Object Recognition on Cotton Harvesting Robot Using Human Visual System

Abstract : Object recognition is one of the hottest issues in the field of vision system for harvesting robot. How efficiently and accurately to remove the background and get the object in image is the key research. The attention mechanisms of human visual system (HVS) can be segmented an image into the region of interesting (ROI) which is considered important and the background which is less important, and recognized the object from ROI using the local information. In this paper, an algorithm based on the characteristic of HVS is proposed. In algorithm, the image was partitioned into many blocks of equal size. ROI was got through calculating the factor of weight of each sub-block image, and the object was extracted by segmenting the ROI. Experiment results show that the algorithm can be recognized the object efficiently and accurately. A new method for vision system of harvesting robot is provided.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-368 (Part I), pp.65-71, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27281-3_9〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01351793
Contributeur : Hal Ifip <>
Soumis le : jeudi 4 août 2016 - 17:03:46
Dernière modification le : vendredi 5 août 2016 - 09:35:22
Document(s) archivé(s) le : samedi 5 novembre 2016 - 12:17:30

Fichier

978-3-642-27281-3_9_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yong Wang, Xiaorong Zhu, Yongxing Jia, Changying Ji. Object Recognition on Cotton Harvesting Robot Using Human Visual System. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-368 (Part I), pp.65-71, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27281-3_9〉. 〈hal-01351793〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

42