\

Register Sharing for Equality Prediction
Arthur Perais, Fernando A. Endo, André Seznec

» To cite this version:

Arthur Perais, Fernando A. Endo, André Seznec. Register Sharing for Equality Prediction. Interna-
tional Symposium on Microarchitecture, Oct 2016, Taipei, Taiwan. hal-01354267

HAL Id: hal-01354267
https://inria.hal.science/hal-01354267
Submitted on 18 Aug 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01354267
https://hal.archives-ouvertes.fr

Register Sharing for Equality Prediction

Arthur Perais
INRIA/IRISA
arthur.perais @inria.fr

Abstract—Recently, Value Prediction (VP) has been gaining
renewed traction in the research community. VP speculates
on the result of instructions to increase Instruction Level
Parallelism (ILP). In most embodiments, VP requires large
tables to track predictions for many static instructions.

However, in many cases, it is possible to detect that the result
of an instruction is produced by an older inflight instruction,
but not to predict the result itself. Consequently it is possible
to rely on predicting register equality and handle speculation
through the renamer.

To do so, we propose to use Distance Prediction, a technique
that was previously used to perform Speculative Memory
Bypassing (short-circuiting def-store-load-use chains). Distance
Prediction attempts to determine how many instructions sep-
arate the instruction of interest and the most recent older in-
struction that produced the same result. With this information,
the physical register identifier of the older instruction can be
retrieved from the ROB and provided to the renamer.

In this paper, we first quantify the performance gains
brought by renaming-based register equality prediction and
regular VP on SPEC benchmarks. Second, we study the
overlap between the two different schemes and show that those
mechanisms often capture different behavior.

1. INTRODUCTION

High-performance processors are expected to provide
meaningful performance improvements across generations.
To that extent, one trend has been to pack more cores on
a single die, increasing computation throughput. Unfortu-
nately, many programs do not benefit from this additional
throughput because they are intrinsically sequential. There-
fore, there is a renewed demand for increasing sequential
performance.

Increasing the superscalar width as well as the instruc-
tion window size is notoriously hard because the power
and area of related structures increase exponentially. As
a result, sequential performance improvements have been
obtained by less “direct” optimizations, such as better branch
prediction, better prefetching, move elimination, zero-idiom
elimination, micro- and macro-op fusion, and many other —
likely undisclosed — features [1], [2]. In most cases, these
optimizations do not require widening the superscalar width
or instruction window.

Another mechanism aiming at increasing sequential per-
formance is Value Prediction (VP) [3], [4], [5], where the
result of instructions is predicted to break true data depen-
dencies, increasing Instruction-Level Parallelism (ILP). VP
was proposed in the late 90’s and never implemented due to

Fernando A. Endo
INRIA/IRISA
fernando.endo @inria.fr

André Seznec
INRIA/IRISA
andre.seznec @inria.fr

complexity concerns. However, recent contributions suggest
that said complexity can be mostly eliminated [6], [7], [8].
Nonetheless, a — large — structure is required to provide
predictions.

Indeed, while Perais and Seznec obtained good perfor-
mance with a TAGE-like value predictor (D-VTAGE) requir-
ing around 16-32KB of storage [6], such a large structure is
not trivial to implement, and it is likely to have a noticeable
power draw if it must handle multiple accesses per cycle. A
more storage-efficient alternative VP scheme was proposed
by Tullsen and Seng [9]. In this embodiment, predictions
are located in physical registers, and speculation is done
by allowing dependents of a predicted instruction to see
the previous mapping of the predicted architectural register.
As a result, while the paper is entitled “Storageless Value
Prediction using Prior Register Values”, Tullsen and Seng
really proposed register equality prediction. To perform well,
this Storageless VP (SVP) scheme relies on the compiler to
create additional opportunities for reusing the physical reg-
ister previously mapped to the architectural register written
by the instruction to predict. In other words, recompiling is
desirable.

In this work, we propose to revisit SVP and address
its overheads. First, instead of relying on last mapping
reuse and on the compiler to transform code to fit this
reuse pattern, we rely on the Instruction Distance (IDist) to
identify which physical registers contain values that can be
used as predictions. The IDist of a given instruction tells
us, within a trace of committed instructions, how far is
the most recent' older instruction that produced the same
result as the instruction of interest. Given the IDist of an
instruction at Rename, a FIFO-like structure can be used
to retrieve the identifier of the physical register expected
to contain the result of the instruction. IDist has previously
been considered for Speculative Memory Bypassing (SMB)
[10].

With this scheme, inserting instructions to transform cer-
tain reuse patterns into last mapping reuse is not necessary,
hence the overhead of SVP is reduced. Additionally, since
IDist can be expressed using 8-10 bits depending on the
instruction window size, we are able to get performance
improvements with smaller structures than regular VP.

!Finding the most recent older instruction is actually not a requirement.

Lastly, SVP still allocates physical registers to predicted
instructions, even though its dependents see the previous
mapping [9]. In other words, SVP does not share physical
registers between instructions. While this specific limitation
will not impact performance compared to a baseline without
SVP (because all instructions would get their own phys-
ical register anyway), SVP does not exploit the potential
reduction in register pressure. As a result, we propose
Register Sharing for Equality Prediction (RSEP). RSEP
leverages recent propositions regarding physical register-
sharing schemes [11], [12], [13] to actually share the phys-
ical register between the predicted instruction and the older
instruction.

Overall, the paper makes the following contributions.
First, we present RSEP, a register equality prediction imple-
mentation that requires neither ISA changes nor recompiling
programs nor very large hardware structures. Second, we
quantify the potential performance improvements brought
by RSEP and VP through a state-of-the-art predictor both in
isolation and in combination and study how those mecha-
nisms overlap. Third, we study various parameters affecting
RSEP.

The paper is organized as follows: Section II provides
background on VP and SVP as well as physical register-
sharing and IDist. Sections III and IV present two flavours of
RSEP. Section V depicts the experimental framework, while
Section VI describes experimental results. Finally, Section
VII provides concluding remarks.

II. RELATED WORK
A. Value Prediction

Value Prediction (VP) was first introduced by Lipasti et
al. [3], [4] and Mendelson and Gabbay [5]. VP speculates
on the values produced by instructions, allowing dependents
to issue earlier, increasing ILP.

VP has been covered extensively in the late 90’s [9], [14],
[15], [16], [171, [18], [19], [20], [21], [22], [23], [24], but
fell out of fashion as implementing it appeared extremely
complex and intrusive to existing microarchitectures.

Recently, VP has been regaining some traction in the
community with several work aiming at simplifying its
implementation. Perais and Seznec [7] first showed that
mispredictions do not have to be detected at execute time
as long as the predictor is highly accurate. Rather, vali-
dation can be done in-order, at Commit, and the pipeline
fully squashed on a misprediction. This greatly reduces
implementation complexity as instructions do not have to
be replayed directly from the scheduler (a.k.a., Instruction
Queue or 1Q) when a value misprediction is detected.

Subsequently, the same authors proposed EOLE [8], a
microarchitecture where instructions with ready operands
flowing from the predictor are executed in-order in parallel
with Rename, while predicted instructions are executed as
late as possible in-order, at Commit. As a result, fewer

instructions enter the scheduler, and its aggressiveness can
be reduced. In [8], the issue-width is reduced from 6 to
4 with marginal performance degradation, but significant
complexity reduction in the scheduler.

Lastly, Perais and Seznec [6] also provided a way to
predict several instructions per cycle using only single-
ported structures. The same work introduces the D-VTAGE
value predictor that is inspired from the ITTAGE indirect
target predictor [25] and the D-FCM value predictor [18].
D-VTAGE is currently considered state-of-the-art.

Nonetheless, 16-32KB of storage are still required by the
predictor to obtain good performance. This is in contrast
with the proposition of Tullsen and Seng [9] where pre-
dictions are stored in the Physical Register File (PRF). In
that case, a predicted instruction is attributed a new physical
register at Rename, but dependent instructions actually see
the old mapping. This implementation allows last mapping
reuse and relies on the compiler to transform patterns that
could benefit from PRF-based VP into last-mapping reuse
patterns. We argue that while extremely storage-efficient,
this scheme has two main drawbacks. First, it requires
recompiling programs to uncover all the potential for reuse.
Second, it does not leverage physical register sharing to
reduce register pressure.

B. Register Sharing

Physical register sharing is a powerful technique that en-
ables move elimination [26], SMB [11], register integration
[27] as well as other various rename-based optimizations
[28], [29]. Nonetheless, sharing physical registers between
instructions is not trivial because ownership of a register can
change during execution as a result of a branch (or other)
misprediction.

Many previous works assume the presence of per-register
reference counters [26], [27], [28], [29], but those are
problematic in the presence of checkpointing as reference
counters do not straightforwardly lend themselves to check-
pointing [11], [12], [13].

Roth [13] proposed a matrix-style way of tracking register
sharing, which is checkpointable but hardly scalable due to
its matrix nature. Battle et al. improved on this by greatly
diminishing the size of the matrix [12]. In the former case, a
roughly ROB X #preg bit matrix is required [13], while in
the latter case, #preg X max_sharers_per_reg bit matrix
is required [12]. However, even in the latter case, a single
checkpoint of the shared state requires 512 bits for 256
physical registers and two possible sharers per register. Con-
sequently, this scheme is adapted to mechanisms generally
requiring a low number of sharers.

Perais and Seznec [11] proposed a dual-counter scheme.
The first counter tracks the number of references to a physi-
cal register (speculative), while the second counter tracks the
number of committed references (architectural). This scheme
is compatible with a checkpointing processor (only the first

O Result is Zero (Load) B Result is Zero (Other)

DO Result Already in PRF (Other)

D Result Already in PRF (Load)

IR
S99
SESES

=
Q
]

% Committed Instructions
n
9 S
R

o
%
30%
b
%
b T
X
&

[hacae.l

& \®+

n8lnall- 0000

N\ & &

& @e@ & S
S N4 b‘\ (,§t=~ ¥

L A

@ &
& o & s
& & v*‘ © ® _o& e '»f’ o
o ¥ ® & w0 oF
¥ @ > W

Fig. 1: Ratio of committed instructions for which the result is already in the PRF or is 0 (SPEC CPU’06 compiled for

Aarch64 with gcc 4.9.3 -0O3).

counter has to be checkpointed). They also argue that not all
registers are shared at any given time. Therefore, instead of
implementing two counters per physical register, entries in a
small fully-associative buffer (the Inflight Shared Registers
Buffer, or ISRB) can be allocated and freed on demand.

C. Instruction Distance

Sha et al. [10] proposed a microarchitecture that does
not implement a Store Queue. Rather, the distance between
a load and its producing store is predicted and Specula-
tive Memory Bypassing is performed. That is, the data
is forwarded to the consumer load without an associative
lookup. The distance is computed by indexing in the Data
Dependency Table (DDT) using the effective address at
Commit. Each DDT entry contains the sequence number of
the last committed store that wrote to this particular address.
Subtracting the load’s sequence number to the one contained
in the DDT yields the distance, which is then used to train
a Distance Predictor.

Recently, [11] applied the same scheme but considered
bypassing from both stores and loads using the IDist.
They also considered a TAGE-like IDist predictor, which
outperformed the gshare-like predictor of Sha et al. [10].

III. ZERO PREDICTION

We begin by pointing out that it is possible to implement a
limited form of equality prediction through the PRF without
going through the hassle of physical register sharing.

a) Hardwiring Registers to Specific Values: If a phys-
ical register is hardwired to a specific value (e.g., 0x0 or
0x1), then it does not have to be allocated or freed. This is
leveraged explicitly by certain ISAs such as MIPS or ARM
where an architectural register is defined as the zero register.
This is — most likely— leveraged implicitly in recent x86
implementations by zero-idiom elimination [2]. In that case,
instructions that put O in a register (e.g., xor eax, eax; mov
eax, 0; and eax, 0, etc.) can be detected in the frontend,
and their destination register renamed to the hardwired zero
register. The same could be done for any value [12].

b) Zero Prediction: Zero-idiom elimination is non-
speculative: Decode recognizes instructions that put 0 in
a register. However, we can imagine a zero predictor that
would allow us to rename many more destinations registers

to the zero register. Although those instructions would still
have to be executed to validate the prediction, register
sharing would be trivial (no specific management required).
Figure 1 gives the ratio of instructions that are not zero-
idioms yet write O to their destination register. The ratio is
computed by cumulating across ten 100M instruction check-
points per SPEC’06 benchmark [30]. The Figure differenti-
ates between load instructions and other register-producing
instructions. In a significant number of benchmarks, around
5% of the committed instruction actually produce or load 0,
with some benchmarks reaching almost 20% (e.g., zeusmp
and cactusADM). Therefore, there is potential for Zero
Prediction even in the presence of zero-idiom elimination.

IV. DISTANCE PREDICTION

As a second step, we consider a more general scheme that
allows any result to be predicted, as long as said result was
produced by a previous instruction, and the result is still in
a live physical register. Figure 1 also depicts the potential
for such a scheme by showing the ratio of committed
instructions for which the produced value is already in the
PRF (resolved at commit-time), cumulated across ten 100M
checkpoints per SPEC’06 benchmark. In most cases, the
ratio is around or greater than 5%, with many benchmarks
featuring a ratio greater than 30%. As a result, there is
high potential for reusing values already present in physical
registers.

A. Identifying Pairs through their Result

As we attempt to identify pairs of instructions that pro-
duce the same result, the most straightforward is to compare
couples of instruction results. However, full 64-bit compar-
ison is not required since misprediction is allowed. Con-
sequently, we propose to hash 64-bit results into a smaller
value that will be used in comparisons, trading off accuracy
for implementation complexity and power consumption.

To do so, we need a hash function to map a 64-bit value
into a much smaller word. To minimize delay, the hash
function should be simple enough, e.g., use shift and XOR
operators only, but it should also minimize the number of
false positives.

As a first step, we consider a simple folding function
that iteratively XORs n-bit chunks of the result into a n-bit

Table-based FIFO-based
X]
C§NnEW ' CSN, MUX
g , youngest f f 1
\ CSN3 [CSN, | CSN,
' | Hash; | Hash, | Hash, |
Hashqm—> CSNq [2¢ !
' Hash, é |
| L —@en
| ——en
\SUB/ ' SUB T
IDist ! IDist

Fig. 2: Example showing how the Instruction Distance is computed after Commit by using Commit Sequence Numbers
(CSNs) and either a table-based scheme (left) or a FIFO-based scheme (right).

hash. To minimize false positives, n should be different
from a power of two, to avoid many collisions for common
value (e.g., -1 in 2’s complement and 0x0 would both hash
to 0x0 with an 8- or 16-bit fold). For instance, with n = 14,
the function is defined as follows:

Hashpz.op = wvalps.o) @ valpr.1g © valyy. .28 ©
val[ss..a2) ® vales. 56)

Hashes are computed at execute time, at the output of
functional units (FUs). This does not impact the execution
critical path since dependents may get the full result on the
bypass network while the hash is being computed. Hashes
are written in a dedicated register file that mirrors the
physical register file (i.e., management is trivial). This Hash
Register File (HRF) is written at Writeback and read at
Commit.

B. Linking Pairs — Design Space

1) Previous Proposition — Pairing through The Data De-
pendency Table: Sha et al. [10] relied on a Data Dependency
Table (DDT) to identify pairs of instructions that access the
same address to perform Speculative Memory Bypassing.
An entry in the DDT contains a Commit Sequence Number
(CSN). At Commit, a load accesses the DDT with its
effective address and gets a CSN. It then subtracts its own
CSN to the CSN read from the DDT to determine its IDist.
Conversely, a store simply puts its own CSN in the entry.
All these steps are out of the critical path. In [11], loads also
write their CSNs in the DDT. This latter scheme is depicted
in the left part of Figure 2.

Adapting the DDT to RSEP appears straightforward: only
indexing changes, as it should be done with the hash present
in the HRF rather than the effective address.

However, if such a structure may be adapted to the case of
SMB because only loads and stores have to access it, it may
in fact not be adapted to RSEP. The reason is that superscalar
processors may commit several instructions per cycle, hence
the DDT will have to support multiple accesses per cycle.

If the DDT were indexed using the PC of instructions,
banking could be envisioned to support multiple accesses
per cycle without implementing several ports. Unfortunately,
since hashes of register values are used to index it, banking
is of little help, and the DDT is simply impractical for our
purpose.

2) Simple Pairing through a FIFO Structure: An alter-
native way to compute the IDist is to keep a history of the
n last retired instructions in a FIFO. Each cycle, the hashes
of c retired instructions are compared to the n older hashes.
They are also compared with each other to make sure that
no pair goes unnoticed. Finally, the c retired instructions are
pushed in the FIFO. This structure is depicted in the right
part of Figure 2.

While this scheme alleviates the need for a highly ported
structure such as the DDT, a significant number of com-
parisons must be performed each cycle. In particular, for
a commit-width of 8, 28 hash-bit comparisons must be
performed just within the commit group. Then, each in-
struction of the commit group requires another n hash-bit
comparisons. Assuming that the last 256 instructions are
kept in the FIFO and considering 14-bit hashes, this amounts
to 2076 14-bit comparisons’ each cycle, for a buffer size of
768 bytes (10-bit CSN).

Consequently, this scheme should most likely be limited
to small buffer sizes to minimize power consumption. This
would entail that some pairs fitting within the processor
window would not be captured (i.e., IDist < ROB_size with
IDist > FIFO_size).

3) Cost-Effective Pairing through Sampling: To limit the
number of comparisons performed each cycle, sampling
can be applied. That is, for a commit group containing
c instructions, a single one can be picked randomly and
attempt to identify a matching hash in the FIFO history.

However, this is likely to hinder potential by greatly
increasing training time. In particular, instead of being pre-

22048 comparators to check 256 hashes for 8 committed instructions,
and 28 comparators to check hashes within the group of 8 committed
instructions.

dicted after o occurrences (at best), an instruction will now
begin to be predicted after o x commit_width occurrences
(assuming it is picked once every commit_width time it is
retired). Given that in our experiments, o is 255 (confidence
counters saturate at 255 and we predict only when the
counter is saturated), training time will increase significantly.

a) Sample to Identify Likely Candidates: To mitigate
this phenomenon, we propose to perform sampling only
to identify likely candidates for RSEP. In other words, we
define two confidence threshold in the distance predictor.
The first, use_pred, is the value that the confidence counter
must exceed for the instruction to be predicted. We found
that on average, use_pred = 255 greatly limits the number
of mispredictions, maximizing potential. The second, start_-
train, is the value that the confidence counter must exceed
for the instruction to be considered a likely candidate for
RSEP.

b) Finalize Training With the Validation Mechanism:
Likely candidates for RSEP will flow through the predic-
tion validation mechanism described in Section IV-F and
explicitly compare their destination register with the one
they would have shared if they had been predicted. They
will not check the FIFO at Commit.

Assuming validation has low performance and complexity
overheads, this allows to continue training likely candidates
by performing a single 64-bit comparison per instruction.
In addition, several instructions can be trained each cycle,
while Commit can only compute one IDist each cycle with
the sampling approach.

As a first order approximation, an instruction can begin
to be predicted after (start_train x commit_width) +
(use_pred — start_train) occurrences. For instance, for
a training threshold of 7 and a commit width of 8, this
amounts to 304 occurrences respectively (at best), instead
of 255 occurrences without sampling.

C. The Distance Predictor

Once the IDist has been computed for a particular dy-
namic instruction, the distance predictor must be trained so
that an IDist can be provided to subsequent instances of the
corresponding static instruction. Sha et al. used a gshare-like
predictor with two tables to predict the distance and perform
Speculative Memory Bypassing. The first table is direct-
mapped, while the second one uses a hash of the PC and the
global branch history [10]. Recently Perais and Seznec used
a TAGE-like structure and showed that it outperformed a
gshare-like predictor when considering Speculative Memory
Bypassing [11].

Consequently, we use a TAGE-like predictor to perform
IDist prediction. This predictor features several partially
tagged tables indexed by a hash of the PC and some bits of
the global branch history (as well as some bits of the global
path history). Those partially tagged tables are backed up
by a PC-indexed, untagged base table. Each entry contains

a distance (8-9 bits for a 256- 512-entry ROB), as well as
a confidence counter. Indeed, since mispredicting is very
expensive (full pipeline squash as in regular VP), speculation
must take place only if the predictor is very confident that
the prediction is correct [7]. Moreover, each partially tagged
entry contains a partial tag as well as a single useful bit used
by the replacement policy. We refer the reader to [31] for
more details on how TAGE operates.

As a first step, we consider a very large predictor, with
6 components of 1K entries® in addition to a 16K-entry*
base component, amounting to 42.6KB. However, we show
in our experiments that good results can be obtained with a
predictor requiring only around 10KB of storage.

D. Complexity of the Proposed Structures

1) Hash Register File: The HRF is a register file-like
structure that requires at most 8 write ports and 8 read ports
assuming an 8-wide pipeline. However, if writes are random-
access because writeback is done out-of-order, reads are
done at Commit and are therefore in-order. Consequently,
the HRF can be banked, each bank featuring only one read
port. Note that the banking of the HRF must mirror the
banking of the PRF. In addition, similarly to the PRF, all
writes are guaranteed to be mutually exclusive, and all writes
are guaranteed to be exclusive with reads.

Moreover, HRF registers are only n-bit wide with n the
width of hashes. In our experiments, we found that good
results were obtained with 14-bit hashes.

Thus, the HRF has to be contrasted with the PRF that
implements 64-bit registers and should handle up to 16
random reads and 8 random writes per cycle assuming the
same 8-wide pipeline. Given that PRF area and power grow
quadratically with port count and quasi linearly with the
register width [33], we expect the HRF to represent less
than 5% of the PRF area.

2) FIFO History: Because it is managed as a FIFO, the
history does not require many random access ports. Rather,
each cycle Commit retires instructions, those instructions
are inserted at the tail of history while the head instructions
are removed. Note that the history can be implemented as a
circular structure and managed through pointers, i.e., there
is no need to explicitly shift the content of entries.

To handle superscalar behavior without sampling, each
entry must provision commit_width comparators. This
amounts to 2076 comparators for a 256-entry structure able
to handle a commit_width of 8. Note that all comparators are
required only if Commit retires 8 instructions per cycle at
a steady rate. If less instructions are committed each cycle,
then some comparators will not be used. In particular, as

30ne 8-bit distance, one 3-bit probabilistic confidence counter [7], [32],
one useful bit and a partial tag (respectively 13,14,15,16,17 and 18-bit wide)
per entry.

4One 8-bit distance and one 3-bit probabilistic confidence counter per
entry.

retiring commit_width instructions that all produce a register
is unlikely, it is possible to implement less comparators than
the theoretical maximum at the cost of skipped comparisons
if Commit retires more instructions than expected. In our
experiments, we found that on average, 6 (respectively 4)
comparators are sufficient in more than 95% (respectively
70%) of the cases in most SPEC’06 benchmarks. On our
framework, only /bm and gamess frequently retire 8 instruc-
tions eligible for distance prediction (> 25% and > 5% of
the commit groups, respectively).

The remainder of the complexity lies with how the IDist
is actually computed, as this depends on what information
is stored in the history.

a) Explicit IDist Computation: One possibility is for
the IDist to be explicitly computed by subtracting the
instruction’s CSN to the older CSN matching the hash. This
implementation requires that 1) Each FIFO entry provision
space for a CSN and 2) Commit_width CSN-bit adders
be implemented to compute the IDist. Those adders should
be able to handle CSN wrap-around. In this case, a 256-
entry history requires 768 bytes of storage, but since only
instructions that produce a register are pushed in the buffer
at retirement, less entries may suffice to capture a distance
of 256.

b) Implicit IDist Computation: A second implementa-
tion would push all instructions in the buffer, even those that
do not produce a result and therefore cannot be paired with
other instructions. This allows the instruction distance to be
computed trivially. That is, since the instruction distance is
respected in the buffer, a hash match for a given pair of
instructions corresponds to a statically defined instruction
distance. Consequently, the adders are not required, and
neither are the CSNs. In that case, a 256-entry history
requires 448 bytes of storage.

¢) Tradeoff: In a nutshell, the main benefit of the first
implementation is that instructions that do not produce a
result are not pushed in the buffer, virtually increasing its
size. However, it requires more storage in each buffer entry,
which will increase power consumption. In addition, more
logic is required as adders must be implemented.

On the contrary, the second implementation may be more
power efficient as adders are not required and entries are
smaller. However, because “useless” instructions occupy
entries in the buffer, more entries may be required to
capture pairs that were captured with less entries in the first
implementation.

Therefore, depending on the number of additional entries
required for the second implementation to capture as many
pairs as the first one, one implementation may be more
power efficient than the other. In our experiments, we only
consider the first implementation, but we stress that there
exists a tradeoff regarding the buffer implementation.

d) Distance Predictor: The distance predictor only
stores distances that are reachable within the processor

window. That is, for a 256-entry ROB, 8-bit fields are
sufficient. As a result, at a similar number of entries, a
TAGE-based distance predictor will require significantly less
storage than a TAGE-based value predictor.

In addition, contrary to the Data Dependency Table that
is indexed using register value hashes, the distance pre-
dictor is indexed using the instruction PC. As a result,
it can be banked to handle multiple accesses per cycle
without requiring multiporting [6], [34]. That is, while the
distance predictor will still take up several KB of storage,
its complexity will remain comparable to that of the branch
predictor.

E. Sharing Registers

1) Reorder Buffer: Our scheme relies on the fact that
inflight instructions are tracked in a FIFO structure, the
Reorder Buffer (ROB). In particular, with the IDist of
an instruction, we can index into the ROB and hit the
instruction that is expected to produce the same result as the
predicted instruction. It is then straightforward to retrieve the
physical register identifier of the destination register. Note
that for clarity’s sake, we consider that the ROB contains the
destination identifier and can be accessed in a cost effective
fashion. In practice, a dedicated FIFO structure managed
with the ROB head and tail pointers may be implemented,
alleviating the need for additional ROB reads.

2) The Inflight Shared Registers Buffer: RSEP requires
physical register reference counting. To accommodate pro-
cessors recovering from branch — or other — mispredictions
by restoring a checkpointed state, we use the Inflight Share
Register Buffer (ISRB) [11].

The ISRB is a small fully-associative structure where
entries are allocated when a reuse opportunity is detected.
Each entry features two counters, referenced, that tracks the
number of references to the register (including speculative
ones) and committed, that tracks the number of committed
references. Each time a register is reused, referenced is in-
creased, and each time a register is de-referenced, committed
is increased. If after this update, committed is strictly greater
than referenced (or committed overflows), the entry and
register are freed. Similarly, checkpoint recovery consists in
restoring the checkpointed value of referenced and freeing
the entry and register if committed is strictly greater than
referenced. We refer the reader to [11] for a more detailed
description of the ISRB. If no ISRB entry is free, no sharing
takes place.

F. Validating Predictions

Equality prediction — in the form of a predicted distance
— must be validated. Validating equality predictions can be
done in several manners, some of which may significantly
increase complexity and power consumption. In the next
paragraph, we depict a possible implementation that attempts
to minimize both, nonetheless stressing that final complexity
is strongly dependent on the overall design.

loads: ar2 = *p

FUs

PRF
' CMP

squash on mismatch

-

Rename Map (areg2,pregd2)
ISRB

E areg|preg ref com :
: (1J pregd2 [0++[0 |!
2 42 ,

update distance predictor

o
Fetch [~ Decode |~ Rename Reordér Buffer | Commit
T CSNpew
y s ’ T share\preg42 HRF - preghash
’ \ / \
, 7 \ / \
Distance Mol<= / \
Predictor [~ S GOIEEER) /

Fig. 3: RSEP pipeline diagram. Blocks belonging to the baseline superscalar design are in blue, while new blocks added for

RSEP are in orange.

1) A Possible Validation Flow: An acceptable solution
to perform validation should not increase the number of
registers read from the PRF each cycle, and it should
not force a physical register to be allocated to predicted
instructions.

To respect the first requirement, we propose to inject
a compare p-op to perform validation. Through this, the
distance-predicted instruction does not have to read an
additional register at issue time. However, to respect the
second requirement, we must guarantee that the injected p-
op executes back-to-back with its corresponding distance-
predicted instruction. This allows one operand to be caught
on the bypass network, and avoids the need to buffer results
of predicted instructions in the PRF or a dedicated structure.

To enforce this behavior, the predicted instruction is made
dependent on the initial instruction it is sharing a register
with. This ensures that when the validation p-op issues, the
shared register (or bypass network) has the value to compare
to the actual result of the predicted instruction. Adding this
additional dependency is less of a hurdle if one considers
matrix schedulers [35], but may have a significant cost for
broadcast-based schedulers if the additional dependency is
not already provisioned (e.g., to handle 3/4-input p-ops).

Then, the picker has to be modified to always prioritize
validation p-ops so that they are always issued in the cycle
following their corresponding predicted instruction.

Finally, validation throughput should be high enough
w.r.t. the maximum number of predicted instructions that
issue each cycle. The most straightforward way is to issue a
validation p-op to the same functional unit as the predicted
instruction and to put a 64-bit comparator at the output of
every relevant FU.

a) Multi-cycle instructions: This mechanism is
straightforward for single-cycle instructions. However,
it is not clear how multi-cycle (e.g., multiplication) and
variable-latency (e.g., division, load) instructions can be
handled.

To handle multi-cycle but fixed latency instructions, a
counter can be put in the IQ entry such that the validation
u-op becomes ready only after inst_latency cycles (the
counter is decremented each cycle). In this fashion, the
validation p-op will see the instruction result on the bypass
network when it enters Execute.

To handle variable latency instructions, a possibility is
to wake up the validation p-op only when the instruction
finishes, and to buffer the instruction result within the bypass
network the time it takes for the validation p-op to read the
shared physical register (e.g., 2-4 cycles).

It should also be noted that in theory, because of multi-
cycle ans variable latency instructions, it is still possible
that more validation p-ops than there are issue ports must
be issued in a given cycle. However, we believe that by
carefully allocating FUs to issue ports at design time, this
can be made rare enough to squash and inhibit prediction
for a few hundred cycles when detected.

b) Reducing Validation Footprint: At this point, the
cost of validation appears significant since 1) Predicted
instructions occupy two entries in the ROB and 1Q and
2) Predicted instructions consume two issue slots of their
instruction type (i.e., when the validation p-op of a load
issues, it prevents an actual load from issuing.)

1) can be addressed as injecting distinct p-ops is not
necessary if validation is performed in this fashion. That is,
instead of dedicating ROB and scheduler entries to validation
u-ops, we can force the picker to issue predicted instructions

twice. First, the instruction is issued normally. Second,
the instruction is issued again, but with the semantics of
a comparison reading a single operand in the PRF: the
destination register of the predicted instruction. The second
operand will be available directly at the FU. Thanks to this,
pressure on the ROB and IQ is reduced, although predicted
instructions must retain their scheduler entry for at least an
additional cycle.

Unfortunately, we observed that issuing the validation p-
op to the same functional unit as the predicted instruction
significantly degraded performance in several benchmarks.
The reason is that when prediction coverage for loads is
high, load throughput cannot be sustained because regular
loads compete with load validation p-ops for the two load
issue ports.

Sustaining load throughput while being able to issue
validation p-ops for predicted loads requires that both a
validation p-op and a load be steered to a single load issue
port in a single cycle. This is likely to entail significant
change in the picker and datapaths.

As a result, we propose to leverage the global bypass net-
work and allow a validation p-op to be issued to a different
port than the one where the instruction it is validating issued.
Then, non-load ports can be given priority when issuing
validation p-ops, such that load issue ports will be used for
validation purpose only if many validation p-ops are issued
in a single cycle. This will also mitigate the performance loss
incurred by using load units to perform simple comparisons.

¢) Summary: This possible implementation of equality
prediction validation issues predicted instructions two times,
the second instance being in charge of performing a simple
64-bit comparison without even writing its result in the PRF
and bypass network. The overhead is kept minimal and
stems from delaying the issue of actual instructions when
there are validation p-ops to issue, as well as the additional
dependency in the scheduler. No complex functional unit
is locked just to perform the comparison, which allows to
sustain the maximum load throughput.

In addition, because we rely on the scheduler to make a
predicted instruction depend on the instruction producing the
shared register, we are able to detect instructions for which
the reused register is the last arriving operand (i.e., the de-
pendency chain is lengthened by RSEP). However, we found
that it is generally more interesting to allow such instructions
to train the predictor because this behavior is often transient.
Only in a couple of benchmarks is performance higher when
those dynamic instructions are forbidden from training the
distance predictor.

G. Overview

Figure 3 shows a high-level overview of the RSEP
pipeline. First, as instructions flow through the frontend,
they access the distance predictor, which provides them with
an IDist if it is confident enough. The distance is used

to retrieve a register index from the ROB, which is then
used as the renamed destination register at Rename. The
ISRB is also notified that one more instruction references
this register. Then, at Execute, the prediction is validated
by issuing predicted instructions a second time. Finally, at
Commit, retired instructions enter the FIFO history and one
is selected randomly to check its hashes against the hashes
of older instructions. The IDist predictor is also trained at
Commit. In the event of a misprediction, the pipeline is
flushed once the mispredicted instruction reaches the head
of the ROB.

As a side note, we point out that while reminiscent of
general reuse through register integration as proposed by
Petric et al. [27], RSEP is in fact more general. In particular,
it allows unrelated instructions to share the same physical
register while [27] allows reuse only for instructions with
the same opcode and the same renamed operands.

H. Overlap With Existing Techniques

1) Move Elimination: Move elimination is a known fea-
ture relying on physical register sharing [26]. The idea is
to implement circuitry to detect register-to-register moves
(or equivalent idioms such as orr x0, zero_reg, xI or
add x0, zero_reg, xI in Aarch64), and execute them at
Rename by renaming the destination register to the source
register. Move elimination is of particular interest in x86
since one of the sources also acts as the destination in most
instructions, i.e., registers often have to be copied if the
variable they contain has to be reused later. Recent Intel
processors implement move elimination [2].

Ideal RSEP encompasses move elimination. Indeed, the
move to eliminate will be predicted to depend on the in-
struction that produces its source register, and its destination
register renamed to the destination register of the oldest
instruction. This is equivalent to move elimination. However,
move elimination is non-speculative, which first guarantees
that no misprediction will take place, and second allows to
not execute the move.

As a result, when considering RSEP, we also implement
move elimination and do not perform distance prediction for
64-bit register-to-register moves.

2) Speculative Memory Bypassing: Speculative Memory
Bypassing attempts to identify def-store-load-use chains to
collapse them into def-use pairs by renaming the destination
register of the load to the source register of the store.
In particular, in Sha et al., Distance Prediction is used to
identify store-load pairs to the same address [10]. The main
difference with RSEP is that the Data Dependency Table is
indexed using the effective address of memory instructions.
In RSEP, values are used, which has an advantage.

Indeed, since RSEP links instructions through their result,
loads can use registers from instructions on a different
dependency chain as long as the values match. Therefore,

L1I 8-way 32KB, 1 cycle, 128-entry ITLB

32B fetch buffer, 8-wide fetch over 1 taken branch

TAGE 1+12 components [31] 15K entry total, 17 cycles
min. mis. penalty; 2-way 4K-entry BTB, 32-entry RAS
8-wide decode

8-wide rename with zero-idiom elimination [2]

192-entry ROB, 60-entry IQ unified, 72/48-entry LQ/SQ
(STLF lat. 4 cycles), 235/235 INT/FP registers
2K-SSID/1-K LFST Store Sets, not rolled-back on squash [36]
8-issue, 4ALU(lc) including 1Mul(3c) and 1Div(25c*),
3FP(3c) including 1FPMul(3c) and 1FPDiv(11c*), 2Ld/Str,
1Str

Full bypass

8-wide retire

LID 8-way 32KB, 4 cycles Ioad-to-use, 64 MSHRs, 2 load
ports, 1 store port, 64-entry DTLB, Stride prefetcher (degree
)]

Unified private L2 16-way 256KB, 12 cycles, 64 MSHRs, no
port constraints, Stream prefetcher (degree 1)

Unified shared L3 24-way 6MB, 21 cycles, 64 MSHRs, no
port constraints, Stream prefetcher (degree 1)

All caches have 64B lines and LRU replacement

Dual channel DDR4-2400 (17-17-17), 2 ranks/channel, 8
banks/rank, 8K row-buffer, tREFI 7.8us; Min. Read Lat.: 36
ns. Average: 75 ns.

Front End

Execution

Caches

Memory

TABLE I: Simulator configuration overview. *not pipelined.

there is more potential for the latency of loads to be hidden
and ideal RSEP encompasses SMB.

In fact, since SMB is also speculative, there is no obvious
performance advantage in considering SMB only versus full
blown RSEP.

V. EVALUATION METHODOLOGY

We run experiments using the cycle-level simulator gem5
[37]. We use the 64-bit ARMvS ISA (Aarch64). We model
an aggressive 8-wide microarchitecture for which the param-
eters are summarized in Table I. The parameters are on par
with Intel Haswell’s. When considering Value Prediction,
we use the parameters given in [6] (amounting to a roughly
256KB D-VTAGE predictor).

a) Benchmarks: We consider single-thread workloads
(SPEC’06 [30] compiled with gcc4.9 -O3 -mtune=armyv8).
We use the whole benchmark suite and consider ref inputs.
We uniformly collected 10 checkpoints per benchmark.
We warm-up the processor structures for SOM instructions
then collect statistics for 100M instructions. We then report
IPC for each benchmark as the harmonic mean of the 10
individual IPC.

VI. EXPERIMENTAL RESULTS
A. Performance

1) Comparison with Other Mechanisms: Figure 4 re-
ports performance improvements obtained with different
mechanisms: zero prediction, move elimination, equality
prediction, value prediction and finally, a combination of
equality prediction and value prediction. We point out that
both equality and value prediction cover zero prediction,
and recall that as a side-effect of the ability to share
physical registers when doing distance prediction, we also
implement move elimination when equality prediction is

present. Finally, for this first experiment, we consider an
ideal validation mechanism for zero prediction and RSEP
as well as a large FIFO history for RSEP (>> ROB).

Figure 5 reports the percentage of committed instructions
that is processed by each mechanism when equality predic-
tion is used, as well as when the combination of equality
prediction and value prediction is used.

Let us begin by instructions that can be zero predicted.
While Figure 1 in Section IIT suggests that many instructions
produce 0, Figure 5 suggests that few of those instructions
do so in a regular fashion, as few zero predictions take
place in general. This translates in small speedups in two
benchmarks, gamess and libquantum.

Second, even though we are considering Aarch64 and not
x86, move elimination is able to capture more than 5% of the
committed instructions in around a third of the considered
benchmarks. We recall that in this experiment, only 64-bit
moves are considered. Once again, this translates in marginal
speedups in only two benchmarks, dealll and xalancbmk.

Moving on to equality prediction, we can observe in
Figure 5 that more than 10% of the committed instructions
are captured in 7 benchmarks out of 29. This generally trans-
lates in marginal speedups, except in mcf, dealll, hmmer,
libquantum, omnetpp and xalancbmk.

There is no particular correlation between the category
of instructions that are predicted and the speedup that
is observed. In particular, in mcf, almost only loads are
predicted, but in dealll, most predicted instructions are not
loads.

Value prediction is able to capture many more instructions
in a significant amount of benchmarks, although most are
non-load instructions, as depicted in Figure 5. However,
this does not always translate in higher speedups than with
distance prediction. For instance, in mcf, dealll, hmmer,
libquantum and omnetpp, equality prediction performs bet-
ter, even though far fewer instructions are captured. On the
contrary, value prediction performs better in perlbench, wrf,
xalancbmk and several other benchmarks where speedup is
less pronounced (e.g., zeusmp, gromacs).

Finally, we combine equality and value prediction and
observe that in a single case, perlbench, RSEP is redundant
with VP. For this benchmark, we can see in Figure 4
that speedups are similar when using value prediction only
and when using the combination of both mechanisms. In
Figure 5, this translates in value prediction covering close
to all distance-predicted instructions. However, in virtually
all other cases, VP does not fully overlap with equality
prediction. As such, there is benefit in combining both
mechanisms (e.g., mcf, dealll, hmmer, libquantum, omnetpp,
xalancbmk) even though both distance and value predictors
are TAGE-based.

The reason for this behavior is that equality prediction
captures equality between — potentially unrelated — instruc-
tions. It does not attempt to predict the particular value. As

O Zero Pred 0O Move Elimination

20.0%
17.5%
15.0%
12.5%
10.0%

Speedup

.
N
ef\é\ ‘o1>Q ’b'g QQ:? « & ((‘Qé '\\é’bb ’bb £
& s
& W o”~°‘A @99 “W V“’Ay w“ B é*"’ N u"!c" NS
of > W N b?’o) & o N
) (S
= @

Lot Jl JI
2o uﬂﬂﬂ_DMﬂ _ﬂiﬂ_u_ — cadlll ol _an

D
K

CORSEP OVPred MRSEP + VPred

MMJ_MﬂJ ﬂ

FooA & & & O &
N & N & > £
& S G\ <§) & Q? <> ($§3 <> ?f} “y & €9
. Q 1% RS ol & P QJ o S\ o Q N
2 ™ o° N & N P& o > <§° o A A°
V g N W qg §9 O AY W %*
& §SL ™ W

Fig. 4: Speedup over baseline using different performance-optimizing mechanisms.

OZero Idiom Elim @ Move Elim OZeroPred OloadZeroPred ODistPred @ Lload DistPred OValuePred @ Load Value Pred

60%

2N oW s ow
3 3 & 8 g
R R R R

o Q D DEEQQEE ; DH QEE

.
Qe‘ &

9% Committed Instructions

D>
Q ’5 N
5 & @ a @ v 0 e &
E N @ & & @ s P
S » » I a

&
o A
&

& o
® [

& o

DE EDQD_D% Dﬂm _DEQ

5 © R
)Y @&z K ‘5’ “\)@ < « S S B S
& < :
SRS &S & @ R R LN
& & & o @
> ‘3 . Q;l’\ » bf‘\ ™
» »

& & ©

| gﬁ sl

%,
‘L’)‘
. 5
%

Fig. 5: Percentage of committed instructions covered by each mechanism. Two bars are shown for each benchmark, the first
considers RSEP only, while the second considers VP on top of RSEP.

a result, the value may not be predictable by conventional
means, yet performance gain can still be obtained through
sharing. On the contrary, value prediction focuses on cap-
turing the exact result.

2) Impact of the History Depth: We experimented with
different FIFO history depth for RSEP (only instructions
producing a result are pushed in the history). We found that
in general, the performance obtained with a FIFO history
is higher (from 0 to 2.5 additional speedup percentage
points) than the performance obtained with an unrealistic
16KB DDT. The reason is that using a FIFO allows to
match with several older instructions and select the matching
distance that corresponds to the predicted distance (assuming
the predicted distance is propagated with instructions, e.g.,
in a dedicated FIFO). This decreases noise due to some
instructions matching by chance rather than because they
always produce the same result. Using a DDT forces to
match with the most recent older instruction, and therefore
suffers from noise due to “per chance” matches.

Regardless, on the SPEC’06 benchmarks and for a max-
imum of 224 instructions in flight between Rename and
Commit, a history with only 128-entry appears sufficient.
In its ideal implementation (i.e., without sampling), such a
structure requires 1024 14-bit comparators and 384 bytes of
storage (10-bit CSNs and 14-bit hashes). We note that except
in a handful of cases (hmmer and xalancbmk), keeping only
32 older instructions is sufficient to achieve most of the
potential, meaning that matching pairs are often close.

3) Impact of ISRB Size: We ran experiments varying the
number of entries in the ISRB and found that implementing
only 24 entries of two 6-bit counters (tagged by the physical
register identifier) was not detrimental to performance. As

a result, the storage cost of the sharing mechanism itself
remains limited.

4) Impact of Validation and Sampling: Figure 6 depicts
the impact of the validation mechanism on the potential
performance improvement of RSEP. We consider an ideal
(free) mechanism against a mechanism where predicted
instructions are issued a second time either to the FU where
the predicted instruction issued (blue bar) or to any available
FU (white bar). As mentioned in Section IV-FI1, issuing
a second time has very limited impact, but issuing to the
same FU is problematic in many cases as maximum load
throughput cannot be sustained. Consequently, the solution
relying on the bypass network to allow validation p-ops to
be issued to any functional unit should be privileged.

The two last bars of Figure 6 show performance when
sampling is applied at Commit. That is, only one committing
instruction — chosen randomly — accesses the FIFO history to
attempt to find a match. However, once a certain confidence
threshold (15 and 63 in Figure 6) is reached in the distance
predictor, instructions flow through the validation mecha-
nism of RSEP to continue training the predictor. Sampling
has moderate impact in dealll and hmmer.

However, in bzip, a slowdown of around 2% is observed
when the threshold is 15. This is due to the fact that equality
prediction occasionally lengthens the critical path, and that
because of sampling, this lengthening also happens during
the training phase, i.e., when RSEP does not provide any
gain. Using a higher threshold limits this effect, therefore,
we choose a threshold of 63 in further experiments to
minimize slowdown on the overall suite. bzip2 is one of the
two benchmarks — perlbench is the other — that would benefit
from forbidding instructions that occasionally increase the

Speedup

Speedup

O Ideal Validation @ Issue 2X and lock FU Olssue 2X @ Issue 2X + Sampling (Thresh 15) Olssue 2X + Sampling (Thresh 63)

15.0%

Fig. 6: Impact of equality prediction validation and sampling on performance.

@ Ideal Implementation (42.6KB, large enough structures) O Realistic (10.1KB, finite structures)

15.0%
12.5%
10.0%
7.5%
5.0%
2.5%

0.0%‘D1El:.|]3 S

-2.5%

A

=

& R > & K
& 6S§ 4 q@gﬁ 6¢¥ %6s of§& $§& 6éﬁ §§§ QgP 6§§ &§$ 6é$ d§¢ o<§ <§§. & Gé& ¢§9 6§9 Q#P dép qSéQ éés & \fﬁ <§> é§§
NI SRS . ¢ PO & & < < &S S & O S A\ O L) Q &
EXIRS o W R A MR I G N A I S NN S W KN
o T W AR A O S oF & @ o P
» % RN W

Fig. 7: Performance of ideal RSEP and realistic RSEP using much smaller structures.

length of the critical path to update the distance predictor.
B. Putting It All Together

Finally, we run experiments considering all the results
obtained so far. In particular, we consider a 128-entry FIFO
history, a 24-entry ISRB with 6-bit counters, and we perform
sampling to train the distance predictor, using a threshold
of 63. We also reduce the size of the predictor to 10.1KB
by using a 2K-entry base predictor, six 512-entry tagged
components, and using smaller partial tags (from 5 to 10
bits respectively).

Figure 7 gives speedup over the baseline for this con-
figuration and the ideal configuration. Overall, using more
realistic sizes and training/validation mechanisms has a
noticeable impact on the performance improvement brought
by RSEP. However, speedup is still present and close to 10%
in 4 benchmarks, while remaining small for most of the
suite. In those experiments, prediction accuracy is always
greater than 99.5% while average coverage is 28.5% of
the eligible dynamic instructions (e.g., stores and branches
are not eligible). Moreover, we note that the overall stor-
age required by this particular implementation of RSEP is
around 10.8KB: 10.1KB for the predictor, 384B for the FIFO
history, 224B to propagate distances in a dedicated FIFO so
matching in the FIFO history can privilege the predicted
distance rather than the shortest one, and 63B for the ISRB
(not counting checkpoint space). This has to be contrasted
with the 16-32KB dedicated to Value Prediction in [6].

VII. CONCLUSION

Amdahl’s Law calls for new architectural features to
improve sequential performance. In this paper, we presented

such a feature: equality prediction leveraging register renam-
ing, RSEP. RSEP identifies pairs of instructions producing
the same result and let the younger instruction use the
physical destination register of the older instruction as its
own destination register. This study illustrates the large
redundancy present in the physical register file. Our propo-
sition, RSEP, shows that this potential could be exploited:
it allows to increase performance by 5% to 11% in five
SPEC’06 benchmarks, while requiring around 10.8KB of
storage and no multi-ported structures.

While many instructions covered by RSEP can also be
value predicted, we found that RSEP is able to significantly
improve performance over value prediction in benchmarks
where it performs well on its own. Consequently, RSEP can
be seen as yet another opportunity to perform speculation
that has moderate storage and complexity requirements.

ACKNOWLEDGMENT

This work was partially supported by an Intel research
gift.

REFERENCES

[1] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,
September 2013.

[2] Intel. (2014, September) Software optimization manual.
[Online]. Available: http://www..fr/content/www/fr/fr/architecture-
and-technology/64-ia-32-architectures-optimization-manual.html

[3] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” Proceedings of the International conference
on Architectural Support for Programming Languages and Operating
Systems, 1996.

[4] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in Proceedings of the Annual International Symposium
on Microarchitecture, 1996.

[5]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Mendelson and F. Gabbay, “Speculative execution based on
value prediction,” Technion-Israel Institute of Technology, Tech. Rep.
TR1080, 1997.

A. Perais and A. Seznec, “BeBoP: A cost effective predictor infras-
tructure for superscalar value prediction,” in Proceedings of the In-
ternational Symposium on High Performance Computer Architecture,
2015.

——, “Practical data value speculation for future high-end pro-
cessors,” in Proceedings of the International Symposium on High-
Performance Computer Architecture, 2014.

——, “EOLE: Paving the way for an effective implementation of
value prediction,” in Proceedings of the International Symposium on
Computer Architecture, 2014.

D. Tullsen and J. Seng, “Storageless value prediction using prior
register values,” in Proceedings of the International Symposium on
Computer Architecture, 1999, pp. 270-279.

T. Sha, M. M. K. Martin, and A. Roth, “NoSQ: Store-load commu-
nication without a store queue,” in Proceedings of the International
Symposium on Microarchitecture. TIEEE Computer Society, 2006, pp.
285-296.

A. Perais and A. Seznec, “Cost-effective physical register sharing,”
in Proceedings of the International Symposium on High-performance
Computer Architecture. 1EEE Computer Society, 2016, p. TBD.

S. Battle, A. Hilton, M. Hempstead, and A. Roth, “Flexible register
management using reference counting,” in Proceedings of the Interna-
tional Symposium on High Performance Computer Architecture, 2012,
pp. 1-12.

A. Roth, “Physical register reference counting,” Computer Architec-
ture Letters, vol. 7, no. 1, pp. 9-12, Jan 2008.

M. Burtscher and B. G. Zorn, “Exploring last-n value prediction,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 1999.

B. Calder, G. Reinman, and D. Tullsen, “Selective value prediction,”
in Proceedings ofthe International Symposium on Computer Architec-
ture., 1999,

F. Gabbay and A. Mendelson, “The effect of instruction fetch
bandwidth on value prediction,” in Proceedings of the International
Symposium on Computer Architecture, 1998.

——, “Using value prediction to increase the power of speculative
execution hardware,” ACM Trans. Comput. Syst., vol. 16, no. 3, pp.
234-270, Aug. 1998.

B. Goeman, H. Vandierendonck, and K. De Bosschere, “Differential
FCM: Increasing value prediction accuracy by improving table usage
efficiency,” in Proceedings of the International Conference on High-
Performance Computer Architecture, 2001.

B. Rychlik, J. Faistl, B. Krug, and J. Shen, “Efficacy and performance
impact of value prediction,” in Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
1998.

Y. Sazeides and J. Smith, “The predictability of data values,” in
Proceedings ofthe International Symposium on Microarchitecture,
1997.

——, “Implementations of context based value predictors,” De-
partment of Electrical and Computer Engineering, University of
Wisconsin-Madison, Tech. Rep. ECE97-8, 1998.

A. Sodani and G. Sohi, “Understanding the differences between value
prediction and instruction reuse,” in Proceedings of the International
Symposium on Microarchitecture, 1998.

K. Wang and M. Franklin, “Highly accurate data value prediction us-
ing hybrid predictors,” in Proceedings of the International Symposium
on Microarchitecture, 1997.

H. Zhou, J. Flanagan, and T. M. Conte, “Detecting global stride local-
ity in value streams,” in Proceedings of the International Symposium
on Computer Architecture, 2003.

A. Seznec, “A 64-Kbytes ITTAGE indirect branch predictor,” Journal
of Instruction-Level Parallelism, 2011.

S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz, “A
novel renaming scheme to exploit value temporal locality through
physical register reuse and unification,” in Proceedings of the Inter-
national Symposium on Microarchitecture, 1998.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

V. Petric, A. Bracy, and A. Roth, “Three extensions to register
integration,” in Proceedings of the International Symposium on Mi-
croarchitecture, 2002, pp. 37-47.

V. Petric, T. Sha, and A. Roth, “Reno: a rename-based instruction op-
timizer,” in Proceedings of the International Symposium on Computer
Architecture, 2005.

B. Fahs, T. Rafacz, S. J. Patel, and S. S. Lumetta, “Continuous
optimization,” in Proceedings of the International Symposium on
Computer Architecture, 2005.

Standard Performance Evaluation Corporation. (2006) CPU. [Online].
Available: http://www.spec.org/cpu2006/

A. Seznec and P. Michaud, “A case for (partially) TAgged GEometric
history length branch prediction,” Journal of Instruction Level Paral-
lelism, vol. 8, 2006.

N. Riley and C. B. Zilles, “Probabilistic counter updates for predictor
hysteresis and stratification,” in Proceedings of the International
Symposium on High Performance Computer Architecture, 2006.

V. Zyuban and P. Kogge, “The energy complexity of register files,”
in Proceedings of the International Symposium on Low Power Elec-
tronics and Design, 1998, pp. 305-310.

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs
for the alpha ev8 conditional branch predictor,” in Proceedings of the
International Symposium on Computer Architecture, 2002, pp. 295—
306.

P. G. Sassone, J. Rupley, E. Brekelbaum, G. H. Loh, and B. Black,
“Matrix scheduler reloaded,” in Proceedings of the International
Symposium on Computer Architecture, 2007, pp. 335-346.

G. Z. Chrysos and J. S. Emer, “Memory dependence prediction
using store sets,” in Proceedings of the International Symposium on
Computer Architecture, 1998.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gemS5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp.
1-7, Aug. 2011.

