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1 L.R.I., Université Paris-Sud, France.
2 Mathematical Institute, University of Toulouse III (Paul Sabatier), France.

received 2nd Feb. 2015, revised 14th July 2016, accepted 26th July 2016.

A subgraph of a vertex-colored graph is said to be tropical whenever it contains each color of the graph. In this work
we study the problem of finding a minimal connected tropical subgraph. We first show that this problem is NP-Hard
for trees, interval graphs and split graphs, but polynomial when the number of colors is logarithmic in terms of the
order of the graph (i.e. FPT). We then provide upper bounds for the order of the minimal connected tropical subgraph
under various conditions. We finally study the problem of finding a connected tropical subgraph in a randomly
vertex-colored random graph.

Keywords: vertex-colored graph, connected subgraph, tropical subgraph, colorful subgraph, vertex-colored random
graph.

1 Introduction
In this work, we deal with tropical substructures in vertex-colored graphs, first introduced in [AMK+].
Vertex-colored graphs are useful in various situations. For instance, the Web graph may be considered as
a vertex-colored graph where the color of a vertex represents the content of the corresponding page (red
for mathematics, yellow for physics, etc.) [BHKN13]. Applications can also be found in bioinformatics
(Multiple Sequence Alignment Pipeline or for multiple protein-protein Interaction networks) [CPM10].
Given a vertex-colored graph, a tropical subgraph is defined to be a subgraph where each color of the
initial graph appears at least once. Potentially, many graph invariants, such as the domination number
and the vertex cover number, can be studied in their tropical version. This notion is close to the colorful
concept used for paths in vertex-colored graphs [ALN11, Li01, Lin07] (with a colorful path being a
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tropical subgraph that is a path, and has no repeat color), though works on colored paths usually focus on
finding colorings that fulfill specific criteria, one being admitting colorful path, while our work consider
the coloring as an inherent property of the graph. It is also related to the concepts of color patterns used
in bio-informatics [FFHV11, ZSLS11], which share our approach for the coloring of the graph. Here,
we study minimum connected tropical subgraphs in vertex-colored graphs, focusing especially on the
case where the number of colors used is large. The case where the number of colors is small is even
more interesting in view of the aforementioned applications. Some related work can also be found in
[BHKN13, BHK+12, PA, ZSLS11], where the authors are looking for the minimum number of edges
to delete in a graph such that all remaining connected components are colorful (i.e., do not contain two
vertices of the same color). Some ongoing work on dominating tropical sets, tropical paths and tropical
homomorphisms can be found in [AMK+, FHH+].

Throughout the paper, we let G = (V,E) denote a simple undirected graph. Given a set of colors
C = {1, . . . , c}, Gc denotes a vertex-colored graph whose vertices are each colored (not necessarily
properly) by one of the colors in C, and each color of C colors at least one vertex. For any subgraph H of
Gc, we denote by c(H) the set of colors of the vertices of H . A graph Gc is said to be properly colored
when no adjacent vertices have the same color. The chromatic number of an uncolored graph G, denoted
χ(G), is the smallest number of colors c such that there exists a graph Gc that is properly colored. A
connected subgraph H of Gc is said to be tropical if c(H) = C. The connected tropical subgraph number
tc(Gc) is the order of a smallest connected tropical subgraph of Gc. A connected rainbow subgraph of
Gc is a connected subgraph in which each color is present at most once. A connected colorful subgraph
of Gc is a connected rainbow subgraph which is tropical. The neighborhood N(u) is the set containing
all vertices adjacent to vertex u in Gc. The degree d(u) is the number of vertices in N(u). The closed
neighborhood N [u] is N(u)∪ {u}. We let δ(Gc) denote the minimum degree of Gc. When no confusion
arises, we write tc and δ instead of tc(Gc) and δ(Gc). A dominating set S of a graph G = (V,E) is a
subset of V such that every vertex of V is either in S, or adjacent to a vertex in S. We denote by γ(G) the
minimum size of a dominating set of G. We call blocks of a graph its maximal 2-connected subgraphs,
and say that a block is a leaf block when it contains exactly one cut-vertex. This paper is a study of the
following problem:

MINIMUM CONNECTED TROPICAL SUBGRAPH PROBLEM (MCTS)
Input: A connected vertex-colored graph Gc, and an integer k.
Question: Is there a connected tropical subgraph of order k in Gc?

It is split into three parts. In Section 2 we prove that MCTS is NP-complete for general graphs, trees,
interval and split graphs. We also give a dynamic programming FPT (Fixed Parameter Tractable) algo-
rithm parametrized in the number of colors for general graphs. In Section 3 we give upper bounds for tc
related to various parameters (minimum degree, number of edges). In Section 4, we study how tc behaves
on random graphs.

2 NP-Hardness and FPT algorithms
Theorem 2.1. MCTS is NP-Complete on trees.

Proof: MCTS is in NP since testing whether a given set of vertices corresponds to a tropical connected
subgraph can be done in polynomial time. The reduction is obtained from DOMINATING SET on general
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graphs. Consider an instance of DOMINATING SET on a graph G with vertices v1, v2, . . . , vn. We define
a colored tree T c with n+2 colors c1, c2, . . . , cn+2 in the following way. Let r be a vertex of color cn+2,
and for each i ∈ {1, . . . , n}:

• Let si be a vertex of color cn+1 adjacent to r.
• Let s′i be a vertex of color ci adjacent to si.
• For each vertex vj ∈ N(vi), there is a vertex of color cj adjacent to s′i.

r

s′1

NG(v1)

s1

s′2

NG(v2)

s2

s′3

NG(v3)

s3

s′4

NG(v4)

s4

s′5

NG(v5)

s5

Given a dominating set S of G, along with a function f associating to each vertex v ∈ G \ S an
element of S that dominates it, we define a connected tropical subgraphH of T c, containing the following
vertices :

1. The vertex r.
2. The vertices si and s′i of T c for every vi ∈ S.
3. For each vertex vi ∈ G \ S, we take the vertex of color ci which is adjacent to the vertex s′j such

that vj = f(vi).

By construction, H is connected and tropical.
Reciprocally, given a minimal connected tropical subgraph H of T c, we define the following set of

vertices and f function: vi belongs to S if and only if s′i ∈ H , and for each vj /∈ S, f(vj) = vi where i
is such that s′i is the neighbor of the only vertex of color cj in H . Hence, there exists a bijection between
a pair (S, f) associated with a dominant S of G and a minimal connected tropical subgraph H of T c.
Moreover, we have the following:

|H| = 1 + 2|S|+ n− |S| = 1 + |S|+ n.

Thus, by considering the minimum cardinality of S, we obtain,

tc(T c) = 1 + γ(G) + n.

As a result, a minimum connected tropical subgraph of T c corresponds to a minimum dominating set
of G. Clearly, the reduction from the dominating set problem is in polynomial time, and the theorem is
proved.

By the reduction, it follows that MCTS is NP-complete even when restricted to trees of height 3.
We recall that a graph G is called an interval graph if one can assign to each v in V an interval Iv ⊂ R

such that Iu ∩ Iv is nonempty if and only if uv ∈ E.
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Theorem 2.2. MCTS is NP-Hard for interval graphs, even when restricted to connected colorful sub-
graphs.

Proof: As noted in the proof of Theorem 2.1, MCTS is in NP. We will show it is NP-hard by a reduction
from the VERTEX COVER problem (VC). Consider an instance of VC on a graph G with n vertices and
m edges and an integer k. To this instance we will associate a set of colored intervals. We introduce first
the colors as follows. The colors are

• for each edge e = (u, v) ∈ E, two colors ceu and cev ,

• for each vertex u ∈ V , a color cu, and

• colors cleft and cright.

The set of intervals will be partitioned into subsets, called gadgets, and those gadgets will be ordered.
The intervals which right extremity is the rightmost of gadget j will intersect with the intervals which left
extremity is the leftmost of gadget j + 1. Apart from this rule, intervals will only intersect with other
intervals from the same gadget. The very first gadget is going to contain only one interval of color cleft,
and the very last gadget is going to contain only one interval of color cright. In between, there will be a
number of gadgets from the following three types, whose respective order do not matter for the proof.

Type 1: For each vertex v in V , the gadget gv is defined as follows. Let e1, e2, e3, . . . , ed(v) be the
edges adjacent to v. There are d(v) intervals of color ce1v , ce2v , . . . , c

ed(v)
v , and one interval of color cv .

The interval of color ceiv intersects only the interval of color cei−1
v , the interval of color cei+1

v (when those
intervals exist), and the interval of color cv . The intervals cv and ce1v (respectively c

ed(v)
v ) have the same

leftmost (respectively rightmost) extremity. For instance, if v is a vertex of degree four, the intervals are
defined as follows.

cv

ce1v
ce2v

ce3v
ce4v

An interval will intersect with some intervals from the previous (respectively next) gadget if and only if it
crosses the left (respectively right) dotted line.

Type 2: For each edge e = uv in E, gadget g′e is defined as follows. There are two intervals of color ceu
and cev , which share both their left and their right boundaries.

ceu

cev

Type 3: The last type of gadget g′′ uses n intervals with the same boundaries and colors cv1 , cv2 , . . . , cvn ,
as follows.
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cv0
cv1
cv2
cv3
cv4

cvn

So, there are n gadgets of type 1 (one for each vertex of G), m gadgets of type 2 (one for each edge of
G), and we include n− k gadgets of type 3. Figure 1 illustrates the reduction. Let us consider the interval
graph implied by the obtained set of intervals. By coloring each vertex from this interval graph with the
color of the corresponding interval, we obtain a vertex-colored interval graph Ic.

u
v

w

cleft

cu

ce1u

cv

ce1v
ce2v

cw

ce2w

ce1u

ce1v

ce2v

ce2w

cu

cv

cw
cright

Type 1 Type 2 Type 3

Fig. 1: A graph, and the set of intervals obtained by applying the reduction used in the proof of Theorem 2.2 when
k = 2.

Let S be a vertex cover of G of size k. We will show a connected colorful subgraph of Ic can be build
from S. Consider the set W of vertices from Ic associated to the following intervals:

• The two intervals of color cleft and cright,

• for each vertex u ∈ S, we take the intervals of color cu from the type 1 gadget corresponding to u,
along with all the intervals of color ceiu from the type 2 gadgets,

• for each vertex vi among {v1, v2, . . . , vn−k} = V \S, we take all the intervals of color cejvi from the
type 1 gadget corresponding to vi, along with the vertex of color cvi from the i-th gadget of type 3.

By construction, the obtained set of intervals will include exactly one interval of each color. Let us
show that the union of all the intervals in the set is connected. To do so, let us show that for every gadget,
we have intervals in W whose union is covering the whole gadget. This is the case directly for gadgets
of type 1. This is the case for a gadget of type 2 because there is always at least one endpoint of the
corresponding edge that belongs to S. This is also the case for gadgets of type 3 because there are exactly
n−k vertices in G\S. Therefore, the set of vertices in Ic associated to this set of intervals is a connected
colorful subgraph.

Let T be a set of intervals that correspond to a connected colorful subgraph of Ic. We will show how
T implies a vertex cover of G of size k. We consider the set S of vertices of G such that a vertex u is in S
if and only if there exists an edge e of G such that T contains the interval of color ceu from gadget g′(e).
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By construction of Ic, there is only one vertex of Ic with color cleft, and one with color cright. Therefore,
any connected subgraph of Ic must contain those two vertices. As the subgraph needs to be connected, it
must also contain a path linking those two vertices. Therefore, for every gadget, the union of the intervals
of T must include the whole gadget.

Let us consider the gadget g′(e) for some edge e of G with e = (u, v). The set T must contain either
the interval of color ceu or the interval of color cev . Therefore, at least one of the endpoints of e must be
included in S. The set S is hence a vertex cover.

Consider now the gadgets of type 3. The set T must contain an interval from each of those n − k
gadgets, and each of those intervals must be of a different color. Hence there are n−k vertices u1, u2,. . . ,
un−k such that T contains an interval of color cui in a gadget of type 3.

Finally, consider the gadget g(u) for some vertex u ofG adjacent to edges e1, e2, e3, . . . , ed(v). The set
T must contain either the interval of color cu or all the intervals of color ce1v , ce2v , . . . , c

ed(v)
v . If S contains

the vertex v, it means there exists some i such that T contains an interval of color ceiv from a gadget of
type 2. As T contains exactly one interval of each color, it means that T cannot contain the interval of
color ceiv in g(u). As intervals of T must cover the whole of the gadget g(u), T contains the interval of
color cu. This means that T does not contain another interval of color cu from another gadget. As T
already contains intervals of color cu1

, cu2
, . . . , cun−k , this means S can contain at most k vertices.

A graph G is called a split graph if V can be partitioned into sets V0 and V1 such that the subgraphs
induced by V0, and V1, are a clique and an independent set, respectively.

Theorem 2.3. MCTS is NP-Hard for split graphs.

Proof: We show that a polynomial algorithm for MCTS on split graphs can be used to solve VERTEX
COVER on all graphs. To a given graph G with n vertices and m edges, we associate the vertex-colored
split graph ScG defined as follows:

• For each vertex v) of G there is in ScG a vertex ScG(v). All vertices ScG(v) are pairwise adjacent,
and are colored with color c0.

• For each edge uv of G there is in ScG a vertex ScG(uv) adjacent to ScG(u) and ScG(v). Each vertex
ScG(uv) is colored with a unique color.

ScG is a split graph colored with m+1 colors, and we can partition the set of vertices of ScG into sets V0
and V1 where V0 is the set of vertices of color c0 (which induce a clique) and V1 is the set of the remaining
vertices (which induce an independent set). We show that a bijection exists between the set of minimum
connected tropical subgraphs of ScG and the set of optimal solutions to VERTEX COVER in G.

Let X be the vertices of a minimum connected tropical subgraph in ScG. As V1 ⊆ X , let us write
V2 = X\V1. Observe that V2 defines a vertex cover in G. Indeed, X is connected in ScG and so V2
contains at least one of ScG(u) or ScG(v) for every ScG(uv). On the other hand, every vertex cover of G
of cardinality k defines in ScG a tropical set of cardinality k + m, which is necessarily connected as V0
is a clique. Consequently, computing the minimum connected tropical subgraph in ScG determines the
minimum Vertex Cover of G.

Theorem 2.4. MCTS can be solved in O(n2×m× 8c) time, where n and m are respectively the number
of vertices and edges of Gc.
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Proof: We show that we can compute for each vertex u ∈ Gc the function fu : P(C) → {1, . . . , n}
which associates to a set of color S the order of the smallest connected subgraph containing u and at least
one vertex of each color in S. The optimal value of MCTS is then the smallest value fv(C) reached for
any vertex v. The algorithm is the following :

• Step 1: For u ∈ V , initialize fu(S) := 1 when S = {c(u)} and fu(S) := n otherwise.

• Step 2: While there exists an edge e = uv in Gc and two sets of colors Su, Sv ∈ P(C) such that
fu(Su) + fv(Sv) < fu(Su ∪ Sv), update fu by setting fu(Su ∪ Sv) := fu(Su) + fv(Sv).

Let us prove that the algorithm above is correct. Let us first show, by induction on the number of
iterations, that at any iteration of Step 2, if fu(S) = k, then there exists a connected subgraph of Gc

of order k that contains at least one vertex of each color in S. After Step 1, {u} is a suitable subgraph
if S = {c(u)}, and Gc itself is suitable otherwise. Now suppose that the property is true before some
iteration of Step two on edge uv of the algorithm. Let Hu (respectively, Hv), be the subgraph of order
fu(Su) (respectively, fv(Sv)) containing u, (respectively, v), and at least one vertex of each color in Su
(respectively, Sv). By taking the union of Hu and Hv , we obtain a subgraph of order at most fu(Su) +
fv(Sv) containing every color in Su ∪ Sv . This proves the claim. Hence, for every vertex u in Gc,
tc(Gc) ≤ fu(C).

We will show that the computed values of fu correspond to the definition we gave of the function. Let
us suppose, for contradiction, that at the end of the algorithm there is a vertex u and a connected subgraph
H of order k containing u such that k < fu(c(H)). Consider a spanning tree T of H rooted at u. For a
vertex v in T , we denote by T (v) the subtree of T rooted at v. Now, we claim that for every vertex v in
T , fv(c(T (v))) 6 |T (v)|. This is obvious if v is a leaf, as in this case T (v) = {v}, and fv({c(v)}) = 1
by Step 1 of the algorithm. Thus, we may suppose that the claim is true for all children v1, . . . , vr of a
vertex v, and show that it holds for v. Since we can not apply Step 2 of the algorithm on the edge vv1,
with sets c(v) and c(T (v1)), it means that fv(c(v) ∪ c(T (v1))) 6 fv(c(v)) + fv1(c(T (v1))). We know
that c(v) ∪ c(T (v1)) = c(v ∪ T (v1)), fv(c(v)) = 1 (by Step 1 of the algorithm) and fv1(c(T (v1))) 6
|T (v1)| (by induction), therefore fv(c(v ∪ T (v1))) 6 1 + |T (v1)|. By the same reasoning, since we
cannot apply Step 2 of the algorithm on vv2, with sets c({v} ∪ T (v1)) and c(T (v2)), it means that
fv(c(v ∪ T (v1) ∪ T (v2))) 6 1 + |T (v1)| + |T (v2)|. By repeating this argument for each child of v, we
obtain that fv(c(T (v))) = fv(c(v ∪ T (v1) ∪ · · · ∪ T (vj))) 6 1 + |T (v1)| + · · · + |T (vj)| = |T (v)|.
Hence for every vertex v in T , fv(c(T (v))) 6 |T (v)|. Thus, fu(c(H)) = fu(c(T (u))) 6 |T (u)| = k, a
contradiction. This proves the correctness of the algorithm.

Let us prove next the complexity of the algorithm. Setting up the initial values of every fu(S) in Step
1 can be done in O(n × 2c). The identification of an edge uv and two sets Su, Sv , suitable to apply
Step 2 of the algorithm, takes at most m× 2c × 2c operations. Applying Step 2 will strictly decrease the
value of fu(Su ∪ Sv). There are only n functions on 2c values, and each function can decrease at most n
times on each value. Therefore, Step 2 is iterated at most n× 2c × n times. So the complexity is at most
O(n2 ×m× 8c), as required.

3 Sufficient Conditions
In this section, we give sufficient conditions for a vertex-colored graph to have connected colorful sub-
graphs of small order. Our first result relates tc(Gc) to χ(G).
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Proposition 3.1. If Gc is a properly colored graph on χ(G) colors, then it contains a connected colorful
subgraph.

Proof: Let V1 ⊆ V be a color class ofGc. There must exist a vertex v ∈ V1 whose neighborhood contains
all the other colors, as otherwise all vertices of V1 could be recolored with a color that does not appear in
their neighborhood, yielding a proper coloring of G with χ(G)− 1 colors. But now, Gc[N [v]] contains a
connected colorful subgraph.

Before we prove the next result, we need the following lemma.

Lemma 3.2. Let G be a connected graph with n vertices and m edges. If G contains (at least) i cut
vertices then

m ≤
(
n− i
2

)
+ i

Proof: We prove the result by induction on i, knowing that it holds when i = 0. We therefore assume that
i > 0. Let v be a non-cut vertex from a leaf block of G. If v has degree 1 then G\v has at least i− 1 cut
vertices, and by induction

m ≤ |E(G\v)|+ 1 ≤
(
(n− 1)− (i− 1)

2

)
+ (i− 1) + 1 =

(
n− i
2

)
+ i

Otherwise G\v has a set C of at least i cut vertices and v is adjacent with at most one of them. Note,
however, that v cannot be adjacent to all of V (G)\C, as every cut vertex splits V (G)\C into (at least)
two non-empty connected components. Therefore, v has degree at most (n− i− 2) + 1 = n− i− 1 and
by induction

m ≤ |E(G\v)|+ n− i− 1 ≤
(
n− i− 1

2

)
+ (n− i− 1) + i =

(
n− i
2

)
+ i

Theorem 3.3. Let Gc be a connected vertex-colored graph with n vertices and m edges. For every
non-negative integer k ≤ n− 4, if m ≥

(
n−k−2

2

)
+ n− c+ 2, then tc(Gc) ≤ c+ k.

Proof: By induction on n. If n ≤ c + k, then Gc itself is a connected tropical subgraph of order at most
c+k. We may therefore assume that n ≥ c+k+1. Let F ⊆ V be the set of vertices whose colors appear
at least twice in the graph. Then |F | ≥ n− c+ 1 since at most c− 1 colors appear exactly once.

Let i = n− c+ 1. We have assumed that k ≤ n− c− 1, which implies that

m ≥
(
n− k − 2

2

)
+ n− c+ 2 ≥

(
n− i
2

)
+ i+ 1

Using Lemma 3.2, we know that there is a vertex v ∈ F such that v is not a cut vertex.
We assume first that d(v) ≥ n − k − 1. Let N [v] be the closed neighborhood of v. Then G \N [v] is

of order at most k. Let p be the number of colors in N [v]. We will build a connected tropical subgraph of
order at most k + c. First we take v and p − 1 of its neighbors colored with the p − 1 remaining colors.
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For each missing color z, we add a connected component H of G \N [v] which contains z and one vertex
from the neighborhood of v to keep H connected to v. In the worst case, we add every vertex in the graph
G \N [v] and c− p vertices in the neighborhood of v, which yields a connected tropical subgraph of order
at most c+ k.

Now, assume that d(v) ≤ n − k − 2. Let G′ = G \ {v} on n′ vertices and m′ edges. Then G′ is
connected (by definition of v), n′ = n− 1, G′ is colored with c colors (as v ∈ F ) and

m′ ≥ m− (n− k − 2)

≥
(
n− k − 2

2

)
+ n− c+ 2− (n− k − 2)

=

(
n− k − 2

2

)
+ n− c+ 1− (n− k − 3)

=

(
n− k − 3

2

)
+ n− c+ 1

=

(
n′ − k − 2

2

)
+ n′ − c+ 2.

By induction, there exist a connected tropical subgraph of order c+ k in G′. It is also a tropical subgraph
of order c+ k in G. This completes the argument and the proof.

Note that the above proof leads to a polynomial time algorithm that finds a connected tropical subgraph
of order c+k under the hypothesis of the theorem. We now show that the bound given in the above theorem
is tight. Fix two positive integers n and k. Consider now a rainbow complete graph Kc

n−k−2 on n−k−2
vertices. Let x1 be a vertex of color 1 in Kc

n−k−2. Add a path x1v1v2 . . . vk+2, vi /∈ V (Kc
n−k−2). Color

vk+2 with color 0 and every other vi with color 1. The resulting graph has exactly
(
n−k−2

2

)
+ n− c+ 1

edges, but has no connected tropical subgraph of order less than c+ k + 1.

Theorem 3.4. Let Gc be a vertex-colored graph of minimum degree δ. If δ ≥ n
2 and c ≥ n

2 , then Gc has
a connected colorful subgraph.

Proof: Let S be the vertices of a largest connected rainbow subgraph of Gc. Assume |S| < c, otherwise
the proof is done. As |S| < c, there exists a vertex v ∈ Gc \ S which color does not appear in S. Also
v has no neighbor in S, as S is maximal. Now, we distinguish between two cases depending upon the
connectivity of S.

Suppose first S is 2-connected. For each vertex u ∈ S, |N(u) ∩ N(v)| ≥ 2, since u and v are not
adjacent and δ ≥ n

2 . If a vertex w ∈ N(u) ∩N(v) is colored with a different color than u, then S can be
extended to another connected rainbow subgraph, say S′, by removing from S at most one vertex of the
same color as w and adding to S vertices w and v. As S is 2-connected and only one vertex is removed
from S, S′ is connected. Furthermore, by definition, S′ is rainbow, and |S′| > |S|, a contradiction. Thus,
every vertex in N(u) ∩N(v) has the same color as the vertex u. Since this is true for every u in S, N(v)
contains every color in S and there is a connected rainbow subgraph of Gc of order |S| + 1 contained in
N [v], a contradiction to the maximality property of S.

Suppose next S is not 2-connected. Let U be a subset of S containing exactly one non-cut vertex from
each leaf block of S. We define T = {w|w ∈ V \ S, such that w is neighbor of a vertex in S}. Clearly,
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every color which appears in T also appears in S. This implies that |V \ T | ≥ c ≥ n/2 and, in turn, that
|T | ≤ n/2.

We now consider e(U ∪ {v}, T ), i.e., the number of edges between U ∪ {v} and T . Note that a vertex
u ∈ U contained in a leaf block B ⊆ S has at most |B| − 1 neighbors in S. It follows,

e(U ∪ {v}, T ) ≥

e(U,T )≥︷ ︸︸ ︷(
|U |n

2
− |S|+ 1

)
+

e(v,T )≥︷ ︸︸ ︷(n
2
−
(
n− |S| − |T |

)
+ 1
)

=(|U |+ 1)
n

2
− n+ |T |+ 2

=(|U | − 1)
n

2
+ |T |+ 2

≥(|U | − 1)|T |+ |T |+ 2

>|U ||T |.

Thus, there is a vertex u ∈ T adjacent to at least |U |+ 1 vertices in U ∪ {v}, i.e., to all of them. As u is
connected to a non cut-vertex in every leaf block of S, S ∪ {u} is 2-connected. Let u′ be the vertex of S
colored with the same color as u. Then (S \ {u′}) ∪ {u} ∪ {v} is a connected rainbow subgraph of order
|S|+ 1, a contradiction to the maximality property of S.

The proof of Theorem 3.4 immediately yields the following.

Corollary 3.5. Let Gc be a vertex-colored graph of order n and of minimum degree δ. If δ ≥ n
2 and

c ≥ n
2 , then a connected colorful subgraph can be found in polynomial time.

We let δr(Gc) denote the minimum rainbow degree of Gc, i.e., the smallest number of colors a vertex
in Gc has in its neighborhood.

Theorem 3.6. The following holds:

1. For every ε, ε′ ∈ [0, 1), there exists a vertex-colored graph Gc such that δ(Gc) ≥ εn, δr(Gc) ≥ ε′c
and Gc has no connected colorful subgraph.

2. For every positive integer p, there exists a vertex-colored graph Gc such that δ(Gc) ≥ n − c + p
and Gc has no connected colorful subgraph.

3. For every positive integer p and ε ∈ [0, 1), there exists a vertex-colored graphGc such that δ(Gc) ≥
εn, Gc is p-connected and has no connected colorful subgraph.

Proof: Let i, j, k be three positive integers, k ≥ 2. We first define an uncolored graph G(i, j, k) that will
be used to prove all the three parts of the theorem. The graph G(i, j, k) is defined as follows:

• G(i, j, k) is composed of k vertex-disjoint cliques H1, H2, . . . ,Hk, each of order i, and k vertex-
disjoint cliques D1, D2, . . . , Dk, each of order j.

• For all l 6= l′, every vertex of Hl is adjacent to every vertex of Hl′ and to every vertex of Dl′ .

G(i, j, k) has the following properties :

• n = |V (G(i, j, k))| = k(i+ j).
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• δ = (k − 1)i+ j − 1.

• G(i, j, k) is i(k − 1)-connected.

By varying i, j, k and the coloring we can prove the three parts of the theorem as follows.

1. We consider G(i, j, k) with each vertex in Hl colored with color 1, for l = 1, . . . , k. Every Dl

contains one vertex of colors 2, 3, . . . j and one vertex of color j + l. The graph G(i, j, k) colored
this way is denoted by Gc. It satisfies the following properties :

• c = j + k.

• δr(Gc) = j.

Let ε, ε′ ∈ [0, 1). Let k > 1
1−ε and j > ε′k

1−ε′ . Then δr(Gc) = j = ε′j+(1− ε′)j > ε′(j+k) = ε′c

and δ
n →

k−1
k > ε when i → ∞. For i sufficiently large, we have a graph with δ > εn, δr > ε′c.

It has no connected colorful subgraph. Indeed, such a tropical subgraph would have to contain a
vertex from each Dl. Thus, it would need to contain vertices in at least two Hl. This contradicts the
fact that each color is present only once.

2. We consider G(i, j, k) with each vertex in Hl colored with color 1, for l = 1, . . . , k. Now, color all
the jk vertices of the Dl with colors {2, 3, . . . , jk + 1} so that each color appears on exactly one
vertex. Let Gc denote the resulting colored graph. Then Gc is colored with c = jk + 1 colors.

Given p ∈ N, choose j such that j ≥ i+p. Then δ(Gc) = (k−1)i+j−1 ≥ ki+p−1 = n−c+p.
Graph Gc has no connected colorful subgraph. Indeed, such a tropical subgraph would need to
contain every vertex in each Dl. Thus, it would need to contain vertices in at least two Hl to be
connected. This contradicts the fact that each color is present only once.

3. We consider G(i, j, k) colored the same way as in Case 2. Let Gc be the obtained graph. Given
p ∈ N, and ε ∈ [0, 1), we choose any j ∈ N, and k such that k > 1

1−ε . If i ≥ p
k−1 , then Gc is

p-connected. Also δ
n →

k−1
k > ε when i → ∞. For i sufficiently large, Gc is p-connected with

δ(Gc) ≥ εn. By the argument in Case 2, Gc has no connected colorful subgraphs.

4 Random graphs
In this section we are interested in the problem of finding particular tropical subgraphs in a random graph
such as cliques and connected components. Recall that the random graph G(n, p) is the graph with vertex
set V = {1, . . . , n} in which each of the possible

(
n
2

)
edges appears with probability p, independently. In

other words, if G is a graph with vertex set V and has m edges, then

P[G(n, p) = G] = pm(1− p)(
n
2)−m.

For more background on random graphs, we refer the reader to [Bol01] and [JLR00].
In our model, we will study a randomly vertex-colored random graph. Given a positive integer c, let

G(n, p, c) be the graph obtained from G(n, p) by coloring each vertex with one of the colors 1, 2, . . . , c
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uniformly and independently at random. The vertex coloring is independent of the existence of edges.
Clearly, for any given vertex-colored graph Gc on V with m edges, we have

P[G(n, p) = Gc] =
pm(1− p)(

n
2)−m

cn
.

We will say that G(n, p, c) has a property Q asymptotically almost surely (abbreviated a.a.s.) if the
probability it satisfies Q tends to 1 as n→∞.

We begin by recalling some notation and results that will be needed. Let X be a random variable. We
denote by E(X) and Var(X) the expectation and the variance of X , respectively. For r ≥ 0, (n)r =
n(n − 1) . . . (n − r + 1) denotes the falling factorial. E(X)r is called the r-th factorial moment of
X . In particular, E(X)0 = 1 and E(X)1 = E(X). Let X1, X2, . . . , Xn and X be integer-valued
random variables. We say that Xn converges in distribution to X , as n → ∞, and write Xn

d−→ X , if
P[Xn = k]→ P[X = k] for every integer k.

The following useful bound is known as the Chebyshev’s inequality which states that, for t > 0

P [|X − E(X)| ≥ t] ≤ Var(X)

t2
.

In particular, if E(X) > 0 and by setting t = E(X), we have

P [X = 0] ≤ Var(X)

E2(X)
.

The standard second moment method is based on Chebyshev’s inequality. It consists in showing that,
for a given sequence of non-negative, integer-valued random variables (Xn), Var(Xn)/E2(Xn) tends to
0 as n→∞, and thus concluding that Xn > 0 a.a.s.

Markov’s inequality states that, if X > 0 and t > 0, then

P [X ≥ t] ≤ E(X)

t
.

In particular, if X1, X2, . . . , Xn are non-negative, integer-valued random variables, then E(Xn) → 0 as
n n→∞ implies P[Xn = 0]→ 1.

The following result is a variant of the so called method of moments. LetX be a random variable with a
distribution that is determined by its moments (see [JLR00], p. 140, for a definition). If X1, X2, . . . , Xn

are random variables with finite moments (E(|X|r) <∞, r ≥ 1) such that E(Xn)r → E(X)r as n→∞
for every integer r ≥ 1, then Xn

d−→ X . An example of distribution which is determined by its moments
is the Poisson distribution.

We will use the following asymptotic notation. Let {an} and {bn} be two sequences of real numbers.
For simplicity we assume that an, bn > 0.

• an = O(bn) if there exist constants n0 ∈ N and C > 0 such that an ≤ Cbn for n ≥ n0.

• an = o(bn) and an � bn mean an/bn → 0 as n→∞.

• an ∼ bn if an/bn → 1 as n→∞.
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4.1 Threshold for small tropical subgraphs
Let G be a fixed graph with vG vertices and eG edges. We denote by a = |Aut(G)| the cardinality of
the automorphism group of G. One of the first problems studied by Erdős and Rényi in [ER60] was
that of the existence of at least one copy of G in G(n, p). They determined the threshold function for
that property in the special case in which G is a balanced graph (see below for the definition). Later in
[Bol81] Bollobás extended this result to any arbitrary fixed graph. Formally, the threshold function for
the property of containing a copy of G is n−1/ρ(G) where ρ(G) is the ratio of the number of edges to the
number of vertices in the densest subgraph of G, that is,

ρ(G) = max

{
eH
vH

: H ⊆ G , vH > 0

}
,

where vH and eH stand for the number of vertices and edges of H , respectively.
The next theorem follows from the result of Bollobás and shows that the above threshold also holds for

the property of the existence of a tropical copy of a given graph in G(n, p, c). In what follows, we will
denote by Xn = Xn(G) the number of tropical copies of G in G(n, p, c). That is,

Xn =
∑
G′

IG′ ,

where the sum is over all copies G′ of G, and

IG′ = 1 {G(n, p, c) ⊃ G′ and G′ is tropical } .

Theorem 4.1. Let G be a fixed graph with at least one edge, eG > 0. Let c = vG = |V (G)|. Then

lim
n→∞

P [G(n, p, c) ⊃ tropical copy of G] =

{
0 if p� n−1/ρ(G)

1 if p� n−1/ρ(G).

Proof: The theorem clearly holds if p � n−1/ρ(G). Now we assume that p � n−1/ρ(G). We need to
show that Var(Xn)/E2(Xn)→ 0 as n→∞. The second moment of Xn is given by

E(X2
n) =

∑
G′,G′′

E(IG′IG′′) = E1 + E2,

where
E1 =

∑
V (G′)∩V (G′′)=∅

E(IG′IG′′) and E2 =
∑

V (G′)∩V (G′′)6=∅

E(IG′IG′′).

As c is fixed, we have

E1 =

(
n

c

)(
n− c
c

)(
c!peG

acc
(n)c

)2

= (1 + o(1))E2(Xn).

So, to complete the proof it suffices to show that E2/E2(Xn) = o(1). Since P[G′, G′′ are tropical ] ≤
c!/cc, it follows that

E2 ≤
c!

cc

∑
V (G′)∩V (G′′)6=∅

P[G(n, p) ⊃ G′, G′′].
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Let Yn denote the number of copies of G in G(n, p). By splitting E(Y 2
n ) into two parts in the same way

as for E(X2
n), we obtain∑

V (G′)∩V (G′′)6=∅

P[G(n, p) ⊃ G′, G′′] = E(Y 2
n )− E2(Yn) + o(1)E2(Yn).

Since E(Xn) = c!/ccE(Yn), we get

E2

E2(Xn)
≤ ccVar(Yn)

c!E2(Yn)
+ o(1).

Thus, as c is fixed and Var(Yn)/E2(Yn) = o(1), it follows that E2/E2(Xn) = o(1), which completes the
proof.

In the next theorem we investigate the case in which pn1/ρ(G) → θ as n → ∞, where θ is a positive
constant. We are specially interested in a family of graphs called strictly balanced graphs defined as
follows. A graph G is balanced if ρ(G) = eG/vG, that is, if eH/vH ≤ eG/vG for every H ⊂ G. G is
strictly balanced if eH/vH < eG/vG whenever H ( G, that is to say that every proper subgraph of G is
strictly less dense than the graph itself. Trees, cycles and complete graphs are strictly balanced.

Theorem 4.2. Let G be a fixed strictly balanced graph with v vertices and e edges. Denote by a =
|Aut(G)| the number of elements of the automorphism group of G. Let θ be a positive constant and set
p = θ/nv/e. Let Xn denote the number of tropical copies of G in G(n, p, c) with c = v. Then

Xn
d−→ P(λ) with λ =

c!θe

acc
,

where P(λ) is the Poisson distribution with mean λ.

Proof: The proof uses the method of moments described above. The expectation ofXn is easily estimated
as follows.

E(Xn) ∼
c!θe

acc
= λ.

It is not hard to see that, for r ≥ 2, the r-th factorial moment of Xn is equal to the expected number of
ordered r-tuples (G1, . . . , Gr) of tropical copies of G in G(n, p, c), that is,

E(Xn)r =
∑

G1,...,Gr

P [IG1
= 1, . . . , IGr = 1] .

We split E(Xn)r into two parts
E(Xn)r = E′r + E′′r .

E′r is the expected number of ordered r-tuples of mutually vertex disjoint copies of G, while E′′r takes
into consideration the other cases. We have

E′r =

(
n

c

)(
n− c
c

)
. . .

(
n− (r − 1)c

c

)(
c!

cc

)r (
c!

a

)r
pre = (n)rc

(
c!

acc

)r
pre.
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Since c is fixed, it follows that
E′r ∼ λr = E (X)r ,

where X is a random variable with Poisson distribution P(λ).
To complete the proof, it remains to show that E′′r → 0 as n→∞. Clearly,

E′′r ≤
∑

G1,...,Gr

P [G(n, p) ⊃ G1, . . . , G(n, p) ⊃ Gr] .

It is shown in [JLR00], p. 67, that the right-hand side of the above inequality tends to 0 as n→∞, which
completes the proof.

4.2 Complete tropical subgraphs
One of the most interesting results in the study of random graphs was discovered by Matula [Mat76]
who proved that the clique number cl(G(n, p)) of G(n, p) is asymptotically almost surely concentrated
on two consecutive values. This result was also found independently by Bollobás and Erdős [BE76]. Let
0 < p < 1 be fixed and set b = 1/p. Let the function f(n) be defined by

f(n) = 2 logb n− 2 logb logb n+ 1 + 2 logb (e/2) .

Then, for any ε > 0, the clique number of G(n, p) satisfies

P
[⌊
f(n)− ε

⌋
≤ cl

(
G(n, p)

)
≤
⌊
f(n) + ε

⌋]
→ 1 as n→∞.

This leads us to the natural question of what is the maximum number of colors c = c(n) which a.a.s.
guarantees the existence of a tropical clique of order r in G(n, p, r), for every r ≤ c(n). The answer to
this question is given by the following theorem. In particular, it is shown that c(n) differs from f(n) by
an additive constant (not depending on n).

Theorem 4.3. Let 0 < p < 1 be fixed. Let c = c(n) be the function defined by

c(n) = 2 logb n− 2 logb logb n− 2 logb 2 + 1,

where b = 1/p. Then, for any ε > 0, the following assertions hold.

(i) If r > bc(n) + εc, then a.a.s. there is no complete tropical subgraph of order r in G(n, p, r).

(ii) If r ≤ bc(n)− εc, then a.a.s. G(n, p, r) contains a complete tropical subgraph of order r.

Proof: The proof is based on the first and second moment methods. Let Xr be the random variable
counting the number of tropical cliques of order r in G(n, p, r). The expectation of Xr is given by

E(Xr) =

(
n

r

)
p(
r
2) · r!

rr
=

(n)r
rr

pr(r−1)/2. (1)
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Using Stirling’s formula, we get

E(Xr) = (1 + o(1)) exp
[r
2
(2 log n+ r log p− log p− 2 log r)

]
= (1 + o(1)) exp

[
r log b

2

(
2 logb n− r − 2 logb r + 1

)]
,

where b = 1/p. We observe that E(Xr) changes rapidly from ω(1) to o(1) for values of r equivalent to
2 logb n. Indeed, let ε > 0 be fixed, and set

c(n) = 2 logb n− 2 logb logb n− 2 logb 2 + 1.

If r > bc(n) + εc, then, as r is an integer, we have r ≥ c(n) + ε. Using this lower bound, and replacing r
by (1− o(1))2 logb n in logb r of the above expression of E(Xr), we obtain

E(Xr) ≤ (1 + o(1)) exp

[
r log b

2
(−ε+ o(1))

]
= o(1).

Thus, by Markov’s inequality, assertion (i) is proved.
Assume now that r is sufficiently large (r →∞) and r ≤ bc(n)− εc. By a similar argument, we get

E(Xr) ≥ (1 + o(1)) exp

[
r log b

2
(ε+ o(1))

]
→∞ as n→∞. (2)

Thus, assertion (ii) will hold, if for every r ≤ bc(n) − εc, Var(Xr)/E2(Xr) → 0 as n → ∞. In what
follows, we assume that r = bc(n) − εc. The case r < bc(n) − εc can be done in the same way. First,
we need to estimate E(X2

r ). Let S1, S2 be two subsets of vertices each of order r and having i vertices in
common. Clearly,

P [S1 and S2 are tropical cliques] =

(
r

i

)
i!

ri

[
(r − i)!
rr−i

]2
p2(

r
2)−(

i
2)

=
r!(r − i)!
r2r−i

p2(
r
2)−(

i
2).

Thus,

E(X2
r ) =

(
n

r

) r∑
i=0

(
r

i

)(
n− r
r − i

)
r!(r − i)!
r2r−i

p2(
r
2)−(

i
2). (3)

Relations (1) and (3) imply
E(X2

r ) = E2 (Xr)
[
an + bn

]
,

where

an =

(
n

r

)−1 [(
n− r
r

)
+ r

(
n− r
r − 1

)]
and

bn =

r∑
i=2

g(i),
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with

g(i) =

(
n

r

)−1(
n− r
r − i

)
ri

i!
bi(i−1)/2.

We estimate an, for r ∼ 2 logb(n), as follows.

an = 1 +O

(
(log(n))

4

n2

)
.

To complete the proof, we need to show that, for r = bc(n) − εc, bn → 0. Let us consider the bottom
term (i = 2) in the sum for bn. We have

g(2) = b

(
n

r

)−1(
n− r
r − 2

)
r2

2
= O

(
(logb n)

2

n2

)
.

For 2 ≤ i ≤ r,
g(i+ 1)

g(i)
=

bir(r − i)
(i+ 1)(n− 2r + i+ 1)

<
r2bi

i(n− 2r)
.

Let t := bα logb nc, with 0 < α < 1. Then, for 2 ≤ i ≤ t− 1 and sufficiently large n, we have

g(i+ 1)

g(i)
<

(
bt

2

)(
r2

n− 2r

)
<

(
nα

2

)(
(2 logb n)

2

n− 4 logb n

)
=

4nα logb n

2(n− 4 logb n)
≤ 1.

It follows that, for sufficiently large n, the function g(i) is decreasing. Thus

t∑
i=2

g(i) < tg(2) = O

(
(logb n)

3

n2

)
.

Now we consider the second part of the sum for bn. We have

r∑
i=t+1

g(i) =

r∑
i=t+1

(
n

r

)−1(
n− r
r − i

)
ri

i!
b(
i
2)

=

(
n

r

)−1
b(
r
2) r

r

r!

r∑
i=t+1

(
n− r
r − i

)
ri

i!

r!

rr
b(
i
2)−(

r
2)

= E−1(Xr)

r∑
i=t+1

(
n− r
r − i

)
(r)r−i
rr−i

b−
(r−i)(r+i−1)

2 .
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By setting j = r − i and interchanging the order of summation, we get

r∑
i=t+1

g(i) = E−1(Xr)

r−t−1∑
j=0

(
n− r
j

)
(r)j
rj

b−
j(2r−j−1)

2

< E−1(Xr)

r−t−1∑
j=0

(
(n− r)b−

2r−j−1
2

)j
< E−1(Xr)

r−t−1∑
j=0

(
nb
−(r+t)

2

)j
.

Since by assumption r = bc(n)− εc ≥ c(n)−1− ε, and as t ≥ α logb n−1, we have, for n large enough,

nb
−(r+t)

2 ≤ 2b
ε+1
2 logb n

nα/2
≤ 1.

Therefore
r∑

i=t+1

g(i) ≤ r − t
E(Xr)

.

Since, by (2), E(Xr) ≥ (1 + o(1))nε+o(1), it follows that

r∑
i=t+1

g(i) ≤ O(1)
log n

nε+o(1)
→ 0 as n→∞.

The proof is complete.

4.3 Tropical tree components
Let G(n, p) be the random graph on n vertices with p = θ/n, where θ is a positive constant. Erdős and
Rényi discovered in their original work [ER60] that the structure of G(n, p) undergoes sudden changes
around p = 1/n. Roughly speaking, if θ < 1 then G(n, p) consists of small components, the largest of
which is of order O(log n). While for θ > 1 many of the small components join together to form a giant
component of orderO(n). The remaining vertices are still in small components of order at mostO(log n).
This phenomenon is called the double jump, also known as the phase transition phenomenon. In the next
theorem, we estimate the order of the largest tropical tree component in G(n, p, c) at the subcritical phase
(θ < 1).

In what follows, we denote by Tk the number of components of G(n, p, k) that are tropical trees of
order k.

Theorem 4.4. Let p = θ/n, where 0 < θ < 1 is fixed. Let ε ∈ (0, 1) be fixed. Set k = k(n, θ, ε) =⌊
(1− ε) log n

θ − log θ

⌋
. Then, asymptotically almost surely G(n, p, k) has a tropical component of order k

which is a tree.
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Proof: Using Cayley’s formula for the number kk−2 of labeled trees of order k, we have

E(Tk) =

(
n

k

)
kk−2pk−1(1− p)k(n−k)+(

k
2)−(k−1) k!

kk

=
n!

(n− k)!
1

k2
pk−1(1− p)kn− k

2

2 −
3k
2 +1

= (1 + o(1))nk
1

k2
pk−1(1− p)kn− k

2

2 −
3k
2 +1.

Since p = θ/n = o(1) and k = O(log n), we have

(1− p)kn− k
2

2 −
3k
2 +1 = e(kn−

k2

2 −
3k
2 +1)(−p− p

2

2 +o(p2))

= e−knp+o(1)

= (1 + o(1)) e−knp.

Therefore,

E(Tk) = (1 + o(1))
nkpk−1e−kθ

k2

= (1 + o(1))
nθk−1e−kθ

k2

= (1 + o(1))
elogn−k(θ−log θ)

θk2
.

Thus, for k = (1 − ε) log n

θ − log θ
, we have E(Tk) =

nε

θk2
→ ∞ as n → ∞. To complete the proof, we

need to compute the variance of Tk. Clearly,

E [Tk(Tk − 1)] =

(
n

k

)(
n− k
k

)
k2(k−2)

[
k!

kk

]2
p2(k−1)(1− p)2(kn− k

2

2 −
3k
2 +1)−k2

= E2(Tk)

(
n−k
k

)(
n
k

) (1− p)−k
2

= (1 + o(1))E2 (Tk)

(
1− k

n

)k
(1− p)−k

2

= (1 + o(1))E2 (Tk) e
− k2n +k2p+o(1)

= (1 + o(1))E2 (Tk) .

Consequently,
Var(Tk)
E2(Tk)

=
1

E(Tk)
+ o(1).

Since E(Tk) → ∞ as n tends to infinity, and by Chebyshev inequality, it follows that P[Tk = 0] ≤
Var(Tk)/E2(Tk) = o(1), which completes the proof.
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In the next theorem, convergence in distribution of Tk is established for certain values of k. The proof
is based on the following special case of the method of moments (see [Bol01], p. 25). Let λ = λ(n) be
a non-negative bounded function on N. Let X1, . . . , Xn be non-negative integer-valued random variables
such that, for every r = 1, 2, . . . , E(X)r → λr as n→∞. Then Xn

d−→ P(λ).
Theorem 4.5. Let p = θ/n, where 0 < θ < 1 is fixed. Let

k =
1

θ − log θ

[
log n− 2 log log n− l

]
∈ N, l = l(n) = O(1).

Denote by Tk the number of components of G(n, p, k) that are tropical trees of order k. Then Tk has
asymptotically Poisson distribution P(λ) with mean

λ =
(θ − log θ)2el

θ
.

Proof: Note first that by a judicious choice of l, k is an integer. From the proof of Theorem 4.4, we have

E(Tk) ∼
elogn−k(θ−log θ)

θk2
.

It is easily checked that E(Tk) is asymptotically equivalent to λ. Since by assumption l = O(1) and θ is
fixed, λ is bounded. For every integer r ≥ 2, the r-th factorial moment of Tk is estimated as follows.

E(Tk)r =

(
n

k

)(
n− k
k

)
. . .

(
n− (r − 1)k

k

)
×
[
k!

kk

]r (
kk−2

)r
pr(k−1) (1− p)rk(n−rk)+(

rk
2 )−r(k−1)

= (1 + o(1))
nrk

k2r
pr(k−1) (1− p)rk(n−rk)+(

rk
2 )−r(k−1)

= (1 + o(1))

[
nk

k2
pk−1 (1− p)k(n−k)

]r
(1− p)−r

2k2+rk2+(rk2 )−r(k−1)

= (1 + o(1)) [E(Tk)]r .

The result follows from the method of moments previously mentioned.
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