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Abstract. Automatic city modeling from satellite imagery is one of the biggest
challenges in urban reconstruction. Existing methods produce at best rough and
dense Digital Surface Models. Inspired by recent works on semantic 3D recon-
struction and region-based stereovision, we propose a method for producing com-
pact, semantic-aware and geometrically accurate 3D city models from stereo pair
of satellite images. Our approach relies on two key ingredients. First, geometry
and semantics are retrieved simultaneously bringing robustness to occlusions and
to low image quality. Second, we operate at the scale of geometric atomic re-
gion which allows the shape of urban objects to be well preserved, and a gain
in scalability and efficiency. We demonstrate the potential of our algorithm by
reconstructing different cities around the world in a few minutes.

Keywords: 3D reconstruction, city modeling, satellite imagery, urban scenes

1 Introduction

Automatic city modeling has received an increasing interest during the last decade.
In applicative fields such as urban planning, telecommunications and disaster control,
producing compact and accurate 3D models is crucial. Aerial acquisitions with Lidar
scanning or multi-view imagery constitute the best way so far to automatically create
3D models on large-scale urban scenes [1]. Because of high acquisition costs and au-
thorization constraints, aerial acquisitions are, however, restricted to some spotlighted
cities in the world. In particular, Geographic Information System (GIS) companies pro-
pose catalogs with typically a few hundred cities in the world. Satellite imagery ex-
hibits higher potential with lower costs, a worldwide coverage and a high acquisition
frequency. Satellites have however several technical restrictions that prevent GIS prac-
titioners from producing compact city models in an automatic way [2].

Inspired by recent works on semantic 3D reconstruction and region-based stereovi-
sion, we propose a method for producing compact, semantic-aware and geometrically
accurate 3D city models from stereo pairs of satellite images. Our approach relies on
two key ingredients. First, geometry and semantics are retrieved simultaneously bring-
ing robustness to occlusions and to low image quality. Second, contrary to pixel-based
methods, we operate at the scale of geometric atomic region: it allows the shape of ur-
ban objects to be better preserved, and also a gain in scalability and efficiency. Figure 1
illustrates our goal.
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Fig. 1. Reconstruction of Denver downtown. Starting from a stereo pair of satellite images (left),
our algorithm produces a compact and semantic-aware 3D model (right) in a few minutes.

2 Related works

Our review of previous work covers three main facets of our problem: urban reconstruc-
tion, region-based stereo matching, and object polygonalization.

Urban reconstruction. Reconstruction of urban objects and scenes has been deeply
explored in vision, with a quest towards full automation, quality and scalability, and ro-
bustness to acquisition constraints [1]. In this field, geometry and semantics are closely
related. The most traditional strategy consists in retrieving semantics before geometry.
In many city modeling methods [3,4,5], data are first classified so that the subsequent
3D reconstruction can be adapted to the nature of urban objects. Buildings are the most
common reconstructed objects, either from multiview imagery [6,7,8] or airborne Lidar
[4,9]. Recent works [10,11,12] demonstrate that the simultaneous extraction of geome-
try and semantics, also known as semantic 3D reconstruction, outclasses multiple step
strategies in terms of output quality. However, these works typically suffer from a low
scalability and often produce 3D models without structural consideration. Semantic 3D
reconstruction remains a challenge at the scale of satellite images.

Region-based stereo matching. Numerous works have been proposed in stereo match-
ing [13]. While well-established methods as the Semi-Global Matching (SGM) algo-
rithm [14] reason at the scale of the pixel, some works focus on matching image regions
to more accurately preserve object boundaries [15,16]. Beyond boundary accuracy,
region-based stereo matching methods can offer high scalability and time-efficiency
[17]. Some works [18,19] also combine object segmentation or classification with stereo
matching in unified frameworks. Inference for these models is, however, a complex task
that requires time-consuming optimization procedures. Overall, most of these meth-
ods are not adapted to satellite images whose wide baselines typically produce severe
occlusion problems that are not specifically handled. The additional use of geometric
primitives as line-segments usually helps to better interpret occluded parts of images
[20].

Object polygonalization. Capturing objects by polygonal shapes provides a compact
and structure-aware representation of the object contours. It is particularly adapted at
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representing regular objects as roofs from images. Object polygonalization methods
typically depart from the detection of line-segments which are then assembled into
polygons. This second step can be done, for instance, by searching for cycles in a graph
of line-segments [21], or by connecting line-segments with a gap filling strategy [22].
Grouping atomic regions [23] is also a possible approach, especially when the number
of objects is high, and the input image is big. It requires, however, a post-processing
step to vectorize chains of pixels into polygons with typically a loss of accuracy.

3 Positioning and contributions

Satellite context imposes a set of technical constraints with respect to traditional aerial
acquisitions, in particular (i) a lower pixel resolution, typically≥ 0.5 meter, (ii) a lower
signal-to-noise-ratio impacting the image quality, and (iii) a wider baseline to guarantee
a reasonable depth accuracy. Although these constraints have a low impact on some
applications as change detection [24] or generation of dense Digital Surface Models
[25], they challenge the automatic reconstruction of compact and semantic-aware city
models.

Fig. 2. Satellite context. A wide baseline is a necessity to reach reasonable depth accuracy, but
brings severe occlusion problems. A facade side is typically visible only in one image (see close-
ups). Note also the high proportion of shadow and the time-varying objects as cars.

We propose an automatic city modeling method from satellite imagery whose output
approaches the quality of 3D-models delivered by airborne-based methods. We consider
as input a calibrated stereo pair of satellite images. Our output city model is a compact
mesh composed of ground and building objects. Buildings are represented with a Level
Of Detail 1 (LOD1) of the CityGML formalism [26], ie piecewise planar buildings with
flat roofs and vertical facades. Our method proceeds with three main steps illustrated
on Figure 3.

Our main contributions are (i) a full pipeline for producing compact and semantic-
aware city models from satellite images, (ii) a time-efficient and scalable approach
based on geometric atomic regions, and able to reconstruct big cities in a few min-
utes, and (iii) a joint classification and reconstruction process that brings robustness to
the low quality of input images.
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(a) (b) (c) (d) (e)

Fig. 3. Overview. Input stereo images (a) are first decomposed into atomic convex polygons (b)
using existing works (Section 4). In a second step detailed in Section 5, the semantic class and
the elevation of each polygon are simultaneously retrieved in the two partitions (c). The last step
(Section 6) consists in unifying the two partitions enriched by semantic classes and elevation
values into a planimetric elevation representation (d) that allows the generation of the output 3D
model (e).

4 Polygonal partitioning

Reasoning at the scale of pixel on big satellite images tends to produce non-scalable
algorithms that poorly capture geometric information at higher scales [2]. We rather an-
alyze satellite images at the scale of atomic regions, whose efficiency has been demon-
strated in shape extraction [23] or stereo matching [17]. Instead of using traditional
superpixel methods, we rely on a geometric algorithm that decomposes images into
atomic convex polygons [27]. This algorithm is applied independently on both stereo
images with a polygon size fixed to 5 pixels (average distance to polygon centroids to
its edges) in our experiments. As illustrated on Figure 4, it captures geometric regular-
ities in images by aligning contours of atomic polygons with linear structures as roof
edges. Note that the line-segments embedded into the polygonal partitions will be used
further in our approach.

The polygons are enriched with an elevation estimate which corresponds to the al-
timetric distance between the observed surface captured in the polygon and the ground.
For each polygon, we define its elevation estimate as the difference between the mean
of the pixel depths contained inside the polygon (computed by Semi-Global Match-
ing [14] with double checking), and the depth of the ground (computed by a standard
Digital Terrain Model (DTM) estimation method [28]). Because of the wide baseline
of our stereo pairs, polygons without elevation estimates are frequent, especially when
associated to facade elements as illustrated in Figure 4. In return, elevation estimates
are relatively accurate and present on a very large majority of roofs. Our strategy is
thus to couple these elevation estimates with the geometric information contained in
the polygonal partitions to retrieve building contours even for partially occluded roofs.
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Fig. 4. Polygonal partitioning and elevation estimates. Left and right polygonal partitions capture
linear structures contained in input images, and in particular building edges. Elevation estimates
sparsely cover the polygonal partitions (see colored polygons). Each roof contains at least a few
elevation estimates.

We denote by Pl and Pr the polygonal partitions produced by [27] for the left
and the right images respectively. P?

l ⊂ Pl represents the set of polygons in Pl with
elevation estimates. A polygon i ∈ Pl ∪ Pr associated with an elevation estimate di
is projected in 3D using the traditional Rational Polynomial Coefficients (RPC) model
[29]. Two polygons i ∈ Pl and j ∈ Pr with respective elevation estimates di and dj
are said to be imbricate if the orthographic projections into the horizontal plane of the
3D polygons overlap. In this case, we denote by τij ∈ [0, 1] the overlapping ratio of the
orthographic projections, ie the intersection area to union area ratio. These notations are
illustrated in Figure 5.

left polygonal partition Pl right polygonal partition Pr

horizontal plane

i
j

(j, dj)

(i, di)

Fig. 5. Orthographic projection of polygons. Polygons i and j with respective elevation estimates
di and dj are projected in 3D using the RPC model. These two polygons are imbricate as their
orthographic projections into the horizontal plane overlap (see yellow area).
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5 Joint classification and elevation recovery

Starting from the two polygonal partitions and sparsely distributed elevation estimates,
our goal is now to retrieve simultaneously the semantic class and the elevation of each
polygon of the partitions.

Two semantic classes of interest are considered: roof and other. Class other mainly
refers to ground and facade elements. Because of the wide baseline, most of these ele-
ments are only visible in one image. As our main objective is to reconstruct buildings,
considering only these two classes is sufficient under the assumption that facades are
vertical. Contrary to class other, class roof is associated with an elevation value. By
considering the classification problem as a labeling formulation, the set of possible la-
bels can then be defined as L = {z1, ..., zn, other} where z1, ..., zn are the n possible
elevation values of a roof. To set z1, ..., zn, we cluster the set of elevation estimates by
Kmeans with K = n+ 1, and associate the n highest centroids to them. As the ground
falls into the class other, the centroid with the lowest value is reset to zero. We denote
by σ(zk) the standard deviation of the kth cluster.

The quality of a configuration of labels l ∈ Lcard(P) is measured through an energy
U of the form:

U(l) =
∑
i∈P

Ddata(li) + β1
∑

(i,j)∈Es

Vsmoothness(li, lj) + β2
∑

(i,j)∈Ec

Vcoupling(li, lj)

(1)

where Ddata is the unary data term, and Vsmoothness and Vcoupling are pairwise poten-
tials favoring respectively label smoothness and label coherence between left and right
partitions. Es and Ec correspond to two sets of pairs of adjacent polygons. β1 and β2 are
parameters weighting the three terms of the energy.

Polygon adjacency. The two adjacency sets Es and Ec impose spatial dependencies be-
tween polygons, either within the same polygonal partition for the former or in between
the polygonal partitions for the later, as illustrated on Figure 6.
Es contains pairs of polygons who share a common edge which is not supported by one
of the line-segments embedded into the polygonal partitions. As illustrated in Figure
6-right, this condition on line-segments is particularly efficient for stopping label prop-
agation when meeting building edges.
Ec is defined as the set of imbricate polygons, ie the pairs of polygons i ∈ P?

l and
j ∈ P?

r so that τij > 0.

Data term. It measures the coherence between the elevation estimate of a polygon and
its proposed label. For polygons without an elevation estimate, we favor the occurrence
of the label other as a polygon without a depth estimate is most likely to capture an
element visible only in one image such as facade and, to a lesser extent, ground. The
data term is expressed as

Ddata(li) =

1− e
−(li−di)

2

2σ(li)
2 if i ∈ P?

α · 1{li 6=other} otherwise
(2)
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Es-adjacency
Ec-adjacencyline-segment

polygons

Fig. 6. Polygon adjacency. Two types of pairwise interactions between polygons are taken into ac-
count in the labeling formulation: within the same partition and in between partitions (left). Line-
segments embedded into the partitions prevent neighboring polygons from interacting (right).

where di is the depth estimate of polygon i, 1{·} is the characteristic function, and α
is the penalty weight for not choosing other. When label other is attributed to polygon
i ∈ P?, we set li to 0.

Smoothness. The smoothness term penalizes Es-adjacent polygons with different labels
using a generalized Potts model:

Vsmoothness(li, lj) = wij · 1{li 6=lj} (3)

where the weightwij reduces the penalty of having different labels when the radiometry
of pixels inside the two polygons is not similar. In practice, wij is chosen as one minus
the normalized histogram distance in norm L2.

Coupling. Similarly to the smoothness potential, the coupling term is defined by a
generalized Potts model, here, between imbricate polygons.

Vcoupling(li, lj) = τij · 1{li 6=lj} (4)

where τij allows polygons with different labels to be penalized proportionally to their
overlapping ratio.

Optimization. An approximation of the global minimum of the energy is found using
the α-β swap algorithm [30]. Figure 7 shows the impact of the different terms of the
energy. In the sequel, we call enriched partition, a polygonal partition whose polygons
have received a class and eventually an elevation value by this energy minimization.

6 Fusion of enriched partitions

The projection in 3D of left and right enriched partitions gives two different interpreta-
tions of the shape of objects as (i) some roof parts are frequently occluded between the
two images, (ii) the shapes of polygons between left and right partitions do not neces-
sarily correspond, and (iii) the coupling term of Eq. 1 is a soft constraint that does not
guarantee that imbricate polygons have the same elevation. To unify the two interpreta-
tions into a unique 3D model, we project all 3D polygons into the horizontal plane, and
relabel elevations inside the new induced horizontal partition.
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Fig. 7. Impact of the different energy terms. Roofs are sparsely labeled using the data term only
(β1 = β2 = 0, 2nd column). Adding the smoothness potential propagates roof labels while
preserving building edges (β2 = 0, 3rd column). The labeling coherence between the left and
right partitions is enforced considering the complete energy formulation (right column).

Orthographic projection. Each polygon i ∈ P whose class is not other is projected
into the horizontal plane. The superposition of projected polygons from left and right
partitions produces a decomposition of the horizontal plane into new polygons that we
call cells. Note that the cells are not necessarily convex. We denote by C the set of cells.
Each cell inherits the elevations of the polygons that overlap with it. We denote by Zk,
the set of elevations inherited by cell i ∈ C. Different types of cells can be distinguished:

– Coherent cells are cells that inherit two identical elevations, one from the left par-
tition and one from the right. The elevation value of these cells is not modified
further.

– Conflict cells are cells that inherit at least one elevation, and that are not coherent
cells.

– Empty cells are cells without inherited elevation. Theses cells, which typically fill
in the holes in the cell decomposition, mainly corresponds to ground or small roof
parts.

We denote by Ccoherent, Cconflict and Cempty these three sets of cells respectively,
illustrated in Figure 8.

Cell relabeling. For fusing enriched partitions, each conflict or empty cell must be
associated with a unique elevation. We relabel those cells using an energy formulation
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coherent cells

conflict cells

empty cells

Fig. 8. Fusion of enriched partitions. Projecting the enriched partitions (left) into the horizontal
plane produces a cell decomposition in which three groups of cells can be distinguished (middle).
The relabeling of the elevation of conflict and empty cells gives a unified 3D model (right).

with a standard form:

E(x) =
∑
k∈C?

Ak · Ed(xk) + λ
∑

(k,k′)∈N

Lkk′ · Er(xk, xk′) (5)

where C? = Cconflict ∪ Cempty , the label xk of cell k is an elevation value in Z =
{0, z1, ...zn}, and N is the set of pairs of adjacent cells in C that have at least one cell
belonging to C?. Ed, Er and λ are respectively the unary data term, the pairwise poten-
tial and the weighting parameter between the two terms. Ak and Lkk′ are respectively
the area of cell k, and the length of the common edge between cells k and k′: they are
introduced to normalize the energy with respect to the size of cells.

The intuition behind the data term is that (i) an empty cell is more likely to be
ground with an elevation value of 0, and (ii) a conflict cell is more likely to be roof with
an elevation value as close as possible to its inherited elevations:

Ed(xk) =


0 if k ∈ Cempty and xk = 0

min{|xk − z|z∈Zk} else if k ∈ Cconflict and xk 6= 0

γ otherwise
(6)

where γ is a penalty for not respecting this intuition.
The pairwise potential is a generalized Potts model that increases the penalty be-

tween two cells when their common edges projected in 3D back-project well into the
images. As we consider the pairs of cells with different elevations xk and xk′ , each pair
has exactly two common edges in 3D: one at elevation xk, the other at elevation xk′ .
The pairwise term is expressed by

Er(xk, xk′) = min(Gl(xk) +Gl(xk′), G
r(xk) +Gr(xk′)) · 1{xk 6=x′k} (7)
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where Gl(xk) (respectively Gr(xk)) is a back-projection measure of the common edge
at elevation xk into the left (resp. right) image. In practice, the back-projection measure
is defined as the absolute value of one minus the scalar product between the image
gradients and the gradients of the back-projected edge.

Optimization. For efficiency reasons, the energy minimization is spatially decomposed
into independent subproblems. We regroup the connected conflict and coherent cells
into clusters while allowing empty cells to be inside. Each cluster intuitively corre-
sponds to a building or a building block. The α-β swap algorithm [30] is then operated
over the set of conflict and empty cells of each cluster. Note that, for each cluster, we re-
strict the label set Z to the inherited elevations of its cells. Optionally, the optimization
can be performed in parallel on each cluster.

Compact city model. The ground is represented in 3D by a mesh surface triangu-
lated from the altitude estimates [28]. From the optimal label configuration, roofs are
inserted by simply elevated cells to their elevation label from the ground. The facade
components are finally added by creating vertical facets between the adjacent cells with
different labels.

7 Experiments

We experimented our method with stereo pairs from QuickBird2, WorldView2 and
Pleiades satellite images with pixel resolution at 0.6, 0.5 and 0.5 meter respectively.
All the experiments have been done on a single computer with Intel Core i7 processor
clocked at 2GHz.

Implementation details. Our algorithm is implemented in C++ using the Computa-
tional Geometry Algorithms Library (CGAL) [31] for manipulating geometric data
structures in 2D and 3D, and the Geospatial Data Abstraction Library (GDAL) [32]
for processing basic operations with satellite images. The cell decomposition in Sec-
tion 6 is computed using a constrained Delaunay triangulation whose constrained edges
correspond to the orthographic projection into the horizontal plane of the polygon edges
of both partitions. The number of parameters is large, ie 6, but this is the price to pay
for a full pipeline combining semantic and geometric considerations in an unsupervised
manner. In all our experiments except Fig. 7, we fixed the weights of the two energies to
β1 = 0.2, β2 = 10 and λ = 2.5, and the penalties to α = 0.05 and γ = 2. The number
of possible roof elevations is set to n = 50, except for US cities where skyscrapers
requires increasing its value to 100.

Robustness. Our output models provide a faithful LOD1 representation of buildings,
as illustrated in Figure 9. With the current satellite resolutions, a more detailed building
representation such as LOD2 is not realistic. Cases that challenge our algorithm are the
small buildings, typically houses in residential areas, and the textureless and reflective
objects which, generally speaking, constitute an important challenge in stereovision.
Our method can handle buildings with some parts are visible only in one image. How-
ever, large occluded parts can generally not be recovered.
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Fig. 9. Reconstruction of buildings. On simple buildings (top examples), left and right enriched
partitions (left columns) are relatively similar. For more complex buildings (bottom examples),
enriched partitions are more different: their fusion allows us to find a consensual 3D output model.
With freeform architectural structures (middle example), curved roofs are roughly approximated
by a step-like geometry. The back-projection into the input images of the roof edges from the
output 3D model shows a good accuracy of both building elevations and contours (see red lines
in right columns).

Scalability. Our algorithm has been tested on several cities presenting different urban
landscapes, as shown on Figures 3 and 10. Dense downtowns in antique cities such as
Alexandria, Egypt, are particularly challenging with narrow streets and small buildings
massively connected. Our algorithm sometimes fails separating blocks in between these
narrow streets as their width can be smaller than the size of our polygons. Business
districts of US cities as Denver or New York is the opposite landscape: buildings are
large, tall and fairly separated from each other. Our algorithm typically performs better
on such areas. In terms of classification, buildings are globally well detected. One of
the main reasons is because we do not rely on a radiometric description of buildings.
At the scale of big cities, the radiometric variability of buildings is too high to draw
likelihoods. Buildings can be missed when there are not enough elevation estimates.
This situation is relatively marginal in practice: a visual comparison between our output
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New York City, US

Alexandria, Egypt

Seoul, South Korea

Fig. 10. Reconstruction of cities. Our algorithm performs on different types of urban landscapes,
including dense downtown (top left), antique city (bottom left), and US downtown (bottom right).
Each model was obtained from one stereo pair of satellite images.

3D model of Denver and the building footprints of a cadastral map give us less than 5%
of missed buildings and 14% of invalid buildings, ie buildings with at least 20% of their
footprints missed or over-detected.

Performance. Timings and complexity of output 3D models are given for different
cities in Table 1. Input satellite images have typically around 30Mpixels. Each of the
three steps of our method takes a few minutes from a typical stereo pair of satellite
images. For very dense cities, fusion is the most time-consuming step as the high den-
sity of buildings generates complex cell decompositions. For cities with more space in
between the buildings such as New York or Denver, fusion is quite fast. Running times
for joint classification and elevation recovery, and polygonal partitioning do not depend
on the urban landscape, but on the input image size. Overall, the use of compact and ef-
ficient geometric data structures allow us to have very competitive timings with respect
to airborne-based methods.
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New Yory City, US Denvers, US Seoul, South Korea Alexandria, Egypt
Polygonal partitioning 0.5 min 1.0 min 0.8 min 0.5 min
Joint classification 2.8 min 4.7 min 3.4 min 2.5 min
Fusion 1.5 min 2.8 min 13.7 min 29.2 min
Total time 4.8 min 8.5 min 17.9 min 32.2 min
Output complexity 0.23M 0.35M 0.89M 1.35M

Table 1. Running times and output complexity. The output complexity refers to the number of
triangular facets in the output 3D model. Note that the fusion step has been optimized sequentially
on each building cluster.

Comparisons. While there is no automatic algorithm producing compact and semantic-
aware city models from satellite images, we compared our output models to traditional
Digital Surface Models generated from stereo matching, following by structure recov-
ery algorithms. As shown in Figure 11, our output model better preserves the building
structure while being semantic-aware and compact. We also measure in Figure 12 the
geometric accuracy of our method, and compares it with accuracy of an airborne Lidar
based algorithm. Although our output is less accurate, the gap is relatively low given
the contrast of data accuracy between airborne Lidar and satellite imagery.
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Fig. 11. Comparisons with Digital Surface Models. Traditional DSM derived from stereo match-
ing [14] at the pixel scale gives dense and structure-free 3D models. By postprocessing a DSM
with Voronoi clustering [27] or with structure-aware mesh simplification [33], we obtain more
compact meshes, but the building structure cannot be not restored. Our output model is both
compact and structure-aware (see the low number of principal directions in the distribution of
output normals).

Limitations. Our algorithm has several limitations. First, our output 3D models only
contain three semantic labels (ground, roof and facade). The design of our algorithm
is, however, flexible enough to account for new urban classes in future works. Second,
the limited quality of satellite images makes difficult the reconstruction of small build-
ings, typically houses in residential areas. Third, our system is robust to occlusions of
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Fig. 12. Geometric accuracy. Airborne Lidar scans constitute precise measurements that can be
used as Ground Truth to evaluate the geometric accuracy of our outputs (see the distribution of
errors on the horizontal histogram). While a state-of-the-art airborne Lidar method [3] produces
more accurate results with a lower mean error to Lidar points (0.9m vs 1.7m), the gap is relatively
low given the difference of quality between the two types of inputs.

facades, ground and piece of roofs, but cannot handle severe roof occlusions where a
roof is only visible in one image. Our LOD1 representation is also less accurate with
freeform architectural roofs as domes or peaky structures. In such cases, roofs are ap-
proximated by a step-like geometry whose accuracy depends on the amount of elevation
estimates.

8 Conclusion

We proposed a full pipeline for producing compact and semantic-aware city models
from satellite images. Big cities such as Denver are reconstructed in a few minutes. Our
method relies on two key ingredients. First, we reason at the scale of atomic polygons to
capture geometry of urban structures while insuring a fast and scalable process. Second,
semantics and 3D geometry are retrieved simultaneously to be robust to low resolution
and occlusion problems of satellite images. Whereas the quality of our output models
is not as accurate as airborne Lidar solutions, our solution outclasses traditional DSM
representations, and offers new perspectives in city modeling.

As future work we wish to include more semantic classes into the pipeline, in par-
ticular roads and high vegetation. We also would like to investigate the use of geometric
regularities at the scale of a district or an entire city as a way to consolidate input data
and reinforce the structure-awareness of the models of buildings.
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