Energy-optimal algorithms for computing aggregative functions in random networks

Abstract : We investigate a family of algorithms minimizing energetic effort in random networks computing aggregative functions. In contrast to previously considered models, our results minimize maximal energetic effort over all stations instead of the average usage of energy. Such approach seems to be much more suitable for some kinds of networks, in particular ad hoc radio networks, wherein we need all stations functioning and replacing batteries after the deployment is not feasible. We analyze also the latency of proposed energy-optimal algorithms. We model a network by placing randomly and independently $n$ points in a $d$-dimensional cube of side-length $n^{1/d}$. We place an edge between vertices that interact with each other. We analyze properties of the resulting graphs in order to obtain estimates on energetic effort and latency of proposed algorithms.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2016, Vol. 17 no. 3 (3), pp.285-306
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01352854
Contributeur : Coordination Episciences Iam <>
Soumis le : mardi 16 août 2016 - 15:22:08
Dernière modification le : jeudi 7 septembre 2017 - 01:03:49
Document(s) archivé(s) le : jeudi 17 novembre 2016 - 10:25:05

Fichier

2716-9973-1-PB.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01352854, version 1

Collections

Citation

Marek Klonowski, Małgorzata Sulkowska. Energy-optimal algorithms for computing aggregative functions in random networks. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2016, Vol. 17 no. 3 (3), pp.285-306. 〈hal-01352854〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

107