
HAL Id: hal-01354997
https://inria.hal.science/hal-01354997

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KevoreeJS: Enabling Dynamic Software
Reconfigurations in the Browser

Maxime Tricoire, Olivier Barais, Manuel Leduc, Johann Bourcier, François
Fouquet, Grégory Nain, Ludovic Mouline, Gerson Sunyé, Brice Morin

To cite this version:
Maxime Tricoire, Olivier Barais, Manuel Leduc, Johann Bourcier, François Fouquet, et al.. KevoreeJS:
Enabling Dynamic Software Reconfigurations in the Browser. WICSA and CompArch 2016, ACM
Sigsoft, Apr 2016, Venice, Italy. �10.1109/CBSE.2016.20�. �hal-01354997�

https://inria.hal.science/hal-01354997
https://hal.archives-ouvertes.fr

KevoreeJS: Enabling dynamic software reconfigurations in the Browser

Maxime Tricoire, Olivier Barais,
Manuel Leduc, Johann Bourcier

INRIA, IRISA, Université de Rennes 1
Rennes, France

firstname.name@irisa.fr

François Fouquet,
Grégory Nain, Ludovic Mouline

SnT, Luxembourg
firstname.name@uni.lu

Gerson Sunyé
INRIA, Université de Nantes

gerson.sunye@inria.fr

Brice Morin
Sintef

Oslo, Norway
bmorin@sintef.no

Abstract— The architecture of classic productivity software

are moving from a traditional desktop-based software to a

client server architecture hosted in the Cloud. In this context,

web browsers behave as application containers that allow users

to access a variety of Cloud-based applications and services,

such as IDEs, Word processors, Music Collection Managers,

etc. As a result, a significant part of these software run in

the browser and accesses remote services. A lesson learned

from development framework used in distributed applications

is the success of pluggable architecture pattern as a core ar-

chitecture concept, i.e., a Software Architecture that promotes

the use of Pluggable Module to dynamically plug. Following

this trend, this paper discusses the main challenges to create

a component-based platform supporting the development of

dynamically adaptable single web page applications. This

paper also presents an approach called KevoreeJS based on

models@runtime to control browser as component platform

which address some of these challenges. We validate this work

by presenting the design of a dashboard for sensor based system

and highlighting the capacity of KevoreeJS to dynamically

choose the placement of code on the server or client side and

how KevoreeJS can be used to dynamically install or remove

running components.

Keywords. Web Engineering, Dynamic component model,
Single page application.

I. INTRODUCTION

Traditional desktop-based productivity software are mov-
ing to the Cloud. Nowadays, the browser is essentially an
application container that allows users to run a single page
application to access a variety of Cloud-based applications
and services, such as an IDE, a Word processor, a Music
Collection Manager, etc. A large offer of generative frame-
work now proposes to create the skeleton of such modern
web applications, such as cite JHipster1, Mean.js 2, Ionic3,
or KeystoneJS4. These stacks generally use frameworks
for developing the client part following a family of MVC
pattern such as AngularJS [1], EmberJS [2], Backbone [3],
Durandal [4], and React [5].

A lesson learned from classical application development
frameworks used for building IDEs, word processor,s op-

1https://jhipster.github.io/
2http://meanjs.org
3http://ionicframework.com/
4http://keystonejs.com/

erating systems, and music or video players is the success
of the use of the pluggable or composite architecture pat-
tern [6], [7] as a core architecture concept, i.e., a Software
Architecture enabling dynamic module plugging to adapt
the application functionalities to project requirements. In
this trend, the OSGi framework specification [8] has been
widely adopted by the Eclipse community and forms the
basis of the Eclipse Runtime since Eclipse 3.X. The OSGi
framework is a system module and service platform for
the Java programming language that implements a complete
and dynamic component model. Components (coming in the
form of bundles for deployment) can be remotely installed,
started, stopped, updated, and uninstalled without requiring
a reboot.

The design of highly configurable web applications re-
quires the support of such pluggable architecture based on
Component Based Software Engineering within the Browser.
Current frameworks such as AngularJS, Ember, Backbone,
Durandal, or Eeact focus on a clear architecture of the web
applications following a single page application principle [4]
but does not provide a solution to dynamically reconfigure
a running application. Due to the increasing complexity of
Web Applications and based on the experience of other
application containers, it is now required to support the
evolution of a software artefact or the installation of a new
software artefact without reloading the web page.

This paper highlights the challenges that arise when sup-
porting a pluggable architecture pattern to support dynamic
reconfigurations of a single page application. It also presents
KevoreeJS in details, our approach to provide such a plat-
form, and discusses its current limitations. We validate this
work by showing how KevoreeJS can help to dynamically
change Client/Server code partitioning in a dashboard for
sensor-based system. Through this use case, we motivate the
need for a dynamic module system for the browser, similar
to OSGi for the JVM.

The remainder of this paper is the following. Section II
presents the main challenges for designing a module system
for the JavaScript programming language that implements a
complete and dynamic component model. Section III shows
an overview of KevoreeJS and illustrates the main concepts
through a motivating example of a dashboard for sensor
based systems. Section IV and V discuss related work and

present ongoing work.

II. MAIN CHALLENGES FOR THE USE OF THE BROWSER
AS A CONTAINER FOR RECONFIGURABLE SINGLE PAGE

WEB APPLICATIONS

A single-page application (SPA) is a web application
that fits on a single web page, providing a more fluent
user experience similarly to a desktop application. This
architecture style is now a standard way of designing mod-
ern Web applications, but still lacks support for dynamic
reconfigurability. This section discusses eight important
challenges to enable dynamic reconfigurability in a SPA.

A. Automatic provisioning of component implementation
and third-party libraries

Component-based distributed systems are known to be
hard to deploy for two main reasons: the complexity of their
structure and the complexity of the deployment tasks. Most
of the current tools are not able to properly address these
challenges because the underlying component dependency
descriptions lack expressiveness. Web modules does not
avoid this drawback. Indeed, if most of them use tools to
manage dependencies at design time such as node package
manager (npm5) or Bower6, these tools are generally not
used to enable the dynamic loading of third-party libraries
at runtime. Besides, deploying components in the web is
generally done when the user accesses a web page. In
Web applications, updates are made by downloading new
software artefacts when the user refreshes the whole page.
In a SPA, all necessary code–HTML, JavaScript, and CSS–
is retrieved with a single page load, usually in response
to user actions. The page does not reload at any point
in the process, nor does control the transfer to another
page, although the location hash can be used to provide
the perception and navigability of separate logical pages in
the application. SPA Frameworks provide solutions to limit
the time required to load the whole page by providing sup-
port for dynamic updates of page fragments. However, this
mechanism does not support the update of existing libraries.
The first challenge to build dynamically adaptable single
page web applications is to manage the dynamic deployment
of new components and their third-party libraries without
perturbing the running applications. It includes also a correct
management of libraries dependencies based on standard
tooling used by developers such as Bower and npm.

B. Type System
The second main challenge is to make web components

contract-aware [9]. If the CBSE community agrees to trust
a component, we must be able to determine how this
component will behave. The Web domain is using radi-
cally different development method than the one used for

5https://www.npmjs.com/
6http://bower.io/

mission-critical applications. Web developers generally use
JavaScript as a programming language without providing a
clear interface for their components. A component model
for Web Application must force the developer to declare
component interface and propose at minimum a basic level
of contract to support duck typing verification when assem-
bling components [9]. These contracts can also be used
to check that the component interface fully conforms to
its implementation if developers use programming language
such as TypeScript [10] or Dart [11] to implement their
components.

C. User Interface composition
The next challenge is to provide a way to compose the

User Interface (UI). If HTML-based interface technologies
enable end-users to easily use various remote Web ap-
plications, it is difficult for end-users to express complex
compositions. Currently, the main Web actors provide frame-
works to express complex compositions, such as React [5]
from Facebook, which provides an adaptation algorithm to
compute the minimum diff in the DOM. Google’s Polymer 7

is a similar approach with stronger emphasis on reusability.
RiotJS 8 also provides a lightweight framework for UI
composition, however limited to static composition. None
of them aims at providing dynamically reconfigurable user
interface composition mechanisms for the deployed compo-
nents.

D. Security handling
Providing reconfigurations support from an external man-

ager leads to several security issues. If the SPA can receive
a new configuration, automatically download components,
and update the running ones, it becomes easy to disseminate
malware to any running application. The model which acts
as a blueprint of the deployed runtime system should embed
mechanisms to ensure authentication and the data integrity
of the system. This kind of issue is not new to the world
of web development and existing principles can be applied
such as https protocols, Role-based access control. . .

E. Search engine optimization
Because of the lack of JavaScript execution on crawlers

of some popular Web search engines, SEO (Search engine
optimization) has historically presented a problem for public
facing websites wishing to adopt the SPA model. In fact,
modern Web search engine such as Google support the fact
that a SPA can dynamically generate new contents [12].
However, in the case of a dynamic component model,
the crawler cannot know in advance all the components
that can be installed in a web application. Consequently,
search engines that only know the first configuration of
the application cannot correctly index such a dynamically

7https://www.polymer-project.org/1.0/
8http://riotjs.com/

reconfigurable SPA. This require to integrate new metadata
to define, for example, all the components that can be
installed on a running web app. In that case, a search engine
can do the hypothesis of the closed world to know all the
potential configurations of a Web application (even if it can
become combinatorial).

F. Client/Server code partitioning
A dynamic component model for SPA must enable dy-

namic client/server code partitioning. In that sense such
framework must provide abstractions for templating defini-
tion and rendering, abstraction for streams queries, to let
a developer dynamically decide if the component should be
executed within the browser or on the server side. As it exists
lots of technical stack on the server side which leverage
various programming languages, the component model must
provide abstractions to define the component behavior that
can be generated on this different technical stacks. This
problem might be simplified by making the hypothesis that
the server also used JavaScript. In that case, initial solutions
exist9 to share the same code for the client and the server
side.

G. Browser history
With a SPA being, by definition, “a single page”, the

model breaks the browser’s design for page history naviga-
tion using the Forward/Back buttons. The traditional solution
for SPAs has been to change the browser URL’s hash
fragment identifier in accord with the current screen state.
The HTML5 specification has introduced pushState and
replaceState providing programmatic access to the actual
URL and browser history. For a dynamic component model,
the main challenge is to defined how to aggregate the states
of all deployed components. The second challenge is to
specify whether a user request for coming back to a previous
state should include or not the configuration history. There
is in fact several histories in a dynamically reconfigurable
SPA: history of actions, history of the cached data, etc.

H. Analytics
Analytics is a common concern for web applications. The

goal is to be able to track and report website traffic and user
activity. Tools such as Google Analytics rely heavily upon
entire new pages loading in the browser, initiated by a URL
change. As SPAs do not work this way, and in particular if
we dynamically load new components, analytics packages
are not able to take these actions into account. The new
HTML5 history API allows to add page load events to an
SPA. As the component web developers is in charge of using
correctly this API, the challenge is then to avoid missing
reports and double entries.

Analytics, browser history, and Search engine optimiza-
tion are clearly challenging due to the dynamic requirements.

9http://isomorphic.net/ references a set of solutions for client/server
partitioning

I. Speed of initial load (overhead@runtime)

The last challenge is to guarantee that the flexibility
offered by the use of a pluggable architecture does not in-
troduce too much overhead when we start the SPA. Such an
approach must minimize the download of unused features.

III. KEVOREEJS: A RUNTIME FOR RECONFIGURABLE
SINGLE PAGE APPLICATIONS IN THE BROWSER

This section present a module system for the Browser
called KevoreeJS . In particular, KevoreeJS implements a
dynamic component model for SPA. This component model
currently addresses only a part of the challenges discussed
in Section 2.

A. Motivating Scenarios

To illustrate the framework, we consider a simple dash-
board for sensor-based system in which, it is required to
install/uninstall a new web widget when a new sensor
appears/disappears. In such system, three kinds of reconfig-
uration have to be managed: i) the installation and retrieval
of software package (javascript code), the instantiation of
components, the components parametrization (to bind com-
ponents through ports, the setup of parameters, ...), the
component life-cycle management. ii) the client/server code
partitioning to select if some components managing complex
event queries must be executed on the server side or within
the browser. iii) the selection of a specific deploy unit
depending on the browser type, its devices and its screen
layout. A screenshot of the results of such an application is
presented in Figure1. This dashboard provides information
regarding values that can come from a set of nodes such as
the one described in Figure 2.

B. KevoreeJS overview

KevoreeJS is built on top of the models@runtime
paradigm. Models@runtime denotes model-driven ap-
proaches aiming at taming the complexity of dynamic adap-
tation. It basically pushes the idea of reflection [13] one
step further by considering the reflection layer as a real
model that can be used to drive the system deployment and
(re) configuration: “something simpler, safer or cheaper than
reality to avoid the complexity, danger and irreversibility of
reality”. In practice, component-based (and/or service-based)
platforms like Fractal [14], OpenCOM [15] or OSGi [8] offer
reflection APIs which make it possible to introspect the sys-
tem (which components and bindings are currently in place
in the system) and dynamic adaptation (by applying CRUD
operations on these components and bindings). While some
of these platforms offer rollback mechanisms [16] to recover
after an erroneous adaptation, the idea of models@runtime
is to prevent the system from actually enacting an erroneous
adaptation. In other words, the “model at runtime” is a

Figure 1. An example of dashboard for sensor-based applications

Figure 2. An example of sensor node based on Intel Edison

reflection model which can be uncoupled (for reasoning, val-
idation, simulation purposes) and automatically resynchro-
nized. This modelling layer provides a common abstraction
to describe the system configuration. This model can be
interpreted to decide which packages (component package
and third parties libraries) must be installed or removed

and which component must be instantiated and started. This
modelling layer can also be modified and pushed to peers
to trigger distributed reconfigurations.

KevoreeJS10 implements the Kevoree component model.
Kevoree is a dynamic component-based framework for dis-
tributed systems that follows the models@runtime paradigm
and embeds a structural model of the distributed system.
This model is used for two main purposes: (i) it represents
a snapshot of the heterogeneous and distributed application
state and (ii) it provides a language to drive the reconfigura-
tions of this application. The Kevoree model embodies the
following four main concepts of a distributed system.

1) The software components represent software units
that provide the business value of the distributed
system.

2) The connectors (called channels in Kevoree) are in
charge of inter-component communications. A channel
encapsulates and provides a particular communication
semantic (e.g. synchronous or asynchronous, unicast
or multicast, and may provide different contracts for
synchronization and quality of services).

3) The nodes represent execution hosts for all other
software entities such as components and channels.
A node may represent a physical node or a virtual

10http://runjs.kevoree.org

machine. Nodes are application containers and they
are in charge of the dynamic adaptations of its system
part when a new model@runtime is received.

4) The groups are responsible for inter-node commu-
nications. In particular, a group provides semantics
of dissemination and ensures consistency of models
among nodes. On top of these abstractions, Kevoree
provides a development model to design new com-
ponents, channels, groups and nodes using different
programming languages. It also comes with a set of
tools for building dynamic applications (a graphical
editor to visualize and edit configurations, a textual
language to express reconfigurations, several checkers
to validate configurations). Kevoree supports multi-
ple execution platforms (e.g., Java, JavaScript, .NET,
Android, LXC, Docker, FreeBSD, Arduino). For each
target platform it provides a specific runtime container
as a specific node type.

For supporting the SPA within the browser, we mainly
reused the core of Kevoree component model which is
written in Kotlin. This core contains the component model
entities, tooling for loading and saving configuration models,
tooling for detecting abstract actions (install a library, instan-
tiate a component, bind a component to a channel, . . .) and
tooling to achieve runtime adaptations when the platform
receives a new configuration model. As Kotlin provides a
code generator for JavaScript, we can reuse this core library
directly. As a consequence, to create KevoreeJS we mainly
provide the concrete implementations of abstract actions in
order to achieve concrete tasks within a running Browser
core. We also provide a basic UI composition mechanism
based on mashup. Each component comes with its own view
that can be composed on the full SPA using mashup. To
enable this mashup mechanism, we reuse framework such
as AngularJS and angular-gridster. KevoreeJS reuses Bower
for its static Web part, but it handles the dynamicity by
downloading browserified11 modules directly from the npm
registry.

Finally we provide a simple development model in
JavaScript and in TypeScript for developing components,
channels, groups and nodes (see Section III.C).

KevoreeJS comes with a set of tools:
• a web-based architecture model editor,
• a Yeoman generator,
• a set of Grunt tasks to fully automate the component

packaging and publishing
• and a runtime container to manage the dynamic deploy-

ment of third-party libraries.
The Yeoman generator creates skeletons to implement

new components. It mainly provides six Software artefacts:
• package.json, which defines the set of dependencies for

a component.

11http://browserify.org/

• Gruntfile.js, which provides a set of tasks to create
component’s deployment unit, to start a development
environment and to publish the component.

• browser/kevoree-comp-mycomp.html; which is a HTML
file used to describe the component’s UI (it will be
injected in a DOM node that is mapped to the compo-
nent’s AngularJS controller)

• lib/MyComp.js; which contains the model and the con-
troller for the component.

• browser/ui-config.json; which stores the styles param-
eter, the layout parameters, the AngularJS module de-
pendencies parameter, and the other JavaScript files to
include.

• kevs/main.kevs; which contains an initial configuration
for the application startup.

C. Development model
To illustrate this development model, we discuss the

code of the last four artefacts for a simple component that
provides the following graphical behavior (see Figure 3).
This component simply shows its current state (Kevoree
property) and lets the user change some properties (pure
AngularJS UI properties).

Figure 3. An example of KevoreeJS component

The view contains the following HTML code. It can
access the controller’s $scope properties such as the lifecycle
state (started) or the business values (foo or value l.2 and
l.6-11). It can also act on the component internal behav-
ior in calling specific function declared in the component
implementation (genValue l.12).
<d i v c l a s s =” co l�xs�12”>

2<p>Component s t a r t e d ? {{ s t a r t e d }}< / p>
< / d i v>

4<d i v c l a s s =” form�group co l�xs�12”>
<hr />

6< l a b e l f o r =” foo ”>E d i t c o n t e n t : ”{{ foo }}”< /
l a b e l>

<i n p u t t y p e =” t e x t ” c l a s s =” form�c o n t r o l ” i d =” foo ”
da ta�ng�model=” foo ”>

8< / d i v>
<d i v c l a s s =” co l�xs�12”>

10<hr />
<p>Random v a l u e : {{ v a l u e }}< / p>

12<b u t t o n c l a s s =” b t n btn�sm btn�d e f a u l t ” da t a�ng�
c l i c k =” genValue () ”>G e n e r a t e v a l u e< / b u t t o n>

< / d i v>

Listing 1. Excerpt of the component view

The component implementation contains the following
JavaScript code in the file lib/MyComp.js. Implementing a
component consists in defining its life-cycle methods (start
and stop, l.20-35), defining some parameters that can be con-
figured from the configuration model (l.7-10), and defining
an uiController function that will be called from the browser
runtime to handle the view behavior using AngularJS. The
binding between the view and the component model is
obtained by sharing the $scope object, which refers to the
application’s model in the AngularJS technological stack.
The developers can also define input and output ports for the
component12). We propose an alternate development model
using TypeScript as a main programming language.
var Abs t rac tComponen t = r e q u i r e (’kevoree-entities’) .

Abs t r ac tComponen t ;
2

var MyComp = Abs t rac tComponen t . e x t e n d ({
4 t o S t r i n g : ’MyComp’ ,

6 /* This is an example of dictionary attribute that you
can set for your entity */

d ic yourAt t rName : {
8 o p t i o n a l : f a l s e ,

d e f a u l t V a l u e : ’aDefaultValue’ ,
10 } ,

12 c o n s t r u c t : f u n c t i o n () {
t h i s . s cope = {} ;

14 } ,

16 /**
* this method will be called by the Kevoree platform

when your component has to start
18 * @param {Function} done

*/
20 s t a r t : f u n c t i o n (done) {

t h i s . l o g . debug (t h i s . t o S t r i n g () , ’START’) ;
22 t h i s . s cope . s t a r t e d = t ru e ;

// ...
24 done () ;

} ,
26

/**
28 * this method will be called by the Kevoree platform

when your component has to stop

* @param {Function} done
30 */

s t o p : f u n c t i o n (done) {
32 t h i s . l o g . debug (t h i s . t o S t r i n g () , ’STOP’) ;

t h i s . s cope . s t a r t e d = s t o p ;
34 done () ;

} ,
36

38 /**
* this method is called by the Browser Runtime in order

to retrieve
40 * this component AngularJS UI controller

*/
42 u i C o n t r o l l e r : f u n c t i o n () {

12https://github.com/kevoree/kevoree-js

re turn [’$scope’ , ’$timeout’ , ’instance’ , f u n c t i o n (
$scope , $ t imeou t , i n s t a n c e) {

44 // this is your UI controller f u n c t i o n

// $scope content is available directly within the
browser/kevoree-comp-foocomp.html file

46 i n s t a n c e . scope = $scope ;
$scope . s t a r t e d = i n s t a n c e . s t a r t e d ;

48 $scope . foo = ’bar’ ;
$ scope . v a l u e = p a r s e I n t (Math . random () ⇤100) ;

50

$scope . genValue = f u n c t i o n () {
52 $scope . v a l u e = p a r s e I n t (Math . random () ⇤100) ;

} ;
54 }] ;

}
56 }) ;

58 module . e x p o r t s = MyComp ;

Listing 2. Excerpt of the component implementation

Finally, the development model contains a very simple
configuration language to tweak the component’s view.
Developers can:

• provide local and/or external style sheets;
• provide local and/or external JavaScript files;
• specify a list of AngularJS modules to be bootstrapped;
• modify the layout metadata such as the default width

and height for the component view.
This configuration is defined using a JSON formatted

file named: browser/ui-config.json such as the one presented
below.

2{
"scripts" : [

4"my-local-script.js" ,
"//cdn.scripts.foo/my-lib.js"

6] ,
"styles" : [

8"my-local-style.css" ,
"//cdn.styles.bar/my-style.css"

10] ,
"depModules" : [

12"myNgModule"
] ,

14"layout" : {
"width" : 2 ,

16"height" : 1
}

18}

Listing 3. Excerpt of the component configuration

Finally, the last artefact contains the configuration model
used to define the architecture of a distributed and heteroge-
neous application. A full documentation of this configuration
is available on our website13. The following example illus-
trates a configuration with two nodes: the first one starts
a Node.js runtime and the other one runs in the Browser
runtime. Figure 4 presents a visual representation of this
running configuration using the Kevoree Editor.
add node0 , b rowse r : J a v a s c r i p t N o d e

2add browse r . comp : cbse . MyComp
add sync : WSGroup

4

a t t a c h node0 , b rowse r sync
6

13http://kevoree.org/doc/

s e t sync . m a s t e r = ’node0’
8

s e t browse r . l o g L e v e l = ’DEBUG’
10s e t browse r . comp . yourAtt rName = ’nonDefaultValue’

Listing 4. Excerpt of the application initial configuration

Figure 4. Visual editor that displays an excerpt of configuration

A complete description of the development model is
available online14,15.

D. Evaluation

To validate the proposed approach, we follow two ways.
First we provide some figures on KevoreeJS in terms of line
of code, number of reusable components available online,
time penalty to initiate KevoreeJS when loading the pages.
Then, we evaluate the approach regarding the challenges
discussed in Section 2.

1) Quantitative evaluation: To implement the KevoreeJS
core and the sensor based dashboard, we create 8 compo-
nents, 3 channels, 3 groups. The core of KevoreeJS and these
14 software artefacts contain 56,671 LoC (15,584 has been
manually written and 41,177 are generated from the model
to automatically manage model entities, model load and
serialization, . . . The Figure 5 illustrates the configuration
model of the applications using the Kevoree Web Editor 16.
The Figure 6 focuses in particular on the configuration of the
SPA presented in Figure 1. All the code for this application
is available on github. We provide a companion web page17

to provide the links to all the software artefacts we use in
this experiment.

Starting the sensor based application on a Chrome
browser, running on top of a HP EliteBook 820 with Intel i7
processor, SSD hard drive and 16Gbytes of memory, takes
1533 ms from scratch. It takes 677ms when the components
are available in the cache. The load time is mainly the time
to download software modules on the npm registry server.
Deploying the sensor based dashboard consists in writing a
simple configuration.

14https://github.com/HEADS-project/training/tree/master/2.Kevoree Basics
15https://github.com/kevoree/kevoree-js.d.ts
16http://editor.kevoree.org
17http://github.com/kevoree/CBSE16KevoreeJS

2) Qualitative evaluation : To discuss the strength and
the limitations of KevoreeJS, we present the current im-
plementation choices regarding the challenges discussed in
Section 2.

1. KevoreeJS provides an initial solution to automati-
cally provision component implementations and third-party
libraries. It reuses npm’s registry to download the compo-
nent implementations. KevoreeJS does not provide isolation
between components, such as sandboxing mechanism. As a
result, a faulty KevoreeJS component may impact the rest
of the SPA. However, components’ UIs are displayed using
iframes which helps sandboxing the CSS.

2. KevoreeJS provides a basic type system inherited
from the Kevoree component to check component assembly
description. The provided development environment also
support TypeScript to ensure interface compatibility between
components.

3. KevoreeJS provides an initial UI composition mecha-
nism based on mashup. If this UI composition mechanism is
sufficient for a sensor based dashboard, currently KevoreeJS
does not provide advanced UI composition mechanism.

4. KevoreeJS provides an initial security solution to re-
strict peers access to the model configuration. This mech-
anism is currently limited in its ability to manage role
based access rules on the configuration models. KevoreeJS
relies on registries, which act as providers of the model
characteristics. On this aspect, KevoreeJS has to deal with
the same issues of trustability than the Linux distribution
providers (e.g debian’s apt, arch’s linux pacman...) have
encountered in the past (i.e. what happened if an attacker
corrupt a registry and reference a malware?). In its current
implementation, by default, Kevoree is unsecured.

5. Search Engine Optimization is still an open problem.
We do not provide new concepts in the KevoreeJS to solve
this issue.

6. We support client/server partitioning. Among 14 mod-
ules that have been developed for the motivating scenario,
11 are cross-platform Java-JavaScript components, conse-
quently they can run on the server side or on the client side.
One of the component, which is in charge of doing complex
event processing is generated from ThingML behavioral
description. ThingML [17] provides code generators for
Java, JavaScript, and C. Consequently this component can
be deployed dynamically on the Browser or within a Java
or JavaScript Kevoree runtime on the server. The following
code illustrates an example of a component behavior that
performs a complex event processing on a stream of float
values and provides every five second an average of this
stream of values. Thanks to ThingML code generators, we
could obtain C, Java or JavaScript implementation of this
behavior. Consequently, an architect can dynamically decide
if the query must be deployed closed to the sensors, within
a gateway, or within the browser.

Figure 5. An example of dashboard for sensor-based applications

Figure 6. An example of sensor node based on Intel Edison

t h i n g CepComp {
2 message i n p u t (v : F l o a t) ;

message o u t p u t (avg : F l o a t) ;
4

r e q u i r e d p o r t cep {

6 r e c e i v e s i n p u t
s e n d s o u t p u t

8 }

10 f u n c t i o n avg (v a l u e s : F l o a t []) : F l o a t do
v a r i : I n t e g e r = 0

12 v a r appen : F l o a t = 0
w h i l e (i < v a l u e s . l e n g t h) do

14 appen = appen + v a l u e s [i]
i = i +1

16 end
r e t u r n appen / i

18 end

20 s t r e a m computeAvg do
from e v t : [cep ? i n p u t] : : timeWindow (5 0 0 0 , 5000)

22 s e l e c t avg : avg (e v t . v [])
a c t i o n cep ! o u t p u t (avg)

24 end

26 s t a t e c h a r t b e h a v i o r i n i t I n i t {
s t a t e I n i t {

28 on e n t r y p r i n t (” S t a r t i n g ”)
}

30 }
}
Listing 5. Excerpt of a component implementation defined using ThingML

7. We take the design decision in KevoreeJS that the
browser history only affect the component states. We do
not use Browser history API to go back to a previous SPA
configuration.

8. Improving analytics in dynamically adaptable SPA is
still an open problem in our current implementation of
KevoreeJS

9. Finally, the KevoreeJS core takes 20kbytes without any
minification. The use of KevoreeJS does not have any real
impact on the SPA performance using standard browser and
hardware.

IV. RELATED WORK

Several component model exist for building dynamically
adaptable web application. OSGi [8] provides an initial RFP
for providing an OSGi for web applications. Eclipse provides
an initial solution within the Orion project to write plugins
for its online IDE 18. However, this approach does not
support dynamic reconfiguration without reloading the web
pages. ComponentJS 19 is a stand-alone MPL-licensed Open
Source library for JavaScript, providing a powerful run-time
Component System for hierarchically structuring the User-
Interface (UI) dialogs of complex SPA. It provides a rich
component model for UI composition based on the concepts
of Event, Service, Hook, Model, Socket, and Property.
However, it does not manage the dynamic reconfiguration of
running applications. Lerner et al. [18] present C3, an imple-
mentation of the HTML/CSS/JS platform designed for web-
client research and experimentation. C3 explores the role of
extensibility throughout the web platform for customization
and research efforts. C3 proposes an interesting component
model for the Web browser (the application container) itself.
It proposes an extensible architecture to let developers to
evolve the browser. Escoffier et al. [19] developed a service-
oriented component framework, named H-ubu. Its purpose is
to bring modularity to applications and to ease their runtime
adaptation. H-ubu is based on the notion of components
with provided and required services and on a hub, a specific
component in charge with runtime components bindings. H-
ubu follows a dynamic service approach. Main adaptations
consists in reacting when a component becomes unavailable
but the framework does not provide specific mechanism to
automatically deploy and remove required components. The
configuration model is not explicit, as in a service oriented
architecture, each hub manages dynamically the bindings
between component services.

V. CONCLUSION

This paper highlights the motivations, challenges, and
main requirements to build a dynamic component model for
single page applications. It shows how a distributed system
running on top of various browsers relying on heterogeneous

18http://wiki.eclipse.org/Orion
19http://componentjs.com/

hardware can be considered as a common service. This
leads to the need of managing the configuration of such
a service from a common and abstract view. This paper
presents the requirements for such a system and KevoreeJS,
an implementation of the Kevoree Component Model for the
Browser. It evaluates KevoreeJS by building a dashboard for
sensor-based applications that can be dynamically reconfig-
ured. In particular, it supports dynamic client/server code
partitioning and dynamic component installation without
refreshing the web page.

We are currently extending this approach to improve
security, to support analytic services and search engine op-
timizations. From a technical point of view, we are working
on a pattern to support other SPA frameworks such as
AngularJS 2 or React. In this direction, we are working on
a development model that decreases the coupling between
the component implementation and the SPA application
framework used to provide a clean MVC framework.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n611337,
the HEADS project (www.heads-project.eu)

REFERENCES

[1] B. Green and S. Seshadri, AngularJS. ” O’Reilly Media,
Inc.”, 2013.

[2] J. Cravens and T. Q. Brady, Building Web Apps with Ember.
js. ” O’Reilly Media, Inc.”, 2014.

[3] A. Osmani, Developing Backbone. js Applications. ”
O’Reilly Media, Inc.”, 2013.

[4] F. Monteiro, Learning Single-page Web Application Develop-
ment. Packt Publishing Ltd, 2014.

[5] A. Fedosejev, React. js Essentials. Packt Publishing Ltd,
2015.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley Professional, Nov. 1994. [Online].
Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0201633612

[7] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture, Patterns for Concur-
rent and Networked Objects. John Wiley & Sons, 2013,
vol. 2.

[8] R. Hall, K. Pauls, S. McCulloch, and D. Savage, OSGi in
action: Creating modular applications in Java. Manning
Publications Co., 2011.

[9] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins,
“Making components contract aware,” Computer, vol. 32,
no. 7, pp. 38–45, 1999.

[10] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris,
“Safe & efficient gradual typing for typescript,” in Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 2015, pp.
167–180.

[11] K. Dhiman and B. Quach, “Google’s go and dart: parallelism
and structured web development for better analytics and appli-
cations,” in Proceedings of the 2012 Conference of the Center
for Advanced Studies on Collaborative Research. IBM Corp.,
2012, pp. 253–254.

[12] J. Ahn, “Demystifying seo with experiments.”
[Online]. Available: https://engineering.pinterest.com/blog/
demystifying-seo-experiments

[13] B. Morin, O. Barais, G. Nain, and J. Jézéquel, “Taming
dynamically adaptive systems using models and aspects,” in
31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings.
IEEE, 2009, pp. 122–132. [Online]. Available: http:
//dx.doi.org/10.1109/ICSE.2009.5070514

[14] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani, “The fractal component model and its support in
java,” Software-Practice and Experience, vol. 36, no. 11, pp.
1257–1284, 2006.

[15] P. Grace, G. S. Blair, and S. Samuel, “A reflective frame-
work for discovery and interaction in heterogeneous mobile
environments,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 9, no. 1, pp. 2–14, 2005.

[16] P.-C. David, T. Ledoux et al., “Safe dynamic reconfigurations
of fractal architectures with fscript,” in Proceeding of Fractal
CBSE Workshop, ECOOP, vol. 6, 2006.

[17] F. Fleurey, B. Morin, A. Solberg, and O. Barais,
“MDE to manage communications with and between
resource-constrained systems,” in Model Driven Engineering
Languages and Systems, 14th International Conference,
MODELS 2011, Wellington, New Zealand, October 16-
21, 2011. Proceedings, ser. Lecture Notes in Computer
Science, J. Whittle, T. Clark, and T. Kühne, Eds., vol.
6981. Springer, 2011, pp. 349–363. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24485-8

[18] B. S. Lerner, B. Burg, W. Schulte, and H. Venter,
“C3: An experimental, extensible, reconfigurable platform
for html-based applications,” in 2nd USENIX Conference
on Web Application Development. USENIX, June 2011.
[Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=150010

[19] C. Escoffier, P. Lalanda, and N. Rempulski, “h-ubu: An
Industrial-Strength Service-Oriented Component Framework
for JavaScript Applications,” in FSE 2013 - ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
M. M. Bertrand Meyer, Luciano Baresi, Ed. Saint
Petersburg, Russia: ACM, Aug. 2013, pp. 699–702, industrial
track: Effective Industry Use of Software-Engineering
Tools. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-00854339

