels
with GNU's computed goto extension. Jumping with goto is restricted to C labels located in
the same function scope. To avoid the need to create stacks for each thread to maintain their
local variables, the local variables are given unique names and hoisted up to the global scope
(e.g., tC's local variable a on line 5). However, functions executed on the same core will share
the same stack space. To avoid stack corruption, all the functions must execute atomically, i.e.,
without interruption.

5.4 The par Statement

The execution of a ForeC program starts with its main thread. The slave cores must wait for
their allocated threads to be forked. The global tick in which threads fork and join can only
be determined at runtime. Hence, before a core executes a thread, it must check that no other
higher priority thread allocated to it will be forked. Otherwise, the higher priority thread must be
executed rst. This is achieved by scheduling anmForkroutine after a parent thread completes
its local tick. It uses a non-blocking sendto notify the slave cores whether or not the parent
thread has forked. Thus, a slave core uses asFork routine to block until it receives whether
or not the parent thread has forked. To ensure correct scheduling order, thesFork routine has
the same execution priority as the parent thread. When a fork does occur, thenForkand sFork
routines instruct their cores to suspend the parent thread and to schedule the child thread. In the
rst global tick of Figure 23d, mForklnoti es sForkl that thread main has not forked (OTHER
sent). In the second global tick, mForklnoti es sForkl that thread main has forked (L is sent).
Before a core executes a parent thread that was suspended by a fork, it must check that all of
its child threads have terminated. This is achieved by scheduling amJoin routine after the child
threads on the master core have completed their respective local ticks. Iblocks until it receives
whether or not the child threads on the slave cores have terminated. When all child threads have
terminated, the mJoin routine instructs the master core to resume the parent thread. Thus, each
slave core schedules asJoin routine after its child threads complete their respective local ticks.
It uses anon-blocking sendto notify the master core whether or not the child threads on the
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- - 61 | mFork2: {
1 | #include "node.h" // Figure 24 62 send(tBState);
2 63 if (tBState == 2) {
3 [# Programmer de ned 64 Insert the nodes tD and mJoin2 after mFork2.
4 |int x=0; // Shared variable 65 remove(tB); remove(mFork2); goto *tD.pc;
5 |int a_tC; //tC's local variable 66 } else { goto *mFork2.next >pc; }
6 |int plus(int thl,int th2) { return thl+th2;} 67 |}
7 ) 68 | sFork2: {
8 | /I Compiler  de ned 69 receive (tBState);
9 | enum State {OTHER= 1, TERM=0}; 70 if (tBState == 2) {
10 | int mainState=OTHER, tAState=OTHER, 71 Insert the nodes tC and sJoin2 after sFork2.
11 tBState=OTHER, tCState=OTHER, 72 remove(sFork2); goto *tC.pc;
12 | tDState=OTHER; 73 } else { goto *sFork2.next >pc; }
13 int x_main, X_tA, x_tB, x_tC, x_tD; 74
14 75
15 | // Entry point 76 |/ Joining
16 | void main(void) { 77 | mJoin2: {
17 /I Nodes for the linked lists 78 receive (tCState);
18 Node main={.pc=&&main}, 79 x_tB=plus(x_tC,x_tD,x);  // Combine
19 tA={.pc=&&tA}, tB={.pc=&&tB}, 30 if (tCState == TERM
20 tC={.pc=&&tC}, tD={.pc=&&tD}; 81 && tDState == TERM) {
21 Node mFork1={.pc=&&mFork1}, 82 tBState=OTHER,; send(tBState);
22 sFork1={.pc=&&sFork1}, 83 insert (mJoin2,tB); remove(mJoin2);
23 mJoinl={.pc=&&mJoinl}, 84 goto *tB.pc;
24 sJoinl={.pc=&&sJoinl}; 85 } else { ’
25 Node mFork2={.pc=&&mFork2}, 86 send(tBState); goto *mJoin2.next >pc;
26 sFork2={.pc=&&sFork2}, 87
27 mJoin2={.pc=&&mJoin2}, 88 |}
28 sJoin2={.pc=&&sJoin2}; 89 |sJoin2: {
29 Node mAbonl_:{.pc_:&&mAbonl}, 90 send(tCState); receive (tBState);
30 sAbort1={.pc=&&sAbort1}, 91 if (tBState == OTHER) { remove(sJoin2); }
31 Node mSync={.pc=&&mSync}, 92 goto *sJoin2.next >pc;
32 sSync={.pc=&&sSync}; 93
33 /I Create initial linked lists 94 | mJoini: {
34 if (cpre ==_1){ ~ - 95 receive (tBState);
35 main.prev=main.next=&main; 96 x_main=plus(x_tA,x_tB x); /I Combine
36 insert (main,mFork1); insert (mForkl,mSync); 97 if (tAState == TERM
37 goto *main.pc; 98 && tBState == TERM) {
38 } else if (core ==2){ _ 99 mainState=OTHER; send(mainState);
39 sFork1. prev=sForkl.next=&sForkl; 100 insert (mJoin1,main); remove(mAbort1);
40 insert (sFork1,sSync); goto *sForkl.pc; 101 remove(mJoinl); goto *main.pc;
41 } else { while(1); } 102 } else {
42 . 103 send(mainState); goto *mJoinl.next >pc;
43 | /I Forking 104 }
44 | mForkl: { 105 |}
45 send(mainState); 106 | sJoinl: {
46 if (mainState == 1) { 107 send(tBState);
47 Insert the nodes mAbortl,tA,sFork2, and mJoinl 108 receive (mainState);
48 after mForkl. 109 if (mainState == OTHER) { remove(sJoinl); }
49 remove(main); remove(mForkl); goto *tA.pc; 110 goto *sJoinl.next >pc;
50 } else { goto *mForkl.next >pc;} 111 |}
51 |} 112
52 sForkl:_ { . 113 | // Preempting
53 receive (mainState); 114 | mAbortl: {
54 if (mainState == 1) { 115 if (x >1){
55 Insert the nodes sAbortl,tB,mFork2, and sJoinl 116 Remove the linked nodes between mAbortl
56 after sForkl. 117 and mJoinl inclusive .
57 remove(sForkl); goto *sFork2.pc; 118 main.pc = &&abortl; goto *main.pc;
58 } else { goto *sForkl.next >pc;} 119 } else { goto *mAbortl.next >pc; }
gg 120

Figure 25: Example of the C program generated for Figure 23a.
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121
122
123
124
125
126
127

sAbortl: {
if (x >1){
Remove the linked nodes between sAbortl
and sJoinl inclusive .
goto *sAbortl.next >pc;
} else { goto *sAbortl.next >pc;}

/I Synchronizing
mSync: {
barrier ();
Xx=x_main; emitOutputs(); samplelnputs();
barrier () ;
goto *mSync.next >pc;

sSync: {
barrier (); barrier ();

/I Threads
main: {
copy(x_main,x);
/* abort */ {
X_main=1;

/I pause;
main.pc=&&pausel;

goto *main.next >pc;
pausel:;

if (x>1){ goto abortl; }
copy(x_main,x);

I par(tA(),tB()); with id=1
mainState=1; main.pc=&&joinl;

Figure 25: (Continued.) Example of the C program generated for Figure 23a.
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goto *sSync.next >pc;

155
156
157
158
159
160
161

goto *main.next >pc;
joinl :;
copy(x_main,x);
} /I when (x_main > 1);
abortl: exit(0);
}
tA: {
copy(X_tA,x_main);

X_tA=x_tA+1;

/I pause;

tA.pc=&&pause2; goto *tA.next >pc;

pause2: copy(x_tA,x);
X_tA=x_tA+1;

/I Termination.
tAState=TERM; remove(tA);
goto *tA.next >pc;

tB: {

I par(tC(),tD()); with id=2
tBState=2; tB.pc=&&join2;
join2 :;

/I Termination.
tBState=TERM,;
remove(tB);

goto *tB.next >pc;

tC: {a_tC=1; ... }
tD: { ..
} /I End of main()

goto mFork2;
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Execution Point Linked Lists
Core 1:

When the program starts
Core 2:

When main forks (id = 1) | €ore 1:
Core 2:

When tB forks (id = 2) Core 1:
Core 2:

Table 8: Core 1 and 2's initial lists and subsequent lists when threads fork.

slave core have terminated. In the second and third global ticks of Figure 23dsJoinl noti es
mJoinl that thread tB has terminated (TERMs sent).

We now describe the C code that is generated for eacpar statement and how the synchro-
nization routines are incorporated into the linked lists. The last two rows of Table 8 visualizes
core 1 and 2's linked lists when threadsnain and tB fork (lines 153 and 177 respectively). Each
par statement is assigned a unique positive integeid by the compiler. Lines 153 156 in Fig-
ure 25 is an example of the C code that is generated for par statement. Line 154 sets the
parent thread's execution state toid and sets the parent thread'spc to be immediately after the
par statement. Line 155 is a context-switch to the parent thread'smForkroutine. Lines 44 51
is an example of the C code that is generated for amFork routine. Line 45 sends the parent
thread's execute state to the slave cores. If the parent thread has forked, then lines 47 49 insert
the allocated child threads and anmJoin routine into the linked list. The parent thread and
mForkroutine are removed from the linked list. If a child thread can fork its own threads, then
further mForkand sFork routines need to be inserted into the linked lists. This ensures that the
nested threads can be forked. The end of line 49 is a context-switch to the rst node that was
inserted. Otherwise, if the parent thread has not forked, then line 50 is a context-switch to the
next node in sequence.

Recall that the slave cores have arsFork routine in their initial linked list. Lines 52 59 is
an example of the C code that is generated for aisFork routine. Line 53 blocks until it receives
whether the parent thread has forked. If the parent thread has forked, then line 55 inserts the
allocated child threads and ansJoin routine into the linked list. The sFork routine is removed
from the linked list. The end of line 57 is a context-switch to the rst node that was inserted.
Otherwise, if the parent thread has not forked, then line 58 is a context-switch to the next node
in sequence.

Lines 180 183 in Figure 25 is an example of the C code that is generated for the end of a
child thread to handle thread termination. Line 181 sets the thread's execution state toTERM
Line 182 removes the thread from the linked list. Line 183 is a context-switch to the next node
in sequence. Lines 94 105 is an example of the C code that is generated for amJoin routine.
Line 95 blocks until it receives the execution state of each child thread. If all the child threads
have terminated, then line 99 sets the execution state of the parent thread tdOTHERNd sends
that state to the slave cores. Lines 100 101 insert the parent thread back into the linked list
and removes the nodes associated with thpar statement. This is followed by a context-switch
to the parent thread. Otherwise, if some child threads have not terminated, then line 103 is is a
context-switch to the next node in sequence. Lines 106 111 is an example of the C code that is
generated for ansJoin routine. Line 107 sends the execution state of each child thread to the
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master core. Line 108 blocks until it receives whether the parent thread has been resumed. If
the parent thread has been resumed, then line 109 removes th&loin routine from the linked
list. Line 110 is a context-switch to the next node in sequence.

5.5 The pause Statement

The pause statement is a context-switching point and lines 146 149 in Figure 25 is an example
of the C code that is generated. Line 147 sets the current thread'pc to be immediately after
the pause statement. Line 148 is a context-switch to the next node in sequence. In the next
global tick, execution will resume from statement immediately after the pause statement.

5.6 Shared Variables

Shared variables are hoisted up to the program's global scope to allow all cores to access them
(e.g., line 4 in Figure 25). The copies of shared variables are implemented as unique global
variables (e.g., line 13) to allow them to be combined on dierent cores. In each thread, all
shared variable accesses are replaced by accesses to their copies (e.g., lines 144 and 164). The
shared variables are copied at the start of each local tick, i.e., start of each thread body, and after
eachpause and par statement. For example, the shared variablex on line 4 is copied by thread
main on lines 142, 151 and 157. As de ned by the (par-4), (par-5), (par-6), and (par-7) semantic
rules given in Section 4.2.8, thepar statement is responsible for combining the copies of shared
variables. More precisely, when the child threads of gar statement complete their respective
local ticks, their copies of shared variables are combined. The combined result is assigned to
their parent thread. This combine process is implemented by themJoin routine (e.g., line 96)
because it waits for the child threads to complete their respective local ticks. The nal values of
the shared variables are computed by thanJoin routine of thread main.

5.7 The abort Statement

We begin by describing the C code that is generated for ambort that does not have the optional
immediate or weakkeywords. Conditional jumps, using the preemption condition, are inserted
after each pause statement in the abort body. For example, lines 143 158 in Figure 25 is an
abort and a conditional jump is inserted on line 150 after thepause statement. The preemption
condition x>1 is used in the conditional jump. If the preemption condition evaluates to true, a
jump is made to the statement immediately after the abort (e.g., line 159). If apar statement
is inside the abort body, then the preemption condition must be evaluated before the threads
can execute. For example, in the third global tick of Figure 23d, the cores use thenAbort
and sAbort routines to evaluate the preemption condition on line 7 of Figure 23a. It is safe
to evaluate the preemption conditions in parallel because they are side-e ect free by de nition
(Section 4.1.6). Thus, when a fork occurs, arAbort routine is inserted before the child threads
in the linked lists. For a master core, lines 114 120 in Figure 25 is an example of the C code
that is generated for an mAbort routine. Line 115 evaluates the preemption condition. If it
evaluates totrue, then line 116 removes the nodes associated with thpar statement. Line 118
sets the parent thread'spc to be immediately after the abort statement and context-switches
to the parent thread. Otherwise, if the preemption condition evaluates to false then line 119 is
a context-switch to the next node in sequence. For a slave core, lines 121 127 is an example of
the C code that is generated for ansAbort routine and is similar to that of an mAbort. Line 122
evaluates the preemption condition. If it evaluates to true, then line 123 removes the nodes
associated with the par statement. Line 125 is a context-switch to the next node in sequence.
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[* abort */ {
if (x>1){ goto abortl; }
X_main=1;

/I pause;
main.pc=&&pausel;

goto *main.next >pc;
pausel:;

if (x>1){ goto abortl; }
copy(x_main,x);

/I par(tA,tB) with id=1
mainState=1;
goto *main.next >pc;
joinl :;
copy(x_main,x);

} /I when (x_main > 1);

int triggered = 0;
/* abort */ {
X_main=1;

/I pause;
main.pc=&&pausel;
goto *main.next >pc;
pausel:;

triggered = (x > 1);
copy(x_main,x);

/I par(tA,tB) with id=1
mainState=1;
goto *main.next >pc;
joinl :;
copy(x_main,x);

} /I when (x_main > 1);

int triggered = 0;

/* abort */ {
triggered = (x > 1);
X_main=1;

if (triggered) { goto abortl; }
/I pause;

main.pc=&&pausel;

goto *main.next >pc;

pausel:;

triggered = (x > 1);
copy(x_main,x);

/I par(tA,tB) with id=1
mainState=1;

goto *main.next >pc;
joinl :;
copy(x_main,x);

} /I when (x_main > 1);

(@) Immediate and strong (b) Non-immediate and

(c) Immediate and weak abort .
abort . weak abort .

Figure 26: C code for the immediate and weak variants of theabort on lines 143 158 of Figure 25.

Otherwise, if the preemption condition evaluates tofalse, then line 126 is a context-switch to the
next node in sequence.

The optional immediate keyword allows the preemption condition to be evaluated before
the abort body is executed for the rst time. Thus, an additional conditional jump, using the
preemption condition, is inserted at the start of the abort body. Figure 26a is an example of the
C code that would be generated if theabort on lines 143 158 in Figure 25 was an immediate
abort . The optional weakkeyword delays the jumping to the end of theabort body when the
preemption condition evaluates totrue. Thus, the conditional jump is separated into two parts:
(1) the evaluation of the preemption condition and (2) the resulting jump. The evaluation is
inserted directly after each pause statement and the jump is inserted directly before eachpause
statement. If a par statement is inside the weakabort , then the mAbort and sAbort routines are
inserted after the child threads in the linked lists. Figure 26b is an example of the C code that
would be generated if theabort on lines 143 158 in Figure 25 was a wealabort . Figure 26c¢ is
an example of the C code generated if it was an immediate and weadbort .

5.8 Global Tick Synchronization

The notion of a global tick is preserved by ending each linked list with aSync routine that
implements barrier synchronization. This synchronization is shown at the end of each global tick
in Figure 23d. For the master core that executes themain thread, lines 130 135 is an example of
the C code that is generated for anmSyncroutine. Line 131 is a barrier synchronization for the
end of the tick. Line 132 performs the following housekeeping tasks: nalizing the values of the
shared variables, emitting outputs, and sampling inputs. Line 133 is a barrier synchronization to
signal the start of the next global tick. Line 134 is a context-switch to the rst node in the linked
list. For the remaining slave cores, lines 136 138 is an example of the C code that is generated
for an sSync routine. Line 137 are barrier synchronizations for the end of the tick and the start
of the next tick. This is followed by a context-switch to the rst node in the linked list.
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code for each ForeC construct. Light-weight synchronization routines are generated to man-
age the forking and joining of threads across the cores. The use of linked lists to manage the
scheduling of threads and routines is inspired by that of the Columbia Esterel Compiler [44].
The code generation is structural, meaning that a nesting of ForeC constructs is compiled into
a nesting of each construct's generated code. The advantages with our static scheduling ap-
proach include: (1) a light-weight scheduling of ForeC threads, and (2) analysis is easier because
all scheduling decisions are known beforehand. However, the disadvantages include: (1) the
inability to dynamically load balance the ForeC threads to utilize the idle cores, and (2) the
need to recompile the program to target a di erent number of cores. Memory fences in C (e.g.,
atomic_thread _fence [62]) are not used to implement the semantics of shared variables be-
cause (1) the reading of inputs and the writing of outputs for global tick synchronisation already
requires barrier synchronization among the cores, making memory fences redundant for the -
nalizing shared variables, and (2) memory fences on shared variables are unable to isolate the
accesses of one thread from the accesses of another thread, which is needed during each local
tick.

For future work, the dynamic scheduling of ForeC threads can be developed to improve the
average-case performance on desktop computers. In future versions of the compiler, we also wish
to implement proper thread stacks to allow the execution of functions that pause.

The distribution of traditional synchronous programs over multiple processors is not new [48,
9, 29, 66, 153, 150, 103]. It is motivated by the desire to execute computations closer to their
inputs and outputs, which may be distributed over a geographical area. Unfortunately, the
use of signals for instantaneous communication makes compilation notoriously di cult. First,
causality analysis [112] is needed to ensure that the presence or absence of all signals can be
determined exactly in each global tick. Second, the compiler must generate code for resolving
signal statuses at runtime. A common approach is to compile away the parallelism and to generate
a sequential program [44, 112]. Third, the sequential program is partitioned into subprograms and
distributed to execute on their allocated processors. Desynchronization techniques [12, 49, 24] can
be used when the processors execute and communicate at di erent speeds. SynDEx [111] is a tool
that automatically distributes synchronous programs and considers the cost of communication
between the processors. In contrast, ForeC is signi cantly easier to compile because thread
communication is delayed with shared variables (Section 4.1.3). Causality analysis is not required
and ForeC threads can be distributed directly to the available cores. The parallelism speci ed
by the programmer is preserved by the ForeC compiler and a sequential intermediate code is not
required.

With the advent of multi-cores, the distribution of synchronous programs is motivated by the
desire to improve their execution performance. The distribution of synchronous programs over
multi-threaded and multi-core reactive processors has been studied extensively [81, 152, 37, 120,
150]. Reactive processors handle the scheduling of threads in hardware, thereby simplifying the
code generation. However, causality analysis is still required and signal statuses still need to be
resolved at runtime. Signal resolution may reduce a program's parallel performance because a
thread must wait for a signal's status to be resolved before it can be read. There have been studies
on the parallelization of synchronous programs on general-purpose multi-cores [66, 153, 10].
These approaches extract a parallel program from a sequential representation of the original
synchronous program. Due to control and signal dependencies, the opportunities for extracting
parallelism from a sequential program is limited. In contrast, execution dependencies only exist
at the local tick boundaries of ForeC threads (recall that each thread operates on a local copy of
each shared variable). As a result, ForeC threads have more opportunity to execute in parallel.
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6 ForeC Benchmarking

This section quantitatively assesses ForeC's parallel execution performance on a mixture of data
and control dominated benchmark programs. ForeC's execution performance is compared with
that of Esterel, a widely used synchronous language for concurrent safety-critical systems that
has inspired some features of ForeC, and that of OpenMP, a popular desktop solution for parallel
programming. The static timing analysis of ForeC using the reachability technique is described
in a previous paper [149]. The benchmark results [149] showed that the worst-case reaction
time [22] (WCRT) of ForeC programs could be estimated to a high degree of precision, which
is very useful for implementing real-time embedded systems in general, and time-predictable
systems in particular. We highlight some of the key ndings in this section.

6.1 Benchmark Programs

This section describes the benchmark programs used in the evaluations:

FlyByWire is based on the real-time UAV benchmark called PapaBench [95]FlyByWire is a
control dominated program with several tasks managing the UAV's motors, navigation,
timer, and operation mode.

FmRadio[110] is based on the GNU Radio Package [50], which transforms a xed stream of radio
signals into audio. The history of the radio signals is used to determine how the remaining
stream of signals should be transformed FmRadiois data orientated.

Life simulates Conway's Game of Life [46] for a xed number of iterations and a given grid
of cells. In each iteration of the simulation, the outcome of each cell can be computed
independently. Life has a good mixture of data and control dominated computations.

Lzss uses the Lempel-Ziv-Storer-Szymanski (LZSS [128]) algorithm to compress a xed amount
of text. Multiple sliding windows are used to search di erent parts of the text for repeated
segments that can compressedLzss has a good mixture of data and control dominated
computations.

Mandelbrot computes the Mandelbrot set for a square region of the complex number plane.
The Mandelbrot set for each point in the region can be computed independently, making
Mandelbrot a data-parallel program.

MatrixMultiply ~ computes the matrix multiplication