Arithmetic completely regular codes

Abstract : In this paper, we explore completely regular codes in the Hamming graphs and related graphs. Experimental evidence suggests that many completely regular codes have the property that the eigenvalues of the code are in arithmetic progression. In order to better understand these "arithmetic completely regular codes", we focus on cartesian products of completely regular codes and products of their corresponding coset graphs in the additive case. Employing earlier results, we are then able to prove a theorem which nearly classifies these codes in the case where the graph admits a completely regular partition into such codes (e.g, the cosets of some additive completely regular code). Connections to the theory of distance-regular graphs are explored and several open questions are posed.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2016, Vol. 17 no. 3 (3), pp.59-76
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01352844
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 17 août 2016 - 11:39:06
Dernière modification le : vendredi 3 novembre 2017 - 22:24:07
Document(s) archivé(s) le : vendredi 18 novembre 2016 - 10:10:35

Fichier

2534-9867-1-PB.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01352844, version 1

Collections

Citation

Jacobus Koolen, Woo Sun Lee, William Martin, Hajime Tanaka. Arithmetic completely regular codes. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2016, Vol. 17 no. 3 (3), pp.59-76. 〈hal-01352844〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

195