
HAL Id: hal-01353824
https://hal.inria.fr/hal-01353824

Submitted on 14 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Executable Semantics of Clock Constraint
Specification Language and its Applications

Min Zhang, Frédéric Mallet

To cite this version:
Min Zhang, Frédéric Mallet. An Executable Semantics of Clock Constraint Specification Language
and its Applications. Cyrille Artho, Peter Csaba Ölveczky. Formal Techniques for Safety-Critical
Systems, Nov 2015, Luxembourg, Luxembourg. Springer, 596, pp.37-51, 2016, Communications in
Computer and Information Science. <10.1007/978-3-319-29510-7_2>. <hal-01353824>

https://hal.inria.fr/hal-01353824
https://hal.archives-ouvertes.fr

An Executable Semantics of Clock Constraint
Specification Language and its Applications

Min Zhang1 and Frédéric Mallet2,1,3

1 Shanghai Key Laboratory of Trustworthy Computing
Software Engineering Institute, East China Normal University

zhangmin@sei.ecnu.edu.cn
2 Univ. Nice Sophia Antipolis, I3S, UMR 7271 CNRS, France

Frederic.Mallet@unice.fr
3 INRIA Sophia Antipolis Méditerranée, France

Abstract. The Clock Constraint Specification Language (ccsl) is a lan-
guage to specify logical and timed constraints between logical clocks.
Given a set of clock constraints specified in ccsl, formal analysis is pre-
ferred to check if there exists a schedule that satisfies all the constraints,
if the constraints are valid or not, and if the constraints satisfy expected
properties. In this paper, we present a formal executable semantics of
ccsl in rewriting logic and demonstrate some applications of the formal
semantics to its formal analysis: 1) to automatically find bounded or
periodic schedules that satisfy all the given constraints; 2) to simulate
the execution of schedules with customized simulation policies; and 3) to
verify LTL properties of ccsl constraints by bounded model checking.
Compared with other existing modeling approaches, advantages with the
rewriting-based semantics of ccsl are that we do not need to assume a
bounded number of steps for the formalization, and we can exhaustively
explore all the solutions within a given bound for the analysis.

1 Introduction

Logical time such as defined by Lamport [9] gives a flexible abstraction to com-
pare and order occurrences of events when appealing to more traditional physical
measures is either not possible or not desirable. This is the case in a great variety
of application domains, from widely distributed systems, for which maintaining a
global clock can be costly, to deeply embedded software or in latency-insensitive
designs [3], for which the complexity of the control mechanisms (like frequency
scaling) makes it neither desirable nor efficient. In the latter case, synchronous
languages [2,14] have shown that logical clocks can give a very adequate tool to
represent any recurrent event uniformly, whether occurring in a periodic fashion
or not.

The Clock Constraint Specification Language (ccsl) [11] is a language that
handles logical clocks as first-class citizens. While synchronous languages mainly
focus on signals and values and use logical clocks as a controlling mechanism,
ccsl discards the values and only focuses on clock-related issues. The formal

fmallet
Typewritten Text
The final pulication is available at Springer viahttp://dx.doi.org/10.1007/978-3-319-29510-7_2

II

operational semantics of ccsl was initially defined in a research report [1] in a bid
to provide a reference semantics for building simulation tools, like TimeSquare
[6]. We are interested here in studying the properties of a ccsl specification and
we give another formal executable semantics in rewriting logic and demonstrate
the benefits of this new semantics. The first benefit is that rewriting logic gives a
direct implementation of the operational semantics while TimeSquare provides a
Java-based implementation, which is prone to introduce accidental complexity.

The second and most important benefit is that we can directly use rewriting
logic tooling to model-check a ccsl specification. Previous works on studying
ccsl properties [13], rely on several intermediate transformations to automata
and other specific formats so that model-checking becomes possible when a ccsl
specification is finite (or safe) [12]. It either meant, reducing to a safe subset
of ccsl [8] or detecting that the specification was finite even though relying
on unsafe operators. In this contribution, we rely on Maude environment [4]
to provide a direct analysis support from the operational semantics and we
can explore unsafe specifications by using bounded-model checking and do not
restrict to the safe subset. While before, successive intermediate transformations
could each introduce variations in the semantics, if not careful enough, we rely
here on the strong, widely used, generic tooling provided by Maude, rather than
on an ad-hoc manual implementation.

More precisely, in this paper, we introduce the notions of bounded and pe-
riodic schedules for a ccsl specification. Periodic schedules are useful to reason
on specifications that rely on unsafe operators. With periodic schedules, we can
use bounded model-checking to verify temporal logic properties on ccsl models.
The tooling and automatic verification directly comes with the newly introduced
semantics and the Maude environment.

The rest of the paper is organized as follows. Section 2 and Section 3 give
a brief introduction to ccsl and Maude. In Section 4 we present the formal
definition of semantics of ccsl in Maude, and in Section 5 we demonstrate four
applications of the formal semantics to the analysis of ccsl. Section 6 mentions
some related work and Section 7 concludes the paper.

2 CCSL

2.1 Syntax and semantics of CCSL

In ccsl, there are four primitive constraint operators which are binary relations
between clocks, and five kinds of clock definitions [11]. The four constraint oper-
ators are called precedence, causality, subclock and exclusion; and the five clock
definitions are called union, intersection, infimum, supremum, and delay.

The meaning of the nine primitive operators (see Fig. 1) is given using the
notions of schedule and history. Given a set C of clocks, a schedule of C is used
to decide which clocks can tick at a given step, and a history is used to calculate
the number of ticks of each clock at a given step.

Definition 1 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ ∶ N+ → 2C such that for any n in N+, δ(n) ≠ ∅.

III

1. δ ⊧ c1 ≺ c2 ⇐⇒ ∀n ∈ N+.χ(c1, n) = χ(c2, n)⇒ c2 /∈ δ(n + 1) (Precedence)

2. δ ⊧ c1 ⪯ c2 ⇐⇒ ∀n ∈ N+.χ(c1, n) ≥ χ(c2, n) (Causality)

3. δ ⊧ c1 ⊆ c2 ⇐⇒ ∀n ∈ N+.c1 ∈ δ(n)⇒ c2 ∈ δ(n) (Subclock)

4. δ ⊧ c1 c2 ⇐⇒ ∀n ∈ N+.c1 /∈ δ(n) ∨ c2 /∈ δ(n) (Exclusion)

5. δ ⊧ c1 ≜ c2 + c3 ⇐⇒ ∀n ∈ N+.(c1 ∈ δ(n) ⇐⇒ c2 ∈ δ(n) ∨ c3 ∈ δ(n)) (Union)

6. δ ⊧ c1 ≜ c2 × c3 ⇐⇒ ∀n ∈ N+.(c1 ∈ δ(n) ⇐⇒ c2 ∈ δ(n) ∧ c3 ∈ δ(n)) (Intersection)

7. δ ⊧ c1 ≜ c2 ∧ c3 ⇐⇒ ∀n ∈ N+.χ(c1, n) =max(χ(c2, n), χ(c3, n)) (Infimum)

8. δ ⊧ c1 ≜ c2 ∨ c3 ⇐⇒ ∀n ∈ N+.χ(c1, n) =min(χ(c2, n), χ(c3, n)) (Supremum)

9. δ ⊧ c1 ≜ c2 d ⇐⇒ ∀n ∈ N+.χ(c1, n) =max(χ(c2, n) − d,0) (Delay)

#

$

Fig. 1. Definition of 9 primitive ccsl operators

Note that a schedule must be non-trivial such that there is at least one clock
ticking at any execution step. This condition excludes from schedules those steps
where no clocks tick. Such steps are called empty steps and are trivial in that
adding them to a schedule does not affect the logical relations among clocks.

Definition 2 (History). A history of a schedule δ ∶ N+ → 2C over a set C of
clocks is a function χ ∶ C ×N→ N such that for any clock c ∈ C and n ∈ N:

χ(c, n) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if n = 0
χ(c, n − 1) if n ≠ 0 ∧ c /∈ δ(n)
χ(c, n − 1) + 1 if n ≠ 0 ∧ c ∈ δ(n)

We use δ ⊧ φ to denote that schedule δ satisfies constraint φ. Fig. 1 shows the
definition of the satisfiability of a constraint φ with regards to a schedule δ. We
take the definition of precedence for example. δ ⊧ c1 ≺ c2 holds if and only if for
any n in N, c2 must not tick at step n+1 if the number of ticks of c1 is equal to the
one of c2 at step n. Precedence and causality are asynchronous constraints and
they forbid clocks to tick depending on what has happened on other clocks in the
earlier steps. Subclock and exclusion are synchronous constraints and they force
clocks to tick or not depending on whether another clock ticks or not in the same
step. Union defines a clock c1 which ticks whenever c2 or c3 ticks; intersection
defines a clock c1 which ticks whenever both c2 and c3 tick; supremum defines
the slowest clock c1 which is faster than both c2 and c3; infimum defines the
fastest clock c1 which is slower than both c2 and c3; and delay defines the clock
c1 which is delayed by c2 with d steps. More details can be found in a recent
study on ccsl [13].

Given a set Φ of clock constraints and a schedule δ, δ satisfies Φ (denoted by
δ ⊧ Φ) if for any φ in Φ there is δ ⊧ φ. In particular, we use δ;k ⊧ φ to denote
that δ satisfies φ at step k(k ∈ N+). We use δ;k ⊧ Φ to denote that δ satisfies all
the constraints in Φ at step k, i.e., ∀φ ∈ Φ, δ;k ⊧ φ.

IV

1start 2 . . . k k + 1 . . . k + p k + p + 1 . . .

p

Fig. 2. Periodic schedule

2.2 Satisfiability problem of CCSL

Given a set Φ of ccsl constraints, one of the most important problems is to
decide if there exist some schedules that satisfy Φ. However, it is still an open
problem whether the satisfiability of a given arbitrary set of ccsl constraints is
decidable or not. We consider two kinds of schedules called bounded schedule and
periodic schedule from the pragmatic point of view and show the satisfiability
problem of an arbitrary given set of ccsl constraints with regards to bounded
schedule and periodic schedule is decidable.

Definition 3 (Bounded schedule). Given a set Φ of clock constraints on
clocks in C, and a function δ ∶ N≤n → 2C , δ is called an n-bounded schedule if
for any i ≤ n, δ; i ⊧ Φ.

We denote the bounded satisfiability relation by δ ⊧n Φ, which means that δ is
an n-bounded schedule of Φ. It is obvious that given a bound n it is decidable to
check if there exists an n-bounded schedule for a set of ccsl constraints because
the number of candidate schedules is finite, i.e., (2∣C∣ − 1)n, where ∣C ∣ denotes
the number of clocks in C. If there does not exist an n-bounded schedule for a
set Φ of clock constraints, there must not be a schedule that satisfies Φ, although
not vice versa.

Bounded schedule is sometimes too restrictive in practice because we usually
do not assign a bound to clocks in real-time embedded systems, but assume that
reactive systems run forever and only terminate when shutdown. Thus, clocks
should tick infinite often from the theoretical point of view. There is another class
of schedules which are unbounded and force all the clocks to occur periodically.
We call them periodic schedules.

Definition 4 (Periodic schedule). A schedule δ is periodic if there exists k, p
in N such that for any k′ ≥ k, δ(k′ + p) = δ(k′).

Figure 2 depicts a periodic schedule whose period is p. Each node denotes a
time point, and each arrow denotes the elapse of a time unit. The dashed line
indicates that, for any clock, it ticks at one point if and only if it ticks at the
other point. From step k, the schedule starts to repeat every p steps infinitely. To
decide whether there exists a periodic schedule for a given set of clock constraints
is also an open problem. In the rest of this section, we propose an approach to
constructing a periodic schedule from a bounded one when the bounded one
satisfies certain conditions which are to be introduced below.

V

1start 2 . . . k . . . k1
. . . k′ . . . x . . .

n

. . .

k′ − k

k1 = k + (x − k)%(k′ − k)

δ

δ′

Fig. 3. Construction of periodic schedule δ′ from an n-bounded schedule δ

Lemma 1. Given a schedule δ ∶ N+ → 2C and two natural numbers k, k′, if there
exists m ∈ N such that for any c in C χ(c, k)+m = χ(c, k′) and χ(c, k + 1)+m =
χ(c, k′ + 1) then δ(k + 1) = δ(k′ + 1).
Proof. It is equal to prove that for any c ∈ C, c ∈ δ(k + 1) ⇐⇒ c ∈ δ(k′ + 1).

(⇒): c ∈ δ(k + 1) implies that χ(c, k + 1) = χ(c, k) + 1. Thus, χ(c, k + 1) +m =
χ(c, k′ + 1) = χ(c, k) + 1 +m = χ(c, k′) + 1. Thus, c ∈ δ(k′ + 1).

(⇐): c ∈ δ(k′+1) implies that χ(c, k′+1) = χ(c, k′)+1. Namely, χ(c, k+1)+m =
χ(c, k)+m+ 1. Thus, χ(c, k + 1) = χ(c, k)+ 1, and hence we have c ∈ δ(k + 1). ⊓⊔
Theorem 1. Given a schedule δ ∶ N+ → 2C , a clock constraint φ, and two natural
numbers k, k′, δ;k ⊧ φ⇒ σ;k′ ⊧ φ if all the following three conditions are true:

1. δ(k) = δ(k′);
2. There exists m in N such that m > 0 and for any c in C, χ(c, k)+m = χ(c, k′)

and χ(c, k + 1) +m = χ(c, k′ + 1);
3. If φ ≡ (c1 ≜ c2 $ d), χ(c2, k) ≥ d.

Theorem 1 can be proved with Lemma 1. We omit the proof due to the limit of
space. From Theorem 1 we can directly derive the following corollary.

Corollary 1. Given a schedule δ ∶ N+ → 2C , a set Φ of clock constraints, and
two natural numbers n, k′, δ;k ⊧ Φ⇒ σ;k′ ⊧ Φ if the three conditions in Theorem
1 are satisfied.

Given an n-bounded schedule δ of a set Φ of clock constraints, if there exist
two natural numbers k, k′ ≤ n, which satisfy the three conditions in Theorem 1,
we can define a periodic schedule δ′ based on δ such that δ′ satisfies Φ.

δ′(x) = { δ(x) if x ≤ k′
δ(k + (x − k)%(k′ − k)) if x > k′

Figure 3 shows the construction of δ′ based on δ. From k′, the schedule δ′
repeats infinitely the steps from k to k′ − 1. By Corollary 1, it is obvious that
for any k′′ such that k′′ > k′, we have δ′;k′′ ⊧ Φ because we can find a natural
number k1 = k+(k′′−k)%(k′−k) such that δ;k1 ⊧ Φ, δ(k1) = δ′(k1) and k′′, k1, δ

′
satisfy the three conditions in Theorem 1. Thus, we have δ′ ⊧ Φ.

VI

3 Maude in a Nutshell

Maude is rewriting-based algebraic language and also an efficient rewriting en-
gine. We assume the readers are familiar with Maude, and only give a brief
introduction to Maude meta-level functionality and Maude LTL model check-
ing, which is used in this paper. More details about Maude can be found in the
Maude book [4].

The underlying logic of Maude is rewriting logic, which is reflective in the
sense that it can be faithfully interpreted in itself [4]. The reflectivity allows us
to reason with a specified rewrite theory in customized strategies by Maude.
Intuitively, we define a rewrite theory R and then define a metatheory U whereR is treated as data. A rewrite theory R is a tripe ⟨Σ,E,R⟩, where Σ is called
the signature specifying the type structure, E is a set of equations and R is
a set of rewrite rules. Maude provides efficient function by command search

to find if there exist some pathes from a given term t to a target term t′ by
repeatedly applying the rewrite rules in R. It also provides a corresponding
meta-level searching function metaSearch which takes R, t and t′ as arguments
and returns the searching result. An LTL model checker has been implemented
based on Maude to verify LTL properties of a rewrite theory when the set of
states that are reachable from an initial state in the rewrite theory is finite [7].

4 Formal Semantics of CCSL in Maude

We formalize a clock as a triple (c, `, n), consisting of the clock identifier c, a list `
of records, with each value being tick or idle (abbreviated by t or i respectively),
representing that the clock ticks or not at the corresponding step, and a natural
number n to indicate the numbers of ticks in `. ` represents a bounded schedule
of c whose bound is equal to the length of `. Initially, ` is empty and n is 0. LetC be the set of such clock triples of a set C of clocks. We call C a configuration.
We suppose that the length of the lists in each clock triple in C are equal, e.g.
n. C essentially represents an n-bounded schedule for all the clocks in C.

We declare a predicate satisfy which takes three arguments: a configurationC, a non-zero natural number k, and a set Φ of constraints, and returns true ifC satisfies Φ at step k, and otherwise false. We consider each possible constraint
form in Φ when defining satisfy. For instance, the following two equations are
defined to specify a configuration C satisfies precedence and infimum at step k:

1 ceq satisfy(C, k, c1 ≺ c2) = (num(`1,k) >= num(`2, k)) and
2 (if num(`1,k − 1) == num(`2, k − 1) then t-val(`2,k) =/= t else true fi)
3 if (c1, `1, n1) := getConf(C, c1) /\ (c2, `2, n2) := getConf(C, c2).

4 ceq satisfy(C, k, c1 ≜ c2 ∧ c3) = (if n2 > n3 then n1 == n2 else n1 == n3 fi)
5 if (c1, `1, n1) := getConf(C, c1) /\ (c2, `2, n2) := getConf(C, c2)
6 /\ (c3, `3, n3) := getConf(C, c2) .

The first equation says that satisfy returns true with C, k and c1 ≺ c2 when
the number of ticks of c1 up to step k is greater than or equal to the one of c2 and
further if the number of ticks of c1 up to step k−1 is the same as the one of c2 then

VII

c2 must not tick at step k (as represented by t-val(`2,k) =/= t, where t-val

is a function returning the kth value in the list `2). The equation has a condition
which is a conjunction of two matching equations [4]. The two conjuncts are used
to retrieve the tick list and the number of ticks of c1 (and c2) by function getConf

and assign them to `1 and n1 (and `2 and n2). The second equation defines the
semantics of infimum relation, namely, at any step k the number of ticks of c1
must be the minimum of those of c2 and c3. The correspondence between the
formalization of the constraints and their formal semantics defined in Figure 1
should be clear. Other constraints can be formalized in Maude likewise, and we
omit them from the paper.

Next we formalize one-step ticking from k to k + 1 of all clocks by a set of
rewrite rules. The basic idea is as follows. From step k to k+1 each clock decides
to tick or not (be idle). After all the clocks make a decision, we check if the
bounded schedule satisfies all the constraints at step k +1. The first rewrite rule
at Line 1 specifies the behavior that clock c ticks at step k + 1. The list ` is
changed into ` t. The rule is conditional because we need the condition that c is
not the last clock which makes a decision. If c is the last one, we need to check if
all the constraints in Φ are satisfied at step k + 1. The step k can be represented
by the length of the list ` of an arbitrary clock triple in C, i.e., k = size(`),
where size(`) returns the length of `. Thus, k + 1 is equal to size(`) + 1, and
hence we use the latter one in the condition of the fourth equation on Line 6.

Similarly, if c decides to remain idle next step and c is not the last clock, its
corresponding tick list is changed from ` to ` i, which is specified by the rule on
Line 2. If c is the last clock in this case, we also need to guarantee that from step
k to k + 1 there must be at least one clock ticking (represented by the formula
not allIdle(C′)) and all the clocks satisfy the constraints in Φ at step k + 1.

1 crl ((c, `,n) C ; C′ ; Φ) => (C ; C′ (c, ` t,n + 1) ; Φ) if C =/= nil .

2 crl ((c, `,n) C ; C′ ; Φ) => (C ; C′ (c, ` i, n) ; Φ) if C =/= nil .

3 crl ((c, `,n) ; C′ ; Φ) => (nil ; C′ (c, ` t,n + 1) ; Φ)

4 if satisfy(C′ (c, ` t,n + 1), size(`) + 1, Φ) .

5 crl ((c, `,n) ; C′ ; Φ) => (nil ; C′ (c, ` i, n) ; Φ)

6 if not allIdle(C′) /\ satisfy(C′ (c, ` i, n), size(`) + 1, Φ) .

We assume that C is a k-bounded schedule of a set Φ of ccsl constraints.
If there is a rewriting sequence from (C; nil; Φ) to a new one (nil; C′; Φ)
with the above four rules, C′ must be a k + 1-bounded schedule of Φ becauseC′ satisfies Φ up to k + 1 steps. We can define the following rule to specify the
one-step ticking of all the clocks from step k to k + 1.

1 crl < C ; k ; Φ > => < C′ ; k + 1 ; Φ > if (C ; nil ; Φ) => (nil ; C′ ; Φ) .

The condition of the rule is a rewrite condition [4], which is true if and only if
there exists a rewriting sequence from the term at the left-hand side of => to
the one at the right-hand side when the condition is true. In the above rule, C′
represents an arbitrary immediate successor of C such that C′ satisfies Φ up to
k + 1 steps.

VIII

5 Applications of the Formal Semantics

In this section, we show four applications of the executable formal semantics of
ccsl in Maude.

5.1 Bounded scheduling

Given a bound n and a set of clock constraints Φ, we can use Maude’s search

function to find automatically if there exists an n-bounded schedule of Φ. If
Maude cannot find a schedule within a given bound n, it means that there must
not exist such an n-bounded schedule, and further we can conclude that there
must not exist a schedule that satisfies Φ. However, if a schedule is found up
to bound n, we only can conclude that the returned schedule is n-bounded, but
cannot guarantee the existence of a schedule for Φ.

We show an example of finding bounded schedules for a given set of clock
constraints using Maude’s search command.

Example 1. Given a set of constraints Φ1 = {c1 ≺ c2, c3 ≜ c1 $ 1 , c2 ≺ c3, we can
use Maude’s search command to find a 100-bounded schedule.

1 search [2 ,100] init(Φ1) =>* < C ; 100 ; (Φ1) > .
2 states: 101 rewrites: 629424
3 C -->
4 (c1,t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t
5 i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i
6 t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i,50)
7 (c2,i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i
8 t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t
9 i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t,50)

10 (c3,i i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t
11 i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i
12 t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i,49)

Maude’s search command takes two optional arguments in the square brackets.
The first one is used to specify the number of expected solutions, and the second
one is used to specify the maximal depth of searching. Function init takes a
set Φ of constraints and generates an initial configuration < C0 ; 0 ; Φ >, whereC0 is a set of clock triples, each of which is of the form (c,nil,0). The operator
=>* indicates there are zero or more rewritings from the given initial term to the
expected term that can be matched by the target term.

In this example, the target term represents those configurations where the
current step is 200. C is a configuration which is assigned by Maude. The result
is obtained by repeatedly applying the rewrite rule. Maude only returns one
result with the command. It means that there is only one possible 100-bounded
schedule for the constraints. The schedule shows that c1 and c3 only tick at all
odd steps except that c3 does not tick at the first step, because of the constraint
c3 ≜ c1 $ 1 . c2 only ticks at all even steps. The returned bounded schedule
coincides with the result in an earlier work of the second author [13].

IX

5.2 Customized simulation

Given a set Φ of clock constraints, it is also desirable to have a customized
schedule which satisfies not only Φ but also some customized requirements, e.g.,
at each step if a clock can tick it must tick, or if a clock does not have to
tick, it must not tick. We only consider three basic scheduling policies, called
randomness, maximum and minimum respectively.

– Randomness: If a clock can tick and not tick at next step, we randomly
choose one.

– Maximum: If a clock can tick at next step, it must tick.
– Minimum: If a clock has not to tick at next step, it must not tick.

Based on the four rewrite rules defined in Section 4, we can achieve cus-
tomized scheduling for a given set of clock constraints using Maude’s meta-level
facility. We first find all the possible immediate successors of a set C of clock
triples using Maude’s metaSearch function, and then choose the successor that
satisfies the customized policy given by users. The following rewrite rule is de-
fined for customized scheduling.

1 −−− the rewrite rule is defined for customized scheduling

2 crl < C ; k ; Φ ; ρ > => < C′ ; k+1 ; Φ ; ρ > if C′ := conf(sucs(C, Φ), ρ) .

3 −−− the equation needs the meta−level function metaSearch to compute all successors
4 ceq sucsAux(C, Φ, j) = downTerm(T, nil), sucsAux(C, Φ, j + 1)
5 if RT := metaSearch(upModule(’ONE -STEP -TICKING , false),
6 ’‘(_;_;_‘)[upTerm(C), ’nil.Conf , upTerm(Φ)],

7 ’‘(_;_;_‘)[’nil.Conf , C′, upTerm(Φ)],nil ,’*,unbounded ,i) /\

8 (C′ <- T) := getSubstitution(RT) .

In the rule, ρ is a variable, denoting the customized policy given by users, e.g.
rand for randomness, max for maximum or min for minimum. The function sucs

used in the condition returns the set of all the successors of C that satisfy Φ,
and conf returns one among them according to the customized policy ρ. The
equation above is used to define a recursive function sucsAux, which is the main
auxiliary function to define sucs. Function sucsAux takes three arguments, C,
Φ and a natural number j, which indicates that we want metaSearch to find the
jth(j ≥ 0) successor of C. The metaSearch function takes a meta-module of the
module ONE-STEP-TICKING where the four rewrite rules in Section 4 are defined,
a term from which searching begins, a target term that the result term can match,
and other three arguments, and returns a searching result. The searching result
contains a meta-level term which substitute for C′. We change it to the object
level by the built-in function downTerm. The object-level term represents the ith

successor of C. We omit the detailed explanation about the usage of metaSearch.
Interested readers can refer to the work [4] for the details.

Example 2. Let Φ2 be the set of the following constraints:

in1 ≼ step1 step1 ≺ step3 in2 ≼ step2

step2 ≺ step3 step3 ≼ out

X

We show the simulations of the bounded schedules that satisfy Φ2 with maximum
and minimum policy. We use Maude’s rew command to rewrite the initial con-
figuration < C0 ; 0 ; Φ ; ρ > by applying the rewrite rule defined in this section
10 times with max and min respectively. The initial configuration is generated by
function init1, which takes a set Φ of ccsl constraints and a simulation policy
ρ as its arguments. The commands and returned results are shown as follow.

1 rew [10] init1(Φ2, max) .
2 result CCC: (’in1 , t t t t t t t t t t,10)(’in2 , t t t t t t t t t t,10)
3 (’out , i t t t t t t t t t,9) (’step1 ,t t t t t t t t t t,10)
4 (’step2 ,t t t t t t t t t t,10)(’step3 ,i t t t t t t t t t,9)...
5 rew [10] init1(Φ2, min) .
6 result CCC: (’in1 , i i i i i i i i i i,0) (’in2 , t i t i t i t i t i,5)
7 (’out , i i i i i i i i i i,0) (’step1 ,i i i i i i i i i i,0)
8 (’step2 ,i t i t i t i t i t,5) (’step3 ,i i i i i i i i i i,0) ...

For the first schedule, the number of ticking clocks is always maximal, while for
the second one the number of ticking clocks is always minimal.

5.3 Periodic scheduling

We also can find automatically periodic schedules of a given set of ccsl con-
straints by Maude’s search command with the rewriting-based semantics of
ccsl in Maude. The basic idea is to compute all possible immediate successors
of the current k-bounded schedule at every step k(k ≥ 1) and check if there
exists a successor that satisfies all the three conditions in Theorem 1. If such a
successor exists, a periodic schedule is found, and the step k + 1 is the first step
of the second iteration. We also can compute the period of the schedule. The
following rewrite rule is defined for periodic scheduling.

1 −−− the rewrite rule is defined to represent periodic schedules
2 crl < C ; k ; Φ ; 0 > =>

3 if C′′ == nil then < C′ ; k + 1 ; Φ ; 0 > else < C′′ ; k + 1 ; Φ ; p > fi

4 if (CS1,C′,CS2) := sucs(CF,CTS) /\ <C′′; p> := checkOcc ((CS1, C′,CS2),k + 1) .

The terms at left-hand side of the rule is a 4-tuple, where the last argument, i.e.,
0 is indicates that the k-bounded schedule does not satisfy the three conditions
in Theorem 1. Function checkOcc is used to check if there exists a k+1-bounded
schedule that satisfies all the constraints in Φ and also the three conditions in
Theorem 1. If that is the case, checkOcc returns the schedule C′′ and the period
p(p > 0), and otherwise nil and 0. Once a periodic schedule is found, the rewrite
rule cannot be applied and Maude returns the result. Note that the rule may
cause non-termination if no periodic schedule is found and no bound to the times
of rewriting is set.

As an example, we use Maude’s search command to find periodic schedules
of the precedence constraint c1 ≺ c2. The command is as follows:

1 search [4] init2(c1 ≺ c2) =>* < C; k ; c1 ≺ c2 ; p > such that p =/= 0 .

Function init2 takes a set Φ of ccsl constraints and returns an initial config-
uration < C0 ; 0 ; Φ ; 0 >, where the last natural number is used to record the

XI

Table 1. Four periodic schedules that satisfy c1 ≺ c2

schedule clock/step 1 2 3 4 5 6 . . . period p

1
c1 t t t t t t . . .

1
c2 i t t t t t . . .

2
c1 t i t i t i . . .

2
c2 i t i t i t . . .

3
c1 t t t t t t . . .

1
c2 i i t t t t . . .

4
c1 t t t i t i . . .

2
c2 i i i t i t . . .

period of the current bounded schedule. We provide an upper bound e.g. 4 to
the expected periodic schedules. In the command, C is a set of two clock triples
of c1 and c2 returned by Maude when a periodic schedule is found. k indicates
the step where the first period of the schedule ends, and p indicates the period
of the schedule. The condition p =/= 0 means that C represents a periodic sched-
ule. Table 1 shows four periodic schedules found by Maude for c1 ≺ c2 when
the bound is set 4. The red steps for each schedule are the beginning of the first
and second iteration of the period. We also can give p a concrete value and use
Maude to search those periodic schedules with a fixed period.

5.4 Bounded model checking

Given a set of clock constraints, it is desired to know if the constraints satisfy
some properties, e.g. if all the clocks can tick infinitely often, or a clock must tick
immediately after another clock ticks. Based on the formal semantics of ccsl in
Maude, we can model check LTL properties of a given set of ccsl constraints by
Maude LTL model checker. Maude model checker requires the reachable state
space being verified must be finite, while the reachable state space specified by
the rewrite theory of a set of clock constraints may be infinite if there exists some
non-periodic schedules. For periodic schedules, we force the schedule to repeat
from step n to n′ where n and n′ are the beginning and ending steps of the first
period. As depicting by Fig. 4, by setting a bound we can compute all periodic
schedules up to the bound. The periodic schedules compose a finite state space
which can be used for model checking. Figure 4 (left) shows an example of an
unbounded state space. Each path represents a schedule. The path with a loop
represents a periodic schedule. There are three periodic schedules in the figure
when the bound is set 3. The three periodic schedules constitute a finite state
space which can be model checked, as shown in Figure 4 (right).

Next, we show some basic properties that clock constraints are expected to
satisfy and their representations in LTL formula. Let tick be a parameterized
predicate on states, which takes a clock c as argument and returns true if c ticks
in a state and otherwise false.

XII

start start

State space without bound Bounded state space

bound: 3

Ô⇒

Fig. 4. Bounded state space of periodic schedulers

– Repeated ticking : all clocks must tick infinitely often, which can be formalized
as: ⋀c∈C ◻◇ tick(c).

– Simultaneous ticking : two clocks c1 and c2 must tick simultaneously, which
can be formalized as: ◻(tick(c1) ⇐⇒ tick(c2)).

– Leading-to ticking : if a clock c1 ticks, it must cause another clock c2 to tick
eventually, which can be formalized as: ◻(tick(c1)→◇tick(c2)).

– Alternating ticking : two clocks c1 and c2 must always tick immediately after
each other, which can be formalized as: ◻(tick(c1)→◯ tick(c2)∧ tick(c2)→◯ tick(c1).
As an example, we model check if the constraints Φ1 in Example 1 satisfy

the alternating ticking property.

1 −−− definition of the state predicate tick in Maude
2 ceq <(C; k; Φ; p> |= tick(c) = (tval(`,k) == t) if (c,`,n) := getConf(C, c) .

3 −−− the following command is used for model checking in Maude
4 red modelCheck(init2 ((c1 ≺ c2)(c3 ≜ c1 $ 1)(c2 ≺ c3)),
5 [](tick(c1) -> O tick(c2) /\ tick(c2) -> O tick(c1))) .

6 Result: true

The first equation is used to define the state predicate tick, and modelCheck

is a built-in function to do model checking in Maude. It takes an initial state
(configuration) and an LTL formula. Maude returns true with the above com-
mand, which means that the constraints Φ1 indeed satisfies the alternating tick-
ing property. This result coincides with the one obtained by encoding ccsl into
finite-state transition system [13].

By bounded model checking in Maude we also can find invalid schedules of
a given set of clock constraints. A schedule is called invalid if it prevent some
clock from ticking after some step, namely, it does not satisfy the repeated
ticking property. A set Φ of ccsl constraints are called invalid if there exist
invalid schedules that satisfy Φ. Once Maude finds such a periodic schedule
that violates the repeated ticking property, we can conclude that the constraints

XIII

Table 2. Eight deadlock schedules found by Maude for ccsl constraints Φ′2

No. in1 in2 step1 step2 step3 out tmp1 tmp2

1 t i t i i i t i
2 i t i t i i t i
3 t i i i i t i i i i i i t i i i
4 i i t i i i i t i i i i t i i i
5 t i t t i i t i t t i i i t i i t i t i t i i t
6 t i i t i t t i i t i t i t i i t i t i t i i t
7 t i t t i i t i t i t i i t i i t i t i t i i t
8 t i i t i t t i i i t t i t i i t i t i t i i t

are not valid. However, it cannot grantee the constraints are valid if no invalid
schedules are found because not all schedules are model checked.

A special invalid case of ccsl constraints is that some schedules may prevent
all clocks from ticking after some step. We call them deadlock schedules. We can
use Maude to find if there exist deadlock schedules within a given bound. Let us
consider a case of Example 2. Assume that we introduce the following four new
constraints to Φ2 and denote the new set as Φ′2:

tmp1 ≜ in1 + in2 tmp1 ≺ out tmp2 ≜ tmp1 $ 1 out ≺ tmp2

The four constraints mean that clocks tmp1 and out must alternatively tick. We
can find a number of schedules satisfying all the constraints in Φ′2. However,
some of them may cause deadlock. We find 8 deadlock schedules by searching
within 3 steps in Maude with the command:

1 search [10,3] init(Φ′2)=>! CF .

In the command CF is a variable to which a 4-tuple is going to be assigned
by Maude, and =>! means that the value assigned to CF must be rewritten
by any rewrite rules. Namely, the value assigned to CF is a deadlock schedule.
Table 1 shows the eight deadlock schedules. We take the first one as an example.
According to the first schedule, only three clocks, i.e. in1, step1 and tmp1 tick at
the first step. In next step, no clocks can tick because of the newly introduced four
constraints. For instance, in2 cannot tick in next step. If in2 ticked, so did tmp1

(by constraint tmp1 ≜ in1 + in2) and tmp2 (by constraint tmp2 ≜ tmp1 $ 1),
which violates the constraint out ≺ tmp2. Because in2 cannot tick, step2 can
neither by constraint in2 ≺ step2. Other clocks also cannot tick because of the
corresponding constraints, leading to a deadlock.

6 Related Works and Discussion

ccsl mainly deals with logical clocks, i.e., unbounded increasing sequences of
integers. The semantics of clock constraints may depend on boolean parameters,

XIV

in which case, we remain in a finite world and can rely on traditional verification
and analysis results and tools. The constraints may also depend on unbounded
integer values, for instance, the number of times a given clock has ticked. In this
latter case, the constraint is called unsafe [12]. A specification is safe if it does
not use any unsafe constraint.

The reference semantics of ccsl was given in a research report [1] mainly to
be able to define a simulation tool called TimeSquare [6]. TimeSquare encodes
the operational semantics of ccsl in Java and captures boolean constraints
symbolically using Binary Decision Diagrams (BDD). TimeSquare works step by
step and at each step, finding a solution reduces to a satisfiability problem. After
deciding if and how many valid solutions can be found at a step, TimeSquare
clock engine picks one solution according to its simulation policy, updates the
state space and moves forward. TimeSquare does not consider the unbounded
specification as a whole and only produce one finite possible trace that satisfies
all the constraints up to a given number of steps. In this work, we use bounded
model-checking, we can then explore all the solutions reached in a given number
of steps, instead of only one.

Other works have tried to make an exhaustive exploration of the entire state
space (not up to a pre-defined number of steps). A comprehensive list of such
works has been summarized in a recent survey [13]. However, one aspect is
to be able to decide whether the state space can be represented with a finite
abstraction even though the specification is unsafe. Another way is to force a
finite space space by restricting to safe constraints [16,8,15]. In this work, we do
not make any assumptions on whether the specification is safe or not.

The most important achievement in this paper is that, thanks to Maude
environment, all the analyses performed result directly from the operational se-
mantics without intermediate transformations, so without the need to prove that
the semantics is preserved. Yu et al. proposed to encode ccsl in Signal before
transforming it to the internal format of Sigali [16]. We hope that the encoding in
Maude will allow to conduct automated verification for all the transformational
approaches that use ccsl as a step. Maude also gives a framework to define the
simulation policies formally. Some undocumented simulation policies are avail-
able in TimeSquare [6]. In Section 4, we give a simple formal interpretation for
three of these simulation policies.

Finally, abstract interpretation [5] or infinite model-checking [10] would allow
reasoning on the global ccsl specification without restrictions. However, the
encoding is likely to introduce semantic variations and we do not know at the
moment how to encode ccsl constraints in a compositional way.

7 Conclusion and Future Work

We have proposed a new semantic model for ccsl constraints. We have also in-
troduced the notion of bounded and periodic schedules. The satisfiability prob-
lem for ccsl specifications, which is still an open problem in the general case,
is proved to be decidable with regards to bounded and periodic schedules even

XV

when using unsafe constraints. This is the first main result. The second result is
to use the Maude encoding to perform bounded scheduling, customized simula-
tion with different policies, periodic scheduling, and bounded model-checking.

The notion of periodic schedule seems promising but a bit constraining. In the
future, we shall try to provide a more general definition where the behavior might
slightly vary between successive periods while still maintaining decidability.

References

1. André, C.: Syntax and semantics of the Clock Constraint Specification Language
(CCSL). Research Report 6925, INRIA (2009)

2. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–
83 (2003)

3. Carloni, L.P., McMillan, K.L., Sangiovanni-Vincentelli, A.L.: Theory of latency-
insensitive design. IEEE Trans. on CAD of Integrated Circuits and Systems 20(9),
1059–1076 (2001)

4. Clavel, M., et al.: All about Maude. LNCS 4350, Springer (2007)
5. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324–328 (1996)
6. Deantoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In:

Furia, C.A., Nanz, S. (eds.) TOOLS (50). Lecture Notes in Computer Science, vol.
7304, pp. 34–41. Springer (2012)

7. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
4th WRLA, ENTCS 71. pp. 162–187. Elsevier (2002)

8. Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: Comparing
UML MARTE/CCSL and PSL. In: Combi, C., Leucker, M., Wolter, F. (eds.)
TIME. pp. 141–148. IEEE (2011)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: 3rd Interna-
tional Symposium on Automated Technology for Verification and Analysis. Lecture
Notes in Computer Science, vol. 3707, pp. 489–503. Springer (2005)

11. Mallet, F., André, C., de Simone, R.: CCSL: specifying clock constraints with UM-
L/Marte. Innovations in Systems and Software Engineering 4(3), 309–314 (2008)

12. Mallet, F., Millo, J.V., de Simone, R.: Safe CCSL specifications and marked graphs.
In: 11th ACM/IEEE Int. Conf. on Formal Methods and Models for Codesign. pp.
157–166. IEEE (2013)

13. Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.
Comput. Program. 106, 78–92 (2015)

14. Potop-Butucaru, D., de Simone, R., Talpin, J.: The Synchronous Hypothesis and
Polychronous Languages, chap. 6. CRC Press (2009)

15. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: Perseil, I., Breitman, K., Sterritt, R. (eds.) ICECCS. pp. 65–74.
IEEE Computer Society (2011)

16. Yu, H., Talpin, J., Besnard, L., Gautier, T., Marchand, H., Guernic, P.L.: Poly-
chronous controller synthesis from MARTE/CCSL timing specifications. In: 9th
IEEE/ACM International Conference on Formal Methods and Models for Code-
sign, MEMOCODE. pp. 21–30. IEEE (2011)

	An Executable Semantics of Clock Constraint Specification Language and its Applications

