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Abstract—Cognitive radio technology is a promising solution
to the exponential growth in bandwidth demand sustained by
increasing number of ubiquitous connected devices. The allocated
spectrum is opened to the secondary users conditioned on
limited interference on the primary owner of the band. A major
bottleneck in cognitive radio systems is to find the best available
channel quickly from a large accessible set of channels. This
work formulates the channel exploration-exploitation dilemma as
a multi-arm bandit problem. Existing theoretical solutions to a
multi-arm bandit are adapted for cognitive radio and evaluated in
an experimental test-bed. It is shown that a Thompson sampling
based algorithm efficiently converges to the best channel faster
than the existing algorithms and achieves higher asymptotic
average throughput. We then propose a multihop extension
together with an experimental proof of concept.

I. INTRODUCTION

Electromagnetic spectrum is a limited natural resource.
Usable bands of the spectrum have already been assigned
to specific applications. However, advances in semiconductor
technology have lead to the proliferation of compact embedded
wireless devices. Consequently the demand for accessing the
spectrum has grown exponentially and does not seem to abate
[1]. Cognitive radio is a promising approach to accommodate
for this exponential growth in bandwidth demand. In this ap-
proach, the already allocated spectrum is opened to secondary
users conditioned on limited interference to the primary user of
the spectrum. To access the spectrum efficiently, the secondary
user has to be able to detect the available opportunities when
the primary user is not accessing the spectrum and vacate it.
In passive or deterministic spectrum access, the secondary
user has a priori knowledge about spectrum utilization by
the primary user. However, the prior information about the
primary user statistics may not be available or may change
over time, e.g. some channels may be lightly used in some
intervals in parts of a cellular network and could be used
to provide connectivity for secondary network users. Hence
it is crucial for the secondary network to identify the best
available channels as soon as possible. A naive approach is
to scan the whole band and identify the available channels.
Naive approach imposes large latency and energy cost on the
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network specially when the number of accessible channels is
large. In addition, to the best of our knowledge, advantages
of multihop cognitive radio has not been exploiting so far.
and not covered by the standard [2]. As a result, finding the
best channel with minimum time and energy cost and apply
cognitive scheme to multihop communications are still two
open problems.

In this work we address the non-trivial channel exploration-
exploitation dilemma in cognitive radio in an experimental
setting and extend it to multihop communications. The prob-
lem is defined as follows. A large number of channels are
available for potential usage by secondary network users. The
channels are occupied with different rates by primary user
which has the exclusive right to use it. The problem is to find
and exploit the channel with the best rate as soon as possible.
The contributions of this work can be summed up:

• we model the channel selection dilemma as a multi-arm
bandit problem and propose a Thompson [3] sampling-
based approach;

• we provide an experimentation of our approach and
compare its performances to the most efficient and simply
implementable learning approaches in terms of through-
put both by simulation and experiments.

• we propose a multihop cognitive radio extension together
with an experimental proof of concept.

We show that the Thompson sampling formulation finds
the best channel significantly faster and the most efficient
among the other algorithms in a practical cognitive radio
setting. This results in smaller latency in transmission and
less energy consumption for channel exploration. This paper
is organized as follows: Section II reviews the state of the
art in the channel exploration problem in cognitive radio
setting with a focus in Section III on the implementation of
some existing algorithms. Section IV provides the derivations
and implementation details of our Thompson sampling based
problem while Section V compares the performances of the
algorithms on real-time measurements. Section VI-A presents
how to extend our approach to a multihop configuration before
Section VII concludes this work.



II. RELATED WORKS

Channel decision process is analyzed based on a channel
model as addressed in [4]. The optimal strategy is derived us-
ing a partially observable Markov decision process (POMDP)
framework which models the channel as a 2N state Markov
chain. Each state is a binary N-tuple indicating the availability
of each channel. The model is reduced into N two-state
Markov models where the transition probabilities are constant
and based on the statistics of the primary user assuming
independence between the channels. In [5] and [6], co-
existence of a cognitive radio system a IEEE 802.11 primary
network is investigated. The channel is modeled by a four state
continuous-time Markov model where the states of the Markov
chain represent data packet transmission, acknowledgment
transmission, short inter-frame spacing time and idle channel.
The transition probabilities are obtained from measurement
data. The sojourn time is defined as the time that the process
spends in each state and estimated by a generalized Pareto
distribution as comprehensively studied in [7].

[8] and [9] formulate the channel selection dilemma as a
multi-arm bandit in . Algorithms based on upper confidence
bound (UCB) algorithm suggested in [10] are applied to
identify the channel with the best availability rate. In [8],
the performance of UCB based algorithm in terms of regret
is investigated for different numbers of accessible channels.
Regret is the throughput missed due to not choosing the best
channel compared to an oracle who knows and exploits the
best channel from the beginning. In [9], dependencies are
considered between the channels and a UCB based algorithm
is proposed and analyzed in terms of regret. In [11] a cognitive
scenario with two competing networks with jamming capabil-
ity is considered. The decision on jamming or communicating
on the channel for each network is modeled in a Bayesian
setting for Thompson sampling. In this adversarial scenario,
it is shown that the Bayesian framework outperforms UCB
based algorithms. Channel decision problem is modeled as a
restless multi-arm bandit problem in [12]. The probing time
to find an available channel is minimized using the model.
The performance of the method is numerically evaluated and
is shown to have advantage over previous methods.

Although multi-arm bandit model has been studied exten-
sively in theory, its applicability and efficiency in a cognitive
radio framework still needs to be evaluated experimentally
before being implemented commercially. The reason is that in
practice, the perfect theoretical assumptions are often not valid
which can affect the performance of the algorithms. In this
work we implemented the theoretically efficient algorithms
in a practical setting which closely mimics a cognitive radio
context. The details of the simulations and experiments are
given in the following sections. Also, to the best of our knowl-
edge, cognitive radio mechanisms have never been studied for
multihop communications.

III. OPTIMAL ALGORITHMS FOR MULTI-ARM BANDIT

In this section, we formulate channel selection and explo-
ration dilemma in cognitive radio context as a multi-arm bandit

problem. Then, we describe the efficient and simple learning
algorithms commonly used to solve the multi-arm bandit
problems and adapt them into the cognitive radio context.

In a multi-arm bandit problem, an agent tries to obtain as
much reward as possible by playing the most rewarding arm
among N arms. However, each arm rewards randomly upon
being played according to an unknown distribution. Hence, the
objective is to minimize exploration to find the most rewarding
arm. A policy A is an algorithm that defines the actions of the
agent usually based on the previous observations. We assume
nj to be the number of times jth arm has been played after
n steps and µj to be the expected reward of jth arm. In other
words, channel j is found available in average µjnj times in
nj measurements. µj is associated with the statistics of the
primary user of the channel. The regret of the policy RA is
defined to indicate how much reward is lost on the average
due to the exploration, RA = µ∗n−

∑N
j=1 µjE(nj)

where µ∗ = max1≤j≤N µj and E(.) indicates the expected
value. Minimizing the regret is desirable as it will maximize
the average reward.

In [13], authors have derived a logarithmic lower bound for
the regret function in a multi-arm bandit problem,

R(n) = ln(n)

[
N∑
i=1

p∗ − pj
D(p∗||pj)

+ o(1)

]
, (1)

where pj are the reward density of the arms and p∗ is the
density of the arm with the maximum average reward (µ∗). D
is the Kullback-Leibler divergence between the two densities
and o(1)→ 0 as n→∞.

The user must find the best available channel among N
accessible channels as fast as possible considering its time
and energy constraints. We assume changes in the statistics
of the primary user are slower than the convergence time
of the algorithms [11], [14]. To keep track of the primary
user statistics, an expiration time can be defined to trigger
the search for a new channel together with the number of
consecutive unsuccessful channels access. In [10], policies
based on upper confidence index are investigated and shown
to achieve optimal regret uniformly over time. In this work,
we evaluate the performance of learning algorithms from [10]
with εn-greedy and Thompson sampling, an old algorithm
which has recently gained interest in research community due
to its simplicity and efficiency. Upper confidence bound (UCB)
algorithms are based on empirical mean obtained through
observations and a term related to the upper confidence interval
of the empirical mean. UCB1-based algorithm chooses the
channel with the highest upper confidence bound defined as,

cj = xj +

√
2ln(n)

nj
, (2)

where xj , n, nj are the empirical mean of channel j states,
total number of channel access and number of times channel
j is accessed so far. The values are updated in every iteration
based on the observations. The decision criterion is propor-
tional to the empirical average of the obtained rewards and is



known as the exploitation factor. A second term triggers the
exploration and is inversely proportional to the square root
of the number of times the channel is accessed (nj). Further
details and proofs of optimality are presented in [10].

UCB2 is an improved version of UCB1 presented in [10].
In UCB2 based channel access, the channel access is divided
into epochs. At each epoch, the best performing channel is
selected according to the selection criterion defined as:

cj = xj + aj(n, rj), (3)

where aj(n, rj) is defined as,

aj(n, nj) =

√
(1 + α)ln( en

τ(rj)
)

2τ(rj)
(4)

and rj , the number of epochs channel j is acceded is τ(rj) =
d(1 + α)rje. In each epoch, the channel is accessed τ(rj +
1) − τ(rj) times. α is a parameter of the model and should
be tweaked based on the setting. Theoretical solution does not
define α specifically. The value of α is tuned experimentally
based on the context. Our simulation results show that α =
0.01 optimizes the performance of the UCB2 algorithm in our
experimental setting.

Another well-known and simple policy in bandit problems is
ε-greedy algorithm. The agent chooses the most rewarding arm
based on the previous observations with probability 1− ε and
a random arm with probability ε. As shown in [10], decreasing
ε proportional to 1

n bounds the regret function logarithmically.
Through simulation we found the optimum values for the
model parameters, c = 10−4, d = 10−2, N = 5, which define
ε as follows: ε = min{1, cNd2n}.

IV. THOMPSON SAMPLING BASED ALGORITHM

This section incorporates Thompson sampling into a learn-
ing algorithm for channel selection problem. Thompson sam-
pling [3] is best understood in Bayesian context. Assume we
observed Sj , the observation vector, after accessing channel
j, nj times. Assuming Bernoulli distribution for each access
trial with parameter µj , the parametric likelihood function for
observation vector Sj is as follows,

pj(Sj |µj) = µj
tj (1− µj)n−tj , (5)

where tj is the number of successful transmissions on jth

channel in n trials. Without loss of generality, we use Beta
distribution as the prior for the distribution of parameter µj .
This is because Beta distribution is conjugate prior for the
likelihood function in (5) which simplifies the derivations [15].
Using Bayes rule we can write,

pj(µj |Sj) =
pj(Sj |µj) Γ(αj+βj)

Γ(αj)Γ(βj)
µj
αj−1(1− µj)βj−1

pj(Sj)
, (6)

where,

Γ(αj) =

∫ ∞
0

xαj−1e−xdx (7)

and αj and βj are the shape parameters of the Beta distribu-
tion; as we assume no prior information on µj we initialize
αj = βj = 1 which yields uniform distribution in [0, 1].
Substituting (5) in (6) yields,

pj(µj |Sj) =

Γ(αj+βj)
Γ(αj)Γ(βj)

pj(Sj)
µj
tj+αj−1(1− µj)nj−tj+βj−1. (8)

Introducting C =

Γ(αj+βj)

Γ(αj)Γ(βj)

pj(Sj)
can re-write (8) as:

pj(µj |Sj) = Cµj
αj+tj−1(1− µj)βj+tj−1 (9)

Using
∫
pj(µj |Sj)dµj = 1 and

∫
xαj−1(1 − x)βj−1dx =

Γ(αj)Γ(βj)
Γ(αj+βj)

, we obtain,

pj(µj |Sj) =
Γ(αj + βj + 2tj)

Γ(αj + tj)Γ(βj + tj)
µj
αj+tj−1(1− µj)βj+tj−1,

(10)

which is the beta distribution with parameters αj + tj and
βj + tj ,

pj(µj |Sj) = beta(αj + tj , βj + tj). (11)

Based on this computing, each node chooses a channel and
tries to transmit on it as described in Algorithm 1.

Algorithm 1 Thompson Sampling

Parameters: j: channel index n: total number of channel
accesses tj : number of successful transmissions so far

1: αj = βj = 1
2: tj = n = 0
3: while True do
4: for all j do
5: sample rj ∼ beta(αj + tj , βj + tj)
6: end for
7: m = arg max{rj}, n+ +
8: if channel m is free then
9: TRANSMIT(), tm+ = 1

10: end if
11: end while

V. PERFORMANCE EVALUATION

We evaluate the performance of Thompson sampling based
algorithm and compare it with the existing methods, UCB1,
UCB2 and εn-greedy in a cognitive radio setting. The channel
observations are modeled and created as Bernoulli trials with
parameter µ (µ is the probability that the channel is available).
We created N = 10k samples for 10 channels with µ values
randomly distributed in (0, 1). The sampling rate is assumed
1500 samples per second to match the measurements discussed
in the following. Algorithms are implemented in MATLAB
and numerical analysis are performed to find the optimum
values for the parameters of the algorithms. The average
throughput of algorithm A (T̄A) is obtained as the ratio of
the cumulative number of transmitted bits (Nb(A)) to the time
passed since the beginning of the transmission t: T̄A = Nb(A)

t



Fig. 1: Relative throughput comparison on 10 accessible channels (µ = 0.80).

The relative throughput of A was obtained as the ratio of the
average throughput of A to the average throughput of an oracle
agent (T̄O) that always operates on the best channel,

RTA =
T̄A
T̄O

. (12)

Note that the relative throughput of the oracle algorithm is
always one. The simulations are run for 100 iterations and
averaged to yield the relative throughput. Fig. 1 shows the
relative throughput for different algorithms vs. time. In the
exploration phase, the throughput of all algorithms is signif-
icantly lower than the oracle agent. However, all algorithms
eventually find the best channel and start exploiting it almost
all the time and hence reach a throughput close to the oracle.
Yet, Thompson sampling based algorithm converges to the best
channel in fewer steps than the other policies. In addition,
it achieves higher average throughput as it spends less time
on exploring the channels and converges to the best channel
faster. This results in smaller latency in transmission and lower
energy consumption for channel exploration.

To make our scenario more realistic, we used real-time
measurements of the channel to compare the performance of
different algorithms. We used TelosB node (IEEE 802.15.4)
as the secondary user of a Wi-Fi channel which is considered
as the primary user channel. As in cognitive radio scenario,
we suppose that the TelosB is able to receive the messages
from all available channels simultaneously. Although this is
not exactly a cognitive radio setting as both standards have
the same priority in using the ISM band, it can closely mimic
a realistic cognitive radio setting. In addition, our experiment
setup can be considered as a case of dynamic spectrum sharing
in heterogeneous networks. The IEEE 802.11g Wi-Fi access
point (AP) as well as the primary user client equipment, a
laptop with a Wi-Fi interface card, were 4.5 m away on the line
of sight. The Wi-Fi network used channel 6 of Wi-Fi. The AP
was wired (Ethernet) to the PC running the Apache web-server
providing the access to a web-page and a big data file (about 1
GB). The measurements were performed by the TelosB node
which was situated near the Wi-Fi AP at the distance of 30
cm. The TelosB node was driven by Contiki operating system
running the code to read the RSSI of channel 17 of IEEE
802.15.4 (the center frequency 2435 MHz) that overlaps with
channel 6 of IEEE 802.11 (the center frequency 2437 MHz)

Fig. 2: Schematic of experiment setup.

(a) No user activity

(b) One user browsing the web

(c) One user downloading a large file

Fig. 3: Spectrum measurements

used by the AP. The TelosB node performed measurements at
about 1500 samples per second and sends them to another PC
via an USB link as depicted in Fig. 2.

Fig. 3 shows the RSSI values received by the secondary
user when only one primary user is connected to the network.
The average availability rates for the setting depicted in are
µ = 0.99, µ = 0.92, µ = 0.12 resp. Fig. 3(a) shows the RSSI
when the user is idle and most of the traffic comes from the
control frames and beacons of the base station. As expected,
the channel is available most of the time. In Fig. 3(b), the user
is browsing Internet pages frequently while Fig. 3(c) shows the
RSSI values when they download a large file (Approx. 1 GB).
Average Availability rate of the channel (µ) is obtained by
dividing the number of idle samples to the total number of
observations where idle channel was obtained by applying a
threshold of −44dBm to the RSSI measurements.

We performed simulation for 3 channels with average avail-
ability rate equal to the measured channels above (Fig. 4(a)).



(a) Synthetically generated channel observations

(b) Real-time measurements

(c) Real-time test-bed

Fig. 4: Relative throughput on 3 channels.

In addition, we used the real-time channel observations instead
of synthetically generated data to compare the performance of
the learning algorithms (Fig. 4(b)). Real-time data results are
similar to the ones got through synthetic channel. The real-
time measurements show that Thompson sampling algorithm
reaches 99% of the oracle throughput after 0.26s (390 samples)
approx. 57% faster than the next best algorithm (εn-greedy)
which achieves the same throughput in 0.60s (900 samples).

In the final evaluation step, we implemented the algorithms
in TelosB nodes to compare their real-time performances
and confirm their relatively low computational complexity
through execution on a simple 16-bit microcontroller. Our
setup (Fig. 5) features used 3 pairs of laptops occupying
3 orthogonal Wi-Fi (IEEE 802.11g) channels, 1, 6 and 11
overlapping with standard 802.15.4 channels, 12, 17 and 22
resp. The traffic was generated using ”Distributed Internet
Traffic Generator” [16] in single flow mode with average
packet size on the Internet of 500 bytes [17]. Two TelosB

Fig. 5: Experimental setup: 3 pairs of laptops occupy 3 orthogonal channels
of Wi-Fi (1, 6, 11)

nodes use Contiki operating system with a learning algorithm
while the third node (oracle) is fixed on the best channel. Beta
distribution samples used in Thompson sampling algorithm are
generated with ”GEN SEQUENCE” library1.

To monitor the availability rate of the channel we pro-
grammed one TelosB node as monitor which just sampled
the channel. The availability rate obtained as the average
number of samples the channel is detected available. The RSSI
sensitivity of TelosB node was set to −40dbm. This relatively
high threshold was set to suppress the RSSI received from
other networks present in the building. With this sensitivity,
the monitor node registers approximately 90% availability rate
for the channels. The availability rate of channel 6 drops to
approximately 40% when the traffic generator is activated at
2000pkt/sec and packet size of 500 bytes. The availability
rate of the channel 1 drops to approx. 60% when the traffic
generator occupies the channel with 500pkt/sec. Channel 11
is left without traffic although the server and client were
connected. The monitor shows approx. 90% availability on
the channel. Note that the channel occupancy rate is affected
by our traffic, other networks traffic and noise. However, it
was roughly constant during the experiment at the given rates.

We programmed two TelosB nodes; one as an oracle which
always operated on the channel with the best availability rate.
The other node was programmed with the implementation
of a learning algorithm to find and use the best channel. In
our results, we considered an available channel as a success-
ful transmission. In reality, the packet transmission can be
disrupted in the middle of the transmission and cause the
transmission to fail. However, the collision will affect the
throughput results of all algorithms including the oracle the
same way. Hence the comparison results would not be affected.

In each set of experiments, we performed 3 experiments
where occupancy rate of the channels were inverted. The
relative throughput of each algorithm in each experiment is
divided by the oracle performance of the best channel and
then averaged over all the experiments for each algorithm. The
results are shown in Fig. 4(c). As seen in the figure, similar
results are obtained in empirical evaluation of the algorithms
where Thompson based method achieves the best performance

1https://compbio.soe.ucsc.edu/gen sequence



followed by εn-greedy and UCB2 algorithms which performed
similarly in this context.

VI. MULTI-HOP EXTENSION

A. Multihop approach

Main challenges that appear in multihop is to have sender
and receiver nodes use the same channels at the same time. Our
approach proposes that a sender node applies our Thomson-
based scheme (Algo.1) to select the channel to use to broadcast
its messages. To increase its chances, it will not only select
the best channel but the N best channels. Note that the higher
N value, the more chance for a sender node to use the channel
selected by the receiver node but the more energy consumed.

Receiving nodes apply our scheme to select the best channel
to listen based on the same approach. Once a message is
received, it is processed and if it needs to be retransmitted,
the receiver node switches to the sending mode.

B. Experimental proof of concept

1) Set up: We implemented our multihop approach in the
framework of the EWSN competition [18]. The simulation set
up was as follows. Experimentation was run on TelosB / Tmote
Sky nodes with either a SMA or PCB antenna. A source node
sends a message every time the luminosity sensed changes.
The network was composed of 15 wireless nodes distributed
in a 150m2 building with a large proportion of concrete and
metal. Some additional nodes have been randomly deployed
to disturb the network as illustrated on Fig.6. Source and
destination nodes were between 3 and 5 hops away from each
others. Each node forwards over N = 3 different channels.

2) Results and discussions: We run the above algorithm
for 5min within the tough conditions of the competition.
At the end of the experimentation, the sink has received
more than 77% of packets sent by the source with paths
composed of between 4 and 6 hops, depending of the channels
chosen by each node. We have witnessed that forwarding
nodes dynamically learn in an efficient way the best channel
to listen since when the environment becomes to disturbed
due to interference nodes, they change channel after 2µs.
This reliability could be enhanced by increasing N but to
the detriment of the energy cost. This first experimentation
was useful to settle the feasibility and applicability of our
approach even on constrained nodes. A deeper investigation
regarding the energy consumption and latency and trade-off
between them will allow a better qualification of our proposed
technique. In the future, we intend to exploit these preliminary
feedbacks to improve the design of our multihop approach to
allow a better connectivity and thus improve the reliability and
latency by keeping a low energy consumption.

VII. CONCLUSION

This work addresses the channel exploration-exploitation
dilemma in a cognitive radio context where secondary network
has no prior information about the primary user channel
utilization statistics. The problem is formulated as a multi-
arm bandit problem and addressed in a Thompson sampling

Fig. 6: Deployment scenario

framework. The performances of the most efficient mathemat-
ical methods in multi-arm bandit formulation are compared
both numerically and by implementation. Results show that
Thompson sampling formulation converges to the best channel
in fewer steps than the other policies in a cognitive radio
setting. In addition, we provide first steps and pave the way
for further investigations to extend such cognitive approaches
to multihop communications.
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