C. Aktipis, A. Boddy, R. Gatenby, J. Brown, and C. Maley, Life history trade-offs in cancer evolution, Nature Reviews Cancer, vol.269, issue.12, pp.883-92, 2013.
DOI : 10.1038/nrc3606

D. Dexter, H. Kowalski, B. Blazar, Z. Fligiel, R. Vogel et al., Heterogeneity of tumor cells from a single mouse mammary tumor, Cancer Res, vol.38, issue.10, pp.3174-81, 1978.

M. Greaves and C. Maley, Clonal evolution in cancer, Nature, vol.69, issue.7381, pp.306-319, 2012.
DOI : 10.1038/nature10762

K. Korolev, J. Xavier, and J. Gore, Turning ecology and evolution against cancer, Nature Reviews Cancer, vol.148, issue.5, pp.371-80, 2014.
DOI : 10.1038/nature13187

L. Merlo, J. Pepper, B. Reid, and C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, vol.695, issue.12, pp.924-959, 2006.
DOI : 10.1007/BF00377518

P. Nowell, The clonal evolution of tumor cell populations, Science, vol.194, issue.4260, pp.23-31, 1976.
DOI : 10.1126/science.959840

A. Marusyk, V. Almendro, and K. Polyak, Intra-tumour heterogeneity: a looking glass for cancer?, Nature Reviews Cancer, vol.139, issue.5, pp.323-357, 2012.
DOI : 10.1038/nrc3261

A. Brock, H. Chang, and S. Huang, Non-genetic heterogeneity ??? a mutation-independent driving force for the somatic evolution of tumours, Nature Reviews Genetics, vol.29, issue.5, pp.336-378, 2009.
DOI : 10.1038/nrg2556

R. Glasspool, J. Teodoridis, and R. Brown, Epigenetics as a mechanism driving polygenic clinical drug resistance, British Journal of Cancer, vol.8, issue.8, pp.1087-92, 2006.
DOI : 10.1056/NEJMoa020177

P. Gupta, C. Fillmore, G. Jiang, S. Shapira, K. Tao et al., Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells, Cell, vol.146, issue.4, pp.633-677, 2011.
DOI : 10.1016/j.cell.2011.07.026

J. Newman, S. Ghaemmaghami, J. Ihmels, D. Breslow, M. Noble et al., Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise, Nature, vol.99, issue.7095, pp.840-846, 2006.
DOI : 10.1038/nature04785

A. Raj and A. Van-oudenaarden, Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences, Cell, vol.135, issue.2, pp.216-242, 2008.
DOI : 10.1016/j.cell.2008.09.050

H. Chang, P. Oh, D. Ingber, and S. Huang, Multistable and multistep dynamics in neutrophil differentiation, BMC Cell Biology, vol.7, issue.1, p.11, 2006.
DOI : 10.1186/1471-2121-7-11

A. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi et al., Non-Darwinian dynamics in therapy-induced cancer drug resistance, Nature Communications, vol.4, p.2467, 2013.
DOI : 10.1038/ncomms3467

S. Sharma, D. Lee, B. Li, M. Quinlan, F. Takahashi et al., A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations, Cell, vol.141, issue.1, pp.69-80, 2010.
DOI : 10.1016/j.cell.2010.02.027

R. Chisholm, T. Lorenzi, and J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1860, issue.11, 2016.
DOI : 10.1016/j.bbagen.2016.06.009

URL : https://hal.archives-ouvertes.fr/hal-01321535

S. Huang, Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells, Cancer and Metastasis Reviews, vol.32, issue.6119, pp.3-4423, 2013.
DOI : 10.1007/s10555-013-9435-7

P. Altrock, L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nature Reviews Cancer, vol.28, issue.12, pp.730-775, 2015.
DOI : 10.1126/scitranslmed.3002356

A. Anderson and V. Quaranta, Integrative mathematical oncology, Nature Reviews Cancer, vol.247, issue.3, pp.227-261, 2008.
DOI : 10.1038/nrc2329

H. Byrne, Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, vol.85, issue.3, pp.221-251, 2010.
DOI : 10.1038/nrc2808

P. Davies, L. Demetrius, and J. Tuszynski, Cancer as a dynamical phase transition, Theoretical Biology and Medical Modelling, vol.8, issue.1, p.30, 2011.
DOI : 10.1088/1478-3975/8/1/015017

H. Enderling and M. Aj-chaplain, Mathematical Modeling of Tumor Growth and Treatment, Current Pharmaceutical Design, vol.20, issue.30, pp.4934-4974, 2014.
DOI : 10.2174/1381612819666131125150434

H. Enderling and K. Rejniak, Simulating Cancer: Computational Models in Oncology, Frontiers in Oncology, vol.3, p.233, 2013.
DOI : 10.3389/fonc.2013.00233

R. Gatenby and P. Maini, Mathematical oncology: Cancer summed up, Nature, vol.421, issue.6921, p.321, 2003.
DOI : 10.1038/421321a

G. Powathil, M. Swat, and M. Chaplain, Systems oncology: Towards patient-specific treatment regimes informed by multiscale mathematical modelling, Seminars in Cancer Biology, vol.30, pp.13-20, 2015.
DOI : 10.1016/j.semcancer.2014.02.003

T. Stiehl, N. Baran, A. Ho, and A. Marciniak-czochra, Cell Division Patterns in Acute Myeloid Leukemia Stem-like Cells Determine Clinical Course: A Model to Predict Patient Survival, Cancer Research, vol.75, issue.6, pp.940-949, 2015.
DOI : 10.1158/0008-5472.CAN-14-2508

J. Tuszynski, P. Winter, D. White, C. Tseng, K. Sahu et al., Mathematical and computational modeling in biology at multiple scales, Theoretical Biology and Medical Modelling, vol.11, issue.1, p.52, 2014.
DOI : 10.1186/1742-4682-11-52

F. Thomas, D. Fisher, P. Fort, J. Marie, S. Daoust et al., Applying ecological and evolutionary theory to cancer: a long and winding road, Evolutionary Applications, vol.125, issue.1, pp.1-10, 2013.
DOI : 10.1111/eva.12021

URL : https://hal.archives-ouvertes.fr/halsde-00790602

B. Perthame, Parabolic Equations in Biology, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01423552

N. Champagnat, R. Ferrière, B. Arous, and G. , The Canonical Equation of Adaptive Dynamics: A Mathematical View, Selection, vol.2, issue.1-2, pp.73-83, 2002.
DOI : 10.1556/Select.2.2001.1-2.6

URL : https://hal.archives-ouvertes.fr/inria-00164767

N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theoretical Population Biology, vol.69, issue.3, pp.297-321, 2006.
DOI : 10.1016/j.tpb.2005.10.004

URL : https://hal.archives-ouvertes.fr/inria-00164784

R. Chisholm, T. Lorenzi, L. Desvillettes, and B. Hughes, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences, Zeitschrift f??r angewandte Mathematik und Physik, vol.396, issue.4, pp.1-34, 2016.
DOI : 10.1007/s00033-016-0690-7

J. Clairambault, Can theorems help treat cancer?, Journal of Mathematical Biology, vol.15, issue.3, pp.1555-1563, 2012.
DOI : 10.1007/s00285-012-0518-9

URL : https://hal.archives-ouvertes.fr/hal-00780203

A. Lorz, T. Lorenzi, M. Hochberg, J. Clairambault, and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.2, pp.377-99, 2013.
DOI : 10.1051/m2an/2012031

URL : https://hal.archives-ouvertes.fr/hal-00714274

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, and B. Perthame, Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors, Bulletin of Mathematical Biology, vol.65, issue.1, pp.1-22, 2015.
DOI : 10.1007/s11538-014-0046-4

URL : https://hal.archives-ouvertes.fr/hal-00921266

R. Chisholm, T. Lorenzi, A. Lorz, A. Larsen, D. Almeida et al., Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation, Cancer Research, vol.75, issue.6, pp.930-939, 2015.
DOI : 10.1158/0008-5472.CAN-14-2103

URL : https://hal.archives-ouvertes.fr/hal-01237893

A. Pisco and S. Huang, Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ???What does not kill me strengthens me???, British Journal of Cancer, vol.60, issue.11, pp.1725-1757, 2015.
DOI : 10.1038/nm0901-1028

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

J. Medema, Cancer stem cells: The challenges ahead, Nature Cell Biology, vol.19, issue.4, pp.338-382, 2013.
DOI : 10.1053/j.gastro.2009.12.063

J. Menendez and T. Alarcón, Metabostemness: A New Cancer Hallmark, Frontiers in Oncology, vol.24, issue.7381, pp.121-262, 2014.
DOI : 10.1016/j.semcdb.2013.05.001

T. Lorenzi, R. Chisholm, L. Desvillettes, and B. Hughes, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, Journal of Theoretical Biology, vol.386, pp.166-76, 2015.
DOI : 10.1016/j.jtbi.2015.08.031

URL : https://hal.archives-ouvertes.fr/hal-01237890

R. Chisholm, T. Lorenzi, and A. Lorz, Effects of an advection term in nonlocal Lotka???Volterra equations, Communications in Mathematical Sciences, vol.14, issue.4, pp.1181-1189, 2016.
DOI : 10.4310/CMS.2016.v14.n4.a16

URL : https://hal.archives-ouvertes.fr/hal-01237529

C. Becker, J. Hagmann, J. Müller, D. Koenig, O. Stegle et al., Spontaneous epigenetic variation in the Arabidopsis thaliana methylome, Nature, vol.29, issue.7376, pp.245-254, 2011.
DOI : 10.1038/nature10555

N. Navin, Cancer genomics: one cell at a time, Genome Biology, vol.8, issue.8, p.452, 2014.
DOI : 10.1186/s13059-014-0452-9

G. Steel and L. Lamerton, The growth rate of human tumours., British Journal of Cancer, vol.20, issue.1, p.74, 1966.
DOI : 10.1038/bjc.1966.9

I. Bozic, A. B. Nowak, and M. , Dynamics of targeted cancer therapy, Trends in Molecular Medicine, vol.18, issue.6, pp.311-317, 2012.
DOI : 10.1016/j.molmed.2012.04.006

S. Gately and R. Kerbel, Antiangiogenic scheduling of lower dose cancer chemotherapy, Cancer J, vol.7, issue.5, pp.427-463, 2001.

A. Cohen, N. Geva-zatorsky, E. Eden, M. Frenkel-morgenstern, I. Issaeva et al., Dynamic Proteomics of Individual Cancer Cells in Response to a Drug, Science, vol.322, issue.5907, pp.1511-1517, 2008.
DOI : 10.1126/science.1160165

M. Delitala and T. Lorenzi, A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions, Journal of Theoretical Biology, vol.297, pp.88-102, 2012.
DOI : 10.1016/j.jtbi.2011.11.022

M. Delitala and T. Lorenzi, A mathematical model for progression and heterogeneity in colorectal cancer dynamics, Theoretical Population Biology, vol.79, issue.4, pp.130-138, 2011.
DOI : 10.1016/j.tpb.2011.01.001

P. Jänne, N. Gray, and J. Settleman, Factors underlying sensitivity of cancers to small-molecule kinase inhibitors, Nature Reviews Drug Discovery, vol.272, issue.9, pp.709-732, 2009.
DOI : 10.1038/nrd2871

O. Lavi, J. Greene, D. Levy, and M. Gottesman, The Role of Cell Density and Intratumoral Heterogeneity in Multidrug Resistance, Cancer Research, vol.73, issue.24, pp.7168-75, 2013.
DOI : 10.1158/0008-5472.CAN-13-1768

S. Spencer, S. Gaudet, J. Albeck, J. Burke, and P. Sorger, Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis, Nature, vol.382, issue.7245, pp.428-460, 2009.
DOI : 10.1038/nature08012

D. Bruin, E. Taylor, T. Swanton, and C. , Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications, Genome Medicine, vol.5, issue.11, p.101, 2013.
DOI : 10.1038/nature12065

M. Acar, J. Mettetal, and A. Van-oudenaarden, Stochastic switching as a survival strategy in fluctuating environments, Nature Genetics, vol.63, issue.4, pp.471-476, 2008.
DOI : 10.1038/ng.110

M. Gerlinger, A. Rowan, S. Horswell, J. Larkin, D. Endesfelder et al., Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, New England Journal of Medicine, vol.366, issue.10, pp.883-92, 2012.
DOI : 10.1056/NEJMoa1113205

A. Minchinton and I. Tannock, Drug penetration in solid tumours, Nature Reviews Cancer, vol.23, issue.1, pp.583-92, 2006.
DOI : 10.1038/nrc1893

O. Trédan, C. Galmarini, K. Patel, and I. Tannock, Drug Resistance and the Solid Tumor Microenvironment, JNCI Journal of the National Cancer Institute, vol.99, issue.19, pp.1441-54, 2007.
DOI : 10.1093/jnci/djm135

C. Sun, L. Wang, S. Huang, G. Heynen, A. Prahallad et al., Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma, Nature, vol.15, issue.7494, pp.118-140, 2014.
DOI : 10.1038/nature13121

N. André, M. Carré, and E. Pasquier, Metronomics: towards personalized chemotherapy?, Nature Reviews Clinical Oncology, vol.41, issue.7, pp.413-444, 2014.
DOI : 10.1016/j.ejca.2012.11.029

S. Benzekry, E. Pasquier, D. Barbolosi, B. Lacarelle, F. Barlési et al., Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine, Seminars in Cancer Biology, vol.35, pp.53-61, 2015.
DOI : 10.1016/j.semcancer.2015.09.002

URL : https://hal.archives-ouvertes.fr/hal-01195547

D. Hanahan, G. Bergers, and E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, Journal of Clinical Investigation, vol.105, issue.8, pp.1045-1052, 2000.
DOI : 10.1172/JCI9872

O. Scharovsky, L. Mainetti, and R. Vr, METRONOMIC CHEMOTHERAPY. CHANGING THE PARADIGM THAT MORE IS BETTER, Current Oncology, vol.16, issue.2, pp.7-15, 2009.
DOI : 10.3747/co.v16i2.420

R. Gatenby, A. Silva, R. Gillies, and B. Frieden, Adaptive Therapy, Cancer Research, vol.69, issue.11, pp.4894-903, 2009.
DOI : 10.1158/0008-5472.CAN-08-3658

R. Bremnes, T. Dønnem, S. Saad, K. Shibli, S. Andersen et al., The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-small Cell Lung Cancer, Journal of Thoracic Oncology, vol.6, issue.1, pp.209-226, 2011.
DOI : 10.1097/JTO.0b013e3181f8a1bd

P. Cirri and P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression, Cancer and Metastasis Reviews, vol.9, issue.5, pp.195-208, 2012.
DOI : 10.1007/s10555-011-9340-x

Y. Mao, E. Keller, D. Garfield, K. Shen, and J. Wang, Stromal cells in tumor microenvironment and breast cancer, Cancer and Metastasis Reviews, vol.18, issue.2, pp.303-318, 2013.
DOI : 10.1007/s10555-012-9415-3

K. Nieman, H. Kenny, C. Penicka, A. Ladanyi, R. Buell-gutbrod et al., Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth, Nature Medicine, vol.239, issue.11, pp.1498-503, 2011.
DOI : 10.1007/s12014-010-9055-y

B. Mendoza-juez, A. Martínez-gonzález, G. Calvo, and V. Pérez-garcía, A Mathematical Model for the Glucose-Lactate Metabolism of in Vitro Cancer Cells, Bulletin of Mathematical Biology, vol.208, issue.4, pp.1125-1167, 2011.
DOI : 10.1007/s11538-011-9711-z

K. Smallbone, R. Gatenby, R. Gillies, P. Maini, and D. Gavaghan, Metabolic changes during carcinogenesis: Potential impact on invasiveness, Journal of Theoretical Biology, vol.244, issue.4, pp.703-716, 2007.
DOI : 10.1016/j.jtbi.2006.09.010

C. Goding, D. Pei, and X. Lu, Cancer: pathological nuclear reprogramming?, Nature Reviews Cancer, vol.1, issue.8, pp.568-73, 2014.
DOI : 10.1038/nrc3781

F. Delhommeau, S. Dupont, D. Valle, and V. , in Myeloid Cancers, New England Journal of Medicine, vol.360, issue.22, pp.2289-301, 2009.
DOI : 10.1056/NEJMoa0810069

E. Solary, O. Bernard, A. Tefferi, F. Fuks, and W. Vainchenker, The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases, Leukemia, vol.122, issue.3, pp.485-96, 2013.
DOI : 10.1038/leu.2013.337

J. Miller, Parabolic cylinder functions In: Handbook of Mathematical Functions, pp.686-720, 1964.

N. Temme, F. Olver, D. Lozier, R. Boisvert, and C. Clark, Parabolic cylinder functions, NIST Handbook of Mathematical Functions, Ch. 12, 2010.