On the mathematical consequences of binning spike trains

Abstract : We initiate a mathematical analysis of hidden effects induced by binning spike trains of neurons. Assuming that the original spike train has been generated by a discrete Markov process, we show that binning generates a stochas-tic process which is not Markov any more, but is instead a Variable Length Markov Chain (VLMC) with unbounded memory. We also show that the law of the binned raster is a Gibbs measure in the DLR (Dobrushin-Lanford-Ruelle) sense coined in mathematical statistical mechanics. This allows the derivation of several important consequences on statistical properties of binned spike trains. In particular, we introduce the DLR framework as a natural setting to mathematically formalize anticipation, i.e. to tell "how good" our nervous system is at making predictions. In a probabilistic sense, this corresponds to condition a process by its future and we discuss how binning may affect our conclusions on this ability. We finally comment what could be the consequences of binning in the detection of spurious phase transitions or in the detection of wrong evidences of criticality.
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01351964
Contributeur : Bruno Cessac <>
Soumis le : vendredi 5 août 2016 - 09:43:02
Dernière modification le : jeudi 28 juin 2018 - 09:26:02

Fichier

NECO-03-16-2580R1-Source.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01351964, version 1

Citation

Bruno Cessac, Arnaud Le Ny, Eva Löcherbach. On the mathematical consequences of binning spike trains. Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2017, 29 (1), pp.146-170. 〈http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00898?journalCode=neco〉. 〈hal-01351964〉

Partager

Métriques

Consultations de la notice

363

Téléchargements de fichiers

112