
�>���G �A�/�, �?���H�@�y�R�j�8�8�j�N�R

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�j�8�8�j�N�R�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�d �P�+�i �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�1�t�2�+�m�i�B�Q�M �6�`���K�2�r�Q�`�F �Q�7 �i�?�2 �:�1�J�P�* �a�i�m�/�B�Q �U�h�Q�Q�H
�.�2�K�Q�V

�1�`�r���M �"�Q�m�b�b�2�- �h�?�Q�K���b �.�2�;�m�2�m�H�2�- �.�B�/�B�2�` �o�Q�D�i�B�b�2�F�- �h���M�D�� �J���v�2�`�?�Q�7�2�`�- �C�m�H�B�2�M

�.�2���M�i�Q�M�B�- �"�2�M�Q�B�i �*�Q�K�#�2�K���H�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�1�`�r���M �"�Q�m�b�b�2�- �h�?�Q�K���b �.�2�;�m�2�m�H�2�- �.�B�/�B�2�` �o�Q�D�i�B�b�2�F�- �h���M�D�� �J���v�2�`�?�Q�7�2�`�- �C�m�H�B�2�M �.�2���M�i�Q�M�B�- �2�i ���H�X�X �1�t�@
�2�+�m�i�B�Q�M �6�`���K�2�r�Q�`�F �Q�7 �i�?�2 �:�1�J�P�* �a�i�m�/�B�Q �U�h�Q�Q�H �.�2�K�Q�V�X �S�`�Q�+�2�2�/�B�M�;�b �Q�7 �i�?�2 �k�y�R�e ���*�J �a�A�:�S�G���L
�A�M�i�2�`�M���i�B�Q�M���H �*�Q�M�7�2�`�2�M�+�2 �Q�M �a�Q�7�i�r���`�2 �G���M�;�m���;�2 �1�M�;�B�M�2�2�`�B�M�;�- �P�+�i �k�y�R�e�- ���K�b�i�2�`�/���K�- �L�2�i�?�2�`�H���M�/�b�X
�T�T�X�3�- �a�G�1 �k�y�R�e�X �I�?���H�@�y�R�j�8�8�j�N�R�p�k�=

https://hal.inria.fr/hal-01355391v2
https://hal.archives-ouvertes.fr

Execution Framework of the GEMOC Studio (Tool Demo)

Erwan Bousse
TU Wien, Austria

bousse@big.tuwien.ac.at

Thomas Degueule
Inria, France

thomas.degueule@inria.fr

Didier Vojtisek
Inria, France

didier.vojtisek@inria.fr

Tanja Mayerhofer
TU Wien, Austria

mayerhofer@big.tuwien.ac.at

Julien Deantoni
Université Côte d'Azur, I3S, France
julien.deantoni@polytech.unice.fr

Benoit Combemale
Univ. Rennes 1 and Inria, France

benoit.combemale@inria.fr

Abstract
The development and evolution of an advanced modeling
environment for a Domain-Speci�c Modeling Language
(DSML) is a tedious task, which becomes recurrent with
the increasing number of DSMLs involved in the develop-
ment and management of complex software-intensive sys-
tems. Recent efforts in language workbenches result in ad-
vanced frameworks that automatically provide syntactic tool-
ing such as advanced editors. However, de�ning the execution
semantics of languages and their tooling remains mostly hand
crafted. Similarly to editors that share code completion or syn-
tax highlighting, the development of advanced debuggers, an-
imators, and others execution analysis tools shares common
facilities, which should be reused among various DSMLs.
In this tool demonstration paper, we present the execution
framework offered by the GEMOC studio, an Eclipse-based
language and modeling workbench. The framework provides
a generic interface to plug in different execution engines as-
sociated to their speci�c metalanguages used to de�ne the
discrete-event operational semantics of DSMLs. It also in-
tegrates generic runtime services that are shared among the
approaches used to implement the execution semantics, such
as graphical animation or omniscient debugging.

Categories and Subject DescriptorsD.2.2 [Software Engi-
neering]: Design Tools and Techniques; I.6 [Simulation and
modeling]: Types of Simulation—Discrete event

Keywords domain-speci�c modeling language, language
and modeling workbenches, model execution, debugging

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

SLE '16, October 31-November 01, 2016, Amsterdam, Netherlands
Copyright c
 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4447-0/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2997364.2997384

1. Introduction
The integration of domain-speci�c concepts and best prac-
tices into Domain-Speci�c Modeling Languages (DSMLs)
can signi�cantly improve software and systems engineers
productivity and system quality (Hutchinson et al. 2011b).
Domain-speci�c models are used in the development pro-
cesses to reason and assess speci�c properties over the system
under development as early as possible. This usually leads to
a better and cheaper design as more alternatives can be ex-
plored. While many models only represent structural aspects
of systems, a large amount express behavioral aspects of the
same systems. Behavioral models are used in various areas
(e.g., enterprise architecture, software and systems engineer-
ing, scienti�c modeling, etc.), with very different underlying
formalisms (e.g., business processes, orchestrations, func-
tional chains, scenarios, protocols, activity diagram, etc.).

The development of DSMLs has only been recently rec-
ognized as a signi�cant software engineering task in itself
(Hutchinson et al. 2011a). To support the tedious task of im-
plementing tool-supported DSMLs, specialized tools (aka.
language workbenches) have been proposed during the last
decade to provide generic or generated syntactic services for
DSMLs. From a DSML speci�cation, Eclipse-based tools,
such as Sirius1 and Xtext (Eysholdt and Behrens 2010), auto-
matically provide advanced services for graphical and textual
edition. This includes parsers, syntax highlighting, auto com-
pletion or “quick �x” suggestion systems.

For behavioral models, early dynamic validation and veri-
�cation (V&V) techniques are required to ensure that they are
correct with regard to their intended behavior, such as simu-
lation, testing, debugging, or runtime veri�cation. Dynamic
V&V techniques may require to execute the models, in accor-
dance with a given speci�cation of the execution semantics
of the DSML. Such a speci�cation would eventually pro-
vide an execution engine, either in the form of an interpreter
(i.e., operational semantics) or a compiler (i.e., translational

1 http://www.eclipse.org/sirius/

semantics). However, the expectedruntimeservices on top
of the execution engine remain mostly hand crafted and dedi-
cated to the execution engine developed for each new DSML.
In particular, graphical animation and interactive debugging
are common facilities to observe and control an execution to
better understand a behavior or to identify the cause of a de-
fect. Similarly to editors that share code completion or syntax
highlighting, the development of advanced debuggers, ani-
mators, and others execution analysis tools shares common
facilities, which should be reused among various DSMLs.

In this tool demonstration paper, we introduce theexe-
cution frameworkof the GEMOC Studio, an Eclipse-based
language and modeling workbench. This framework provides
a generic interface to integrate different execution engines,
themselves associated to their speci�c metalanguages to de-
�ne the discrete-event operational semantics of DSMLs. The
framework also integrates runtime services that can be shared
among the various approaches used to implement the execu-
tion semantics. These services include graphical animation,
omniscient debugging or trace management. We illustrate the
framework with the integration of different engines that are
applied on the development of modeling environments for
various DSMLs. We demonstrate our approach through the
de�nition of different xDSMLs with different approaches,
and the presentation of the resulting environments provided
by the modeling workbench to animate and debug models.

2. On Model Execution
Debugging, and dynamic V&V techniques in general, require
models to be executable, which is achieved by de�ning the
execution semantics of the executable DSMLs (xDSMLs)
used to de�ne them. The execution semantics of an xDSML
is mainly implemented either as a compiler (aka. translational
semantics) or as an interpreter (aka. operational semantics).

A compiler consists in generating executable code, usually
targeting an execution environment that provides the tools
of interest for the modeling language under development
(e.g., virtual machine, debugger, checkers). While this ap-
proach allows language designers to reuse existing, possibly
ef�cient, tools for new modeling languages, it comes with
two dif�culties. First, the de�nition of the semantics is given
in terms of the targeted execution environment. This makes
dif�cult the de�nition and understanding of the resulting ex-
ecution semantics. Second, to be useful to the user of the
xDSML there is a need for a back-annotation mechanism to
trace back the execution results in terms of the initial model.

An interpreter is a virtual machine for a modeling lan-
guage in charge of executing any conforming models. The
interpreter de�nes the data structure representing the execu-
tion state of a model, and the execution rules in terms of
endogenous, possibly in-place, transformations of such an ex-
ecution state.The execution state can be either an extension of
the syntax of the modeling language (e.g., the execution state
of a statechart could be speci�ed by an additional collection

containing the current states) or a separate data structure de-
�ned by its own metamodel (e.g., the execution state of a Petri
net may be represented as a matrix). While the main bene�t
of this approach is to de�ne the execution semantics directly
in terms of the concepts of the modeling language, the main
drawback is the necessity for any new xDSML to implement
all the tooling based on the execution semantics,e.g., a debug-
ger. Developing such a complex tool for a xDSML remains a
dif�cult and error-prone task.

Various approaches have been investigated in the last
decade to implement operational semantics (e.g., (Mayer-
hofer et al. 2013; Engels et al. 2000; Tatibouët et al. 2014;
Combemale et al. 2013)), with their own pros and cons (for-
mality, underlying paradigm, abstraction level, or speci�c
concern such as concurrency). Moreover, despite the speci-
�city of each xDSML and the differences between their se-
mantics, there is a common set of runtime facilities which
can be expected for all languages. For instance, one may
expect the following debugging facilities: control of the ex-
ecution (pause, resume, stop), representation of the current
state (i.e., , model animation), breakpoint de�nition, step
into/over/out and step forward/backward. To support the vari-
ous approaches to implement the discrete-event operational
semantics of xDSMLs, and to drastically reduce the develop-
ment cost of runtime tools, we present in the next section the
generic execution framework provided in the GEMOC stu-
dio. This execution framework is used to integrate different
approaches to de�ne the operational semantics of xDSMLs
(incl., the meta-language and the associated execution en-
gine), and provides various generic facilities for model simu-
lation, graphical animation and debugging.

3. GEMOC Execution Framework
3.1 Overview of the GEMOC Studio

The GEMOC Studio2 is an Eclipse package atop the Eclipse
Modeling Framework (EMF), which includes:

� The GEMOC Language Workbench: to be used by lan-
guage designers to build and compose new xDSMLs,

� The GEMOC Modeling Workbench: to be used by do-
main designers to create, execute and coordinate models
conforming to xDSMLs.

The different concerns of a DSML, as de�ned with the
tools of the language workbench, are automatically deployed
into the modeling workbench. They parametrize a generic
execution framework that provides various generic services,
such as graphical animation, debugging tools, trace and event
managers, timeline visualizations, etc.

3.2 Overview of the Execution Framework

Figure 1 shows an overview of the execution framework of-
fered by the GEMOC studio. At the middle, the xDSML de-

2 http://gemoc.org/studio

Trace
metamodel

and
constructor

Model Animator

Execution Framework

Operational Semantics

Metaprogramming
Approach

(Kermeta/Xtend/Java,
MoCCML, xMOF, BCOoL)

Ecore

aRunning
Model

timeline, control
panel, omniscient
debugger, VCD

Concrete Syntax

Graphical
representation

Sirius

Graphical
representation

Interpreter Diagram

Model Editor

Diagram

Execution
Rules

Execution
State

Abstract Syntax

Domain Model
(Metamodel)

Legend

code generation

<<dependsOn>>

<<conformsTo>>

Language
Framework

Modeling
Framework

Figure 1: Overview of the GEMOC Execution Framework

�ned in the language workbench is depicted. It is composed of
abstract and concrete syntaxes, and of operational semantics.
For a given xDSML, the operational semantics are de�ned
using a speci�c metaprogramming approach (e.g., speci�c
model transformation languages). Since the GEMOC Studio
is based on EMF, Ecore is used to de�ne the abstract syntax,
and at runtime the executed model is a set of EMF objects.
For de�ning the concrete syntax, the Sirius toolkit is used. For
more information and examples on the language workbench,
please refer to the of�cial documentation3.

At the bottom, the modeling workbench supported by the
execution frameworkis shown. This workbench allows the
user to de�ne an executable model conforming to an xDSML,
and execute it using an execution engine and a selection of
addons. Anaddonis developed using the execution frame-
work and provides a set of runtime services (e.g., animation
or debugging). Anexecution engineis developed using the
execution framework and is speci�c to a metaprogramming
approach. It is responsible for integrating the interpreter of
the considered xDSML – developped using the same metapro-
gramming approach as the engine – with the addons provided
in the studio. This implies sending noti�cations to addons
regarding the execution (e.g., beginning of the run, start or
end of a rule, etc.). By reacting to noti�cations, an addon
may query the engine to ask for information, which can be
used to provide a view that gets updated during the execution,
or control the execution of the model, or even modify the
model. Some addons are generated (e.g., trace management),
while others are generic and compatible with any engine. At
runtime, the executed model contains a dynamic execution
state that is modi�ed by the interpreter and by addons.

3.3 Interface of the Execution Framework

There are many approaches to de�ne discrete-event opera-
tional semantics for an xDSML. Each approach has different

3 http://gemoc.github.io/gemoc-studio/publish/guide/html_
single/Guide.html

characteristics, such as how to initialize the execution state of
a model, or how to provide a way to control the application of
the semantics. In order to manage all these different situations,
the GEMOC execution framework provides an API to de�ne
and integrate (discrete-event) execution engines. This API
de�nes an engine as a component with two main operations:
initialize to load an xDSML and a model, and to prepare the
transformation; andexecuteto run the transformation. In ad-
dition to these two operations, the API comprises operations
to add or remove addons, to access the current stack of exe-
cution steps, to get or set the engine status (started, paused,
stopped, etc.), to access the execution context (e.g., the model,
the execution mode) or to start/stop the engine. This API is
used both by the generic part of the framework dedicated to
starting an execution, and by the addons which may need to
access information or control the execution.

In addition to complying with this API, the integration
of an engine in the framework requires that noti�cations are
sent to the attached addons during the execution (i.e., during
the executeoperation). For this purpose, the framework
de�nes the common notion ofexecution step, a step being the
application of an execution rule of the operational semantics.
Note that an engine implementation may consider that only a
subset of the rules lead to execution steps (e.g., by annotating
the semantics). When an engine is about to apply such rules,
it must create a step object containing information about the
executed rule (identi�ers of the rule, parameters given, etc.).
Then this step object must be used to notify addons of both
the start and the end of a step. Step objects are also used in
the framework for other purposes, such as the storage of a
stack of the steps currently being executed, or to be directly
stored within an execution trace.

Since a signi�cant part of the logic is common to all
execution engines, the framework provides a basicabstract
execution enginethat can be extended into a concrete engine.
This abstract engine implements part of the API described
above, such as the services to manage the status, to add or
remove addons, and to start or stop. In addition, this abstract
engine provides internal services to notify all addons of the
progress of the execution, although the task of calling these
services at the right instants is left to the concrete engines. In
particular, a service calledbeforeStepis provided to be called
at the beginning of a step, and second calledafterStepmust be
called at the end. Depending on the technique used to de�ne
the execution semantics, the integration of these operations
in the operational semantics can be done in different ways
(instrumentation, event listeners, etc.).

Addonsare components that can be de�ned to provide
runtime services. Such services need to be connected to the
ongoing execution of a model in order to follow the execution
and to extract information (e.g., the content of the execution
state) or to control the execution (e.g., pause or provide input).
To that effect, the GEMOC execution framework provides an
API that de�nes an addon as a component with at least four

operations that are synchronously called by the engine during
the execution of a model:engineStartedwhen the execution
starts,engineStoppedwhen the execution ends,aboutToExe-
cuteStepwhen the engine is about to start an execution step,
stepExecutedwhen an execution step �nished. Within the
implementation of one of these operations, an addon can ac-
cess the engine and its status, the executed model, or even
the graphical interface of the studio. Therewith, an addon can
accomplish a large diversity of tasks, such as changing the
executed model, pausing or stoping the execution, displaying
information, or sending some input data to the engine.

4. Integration of Different Execution Engines
Using the API for execution engines that we described,
different metaprogramming approaches have been integrated
to describe discrete-event operational semantics. In particular,
we implemented four main execution engines:

Java Engine. The Java engine is dedicated to operational
semantics that are entirely de�ned using any Java-based lan-
guage, such as Java, Xtend (Efftinge et al. 2012) or Ker-
meta (Jézéquel et al. 2015). The assembling of the various
DSML concerns (incl., abstract and concrete syntaxes, and
operational semantics) is made consistent thanks to Melange
(Degueule et al. 2015). Theinitialize operation consists in
loading the model, and searching for the entry point speci�ed
by the xDSML (i.e., themainmethod of the semantics). The
executeoperation simply consists in starting this entry point.
However, to interweave noti�cations to addons in between
execution steps, it is required that the Java semantics them-
selves notify the engine both before and after the performed
steps (e.g., by callingbeforeStepandafterStepprovided by
the abstract engine), otherwise the engine has no way to be in-
formed of the execution. These calls can be either introduced
manually at the beginning and at the end of chosen execution
rules (i.e., Java methods), or can be introduced externally us-
ing aspect-oriented programming (e.g., AspectJ), or can even
be realized using a feature provided by the metalanguage
(e.g., the@Stepannotation provided by Kermeta).

Java+MoCCML Engine. The Java+MoCCML engine is
dedicated to operational semantics where the (possibly con-
current and timed) control is described in the MoCCML
formal language (Deantoni et al. 2015), while the execution
rules are written in any Java based language (e.g., Kermeta)
(Combemale et al. 2013). In this case, theinitialize operation
creates a so called concurrency model according to the op-
erational semantics, where some relevant events are de�ned,
constrained together and linked to execution rules de�ned in
Java (or any Java-based language). Then theexecuteopera-
tion consists in a loop that asks for the next possible steps
to the Timesquare solver (Deantoni and Mallet 2012). There
are pottentially several possible steps since it considers all
acceptable interleavings of the events. Once a step is selected,
it calls the corresponding Java methods as required. Noti�-

cations to and from addons are received and sent directly by
the engine during this execution loop.

xMOF Engine. The xMOF engine supports the execution
of operational semantics de�ned with xMOF (Mayerhofer
et al. 2013). With xMOF the data structure for representing
the execution state of a model is de�ned with a metamodel
and the rules of the semantics are de�ned with UML activities
conforming to the fUML standard (Object Management
Group 2015). For the execution of models, the xMOF engine
relies on the virtual machine of fUML. In particular, the
initialize operation of the xMOF engine loads the model
to be executed as well as an optional input model de�ning
input values to the executed model (e.g., the initial token
distribution of a Petri net). These models are then handed
over to the fUML virtual machine for execution in the
executeoperation of the xMOF engine. The fUML virtual
machine provides sophisticated mechanisms for controlling
and observing the execution of a model. These mechanisms
are utilized by the xMOF engine to call the operations
beforeStepandafterStepat the appropriate instants.

BCOoL Engine. The engine supports the behavioral co-
ordination of heterogeneous models, based on coordination
patterns de�ned using BCOoL (Vara Larsen et al. 2015). The
executeoperation consists in asking a set of coordinated en-
gines what are the next possible steps and to merge and �lter
these steps to provide the next possible coordinated steps
according to the coordination patterns.

5. Runtime Services
Using the API for addons that we described, we implemented
a set of generic runtime services that can be shared among
the different execution engines of the GEMOC Studio.

Graphical Animator. The graphical animator is an addon
that updates different views in order to display the current
execution state of the executed model, hence helping to
understand models under execution. Since the GEMOC
Studio is based on Eclipse, the animator is connected to the
Eclipse debug UI to display the stack of currently executed
steps in theDebugview, and the values of the execution state
in the Variablesview. In addition, if a graphical concrete
syntax was de�ned for the xDSML using Sirius, the animator
updates a graphical representation of the execution state of
the model during the execution.

Execution Trace Addons. The execution framework pro-
vides two complementary ways to manage execution traces:
a generic multibranch trace addon, or a generator of domain-
speci�c multidimensional trace addons. Each trace addon
reacts to engine noti�cations to capture steps and states. The
generic multibranch trace addoncaptures generic traces that
contain different branches, each linked to a choice made dur-
ing a non-deterministic situation of the execution. Thegener-
ator of domain-speci�c and multidimensionaltrace addon can

automatically produce an addon speci�c to a given xDSML
to create and manage multidimensional traces (Bousse et al.
2015b).

Omniscient Debuggers. Two omniscient debugging ad-
dons are provided, each relying on a different sort of trace
addon.They can provide services expected by any debugger
(e.g., step into/over/out, breakpoints) thanks to an integra-
tion with the Eclipse Debug UI. In addition, they provide
services to explore the executionbackwardin time (back
into/over/out), by relying on execution traces constructed by
trace addons. They each provide a view called atimeline,
which is an interactive graphical representation of the trace.
Themultibranch debuggerrelies on a multibranch trace to
explore non-deterministic and concurrent executions. It al-
lows the creation of new branches by going back in time and
making different choices. Themultidimensional omniscient
debuger(Bousse et al. 2015a) relies on a multidimensional
trace to explore the different dimensions of the execution, us-
ing additional stepwise operations to explore the dimensions.

VCD. The VCD addon provides a representation of the
execution in the form of a timing diagram reprensented in
the Value Change Dump format (VCD) de�ned by the IEEE
Standard 1364-1995 and extended in the IEEE Standard 1364-
2001. It represents the potentially parallel evolution of the
calls of the execution steps. This illustrates the possibility to
adapt the GEMOC studio addons to speci�c domains. In this
case it is adapted to the Electronic Design Automation (EDA)
domain, which is used to this kind of format.

Stimuli Manager. The stimuli manager is an addon pro-
vided to sendstimuli to an ongoing execution. This addon
provides a view showing all the possible stimuli that can be
sent to the execution, which depends on the technique used
to de�ne the operational semantics, and on the content of
the semantics. This addon is interesting for non-deterministic
executions that depends on external stimuli,e.g., to simulate
stimuli from the external environment.

Step Decider. Lastly, the step decider is an addon provided
to make choices in non-deterministic situations during an
ongoing execution. It provides a view that shows all the steps
possible at a given point in time, and gives the possibility to
rely either on an existing decider (e.g., the random decider to
make a choice at random), or to manually choose the next step
from the displayed possibilities. Like the stimuli manager,
this addon is only interesting for non-deterministic semantics
with different possible steps at some points in the execution.

6. Related Work
In the last decade, various language workbenches have been
proposed with generic or generative approaches to automate
the development ofsyntacticservices. To name just a few,
Xtext and Sirius have been developed on top of EMF to
provide textual and graphical advanced editors respectively.

These tools have been developed with a strong connection
between the metamodeling environment and the associated
services. More recently, aLanguage Server Protocol4 has
been developed to decouple the IDE and the language syntac-
tic services. This paves the way for using the same services
from various IDE that implements this protocol.

In this paper, we propose an execution framework that
supports generic and generative approaches forruntimeser-
vices (e.g., graphical animator and omniscient debugging),
and a generic API to connect different metaprogramming
approaches and associated execution engines. Among many
other projects, model execution has been previously investi-
gated within Ptolemy (Eker et al. 2003), a framework where
different Model of Computations (MoC) can be integrated
based on a unique Java API. While the API can be used to
implement different ways of specifying an operational seman-
tics, the framework does not provide any way to communicate
from and to user de�ned addons. Other interesting frame-
works for model execution include, ModHel'X (Hardebolle
and Boulanger 2008) and AToM3 (Lara and Vangheluwe
2002), which support multi-formalism modeling and the con-
current execution of heterogeneous models. However, both
are bound to their speci�c metaprogramming approach.

7. Conclusion
Languages workbenches facilitate the development of DSMLs,
especially for providing syntactic services. Howeverruntime
services are mostly handcrafted for each different xDSML
and each different metaprogramming approach. Based on a
common API, we proposed a framework to integrate any kind
of metaprogramming approach used to de�ne discrete-event
operational semantics into an execution engine. Notably, im-
plementing this API allows to use and reuse of generic or
user-de�ned runtime services asaddonsthat send and receive
generic messages to and from the execution engines. Using
this framework, we implemented four different engines, each
for a speci�c metaprogramming approach, and a set of run-
time services, such as generic debuggers that can be used
for any xDSML and engine. As our project is open-source
and available online, we are very open to any contributors for
implementing additional execution engines (e.g., to support
operational semantics de�ned with other metaprogramming
approaches) and additional runtime services.

Acknowledgments
This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011), the COST Action MPM4CPS
(IC1404), the Austrian Science Fund (FWF): P 28519-N31,
the Christian Doppler Forschungsgesellschaft CDL-Flex and
the BMWFW (Austria). The authors also thank Dorian Leroy
(Inria) and Cédric Brun (Obeo) for their help in the develop-
ment of the GEMOC execution framework.

4 https://github.com/Microsoft/language-server-protocol

References
E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry.

Supporting Ef�cient and Advanced Omniscient Debugging for
xDSMLs. InProceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Software Language Engineering (SLE'15),
pages 137–148. ACM, 2015a. doi: 10.1145/2814251.2814262.

E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry. A
Generative Approach to De�ne Rich Domain-Speci�c Trace
Metamodels. InProceedings of the 11th European Conference on
Modelling Foundations and Applications (ECMFA'15), volume
9153 ofLNCS, pages 45–61. Springer, 2015b. doi: 10.1007/
978-3-319-21151-0_4.

B. Combemale, J. Deantoni, M. Vara Larsen, F. Mallet, O. Barais,
B. Baudry, and R. France. Reifying Concurrency for Executable
Metamodeling. In R. F. P. Martin Erwig and E. van Wyk, editors,
6th International Conference on Software Language Engineering
(SLE 2013), Lecture Notes in Computer Science. Springer-Verlag,
2013. URLhttp://hal.inria.fr/hal-00850770 .

J. Deantoni and F. Mallet. TimeSquare: Treat your Models with
Logical Time. In S. N. Carlo A. Furia, editor,TOOLS - 50th
International Conference on Objects, Models, Components, Pat-
terns - 2012, volume 7304, pages 34–41, Prague, Czech Republic,
May 2012. Czech Technical University in Prague, in co-operation
with ETH Zurich, Springer. doi: 10.1007/978-3-642-30561-0_4.
URL https://hal.inria.fr/hal-00688590 .

J. Deantoni, P. Issa Diallo, C. Teodorov, J. Champeau, and B. Combe-
male. Towards a Meta-Language for the Concurrency Concern
in DSLs. In Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE), Grenoble, France, Mar. 2015. URL
https://hal.inria.fr/hal-01087442 .

T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M.
Jézéquel. Melange: A Meta-language for Modular and Reusable
Development of DSLs. In8th International Conference on
Software Language Engineering (SLE 2015), Pittsburg, United
States, Oct. 2015. ACM. URLhttps://hal.inria.fr/
hal-01197038 .

S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow,
W. Hasselbring, and M. Hanus. Xbase: Implementing Domain-
speci�c Languages for Java. In11th International Conference on
Generative Programming and Component Engineering (GPCE),
pages 112–121. ACM, 2012. ISBN 978-1-4503-1129-8. doi:
10.1145/2371401.2371419. URLhttp://doi.acm.org/10.
1145/2371401.2371419.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming heterogeneity –
the Ptolemy approach.Proc. of the IEEE, 91(1):127–144, 2003.

G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta-
Modeling: A Graphical Approach to the Operational Semantics
of Behavioral Diagrams in UML. InProceedings of the Third
International Conference on the Uni�ed Modeling Language
(UML'00), volume 1939 ofLNCS, pages 323–337. Springer
Berlin Heidelberg, 2000. ISBN 978-3-540-41133-8. doi: 10.
1007/3-540-40011-7_23.

M. Eysholdt and H. Behrens. Xtext: Implement Your Language
Faster Than the Quick and Dirty Way.Object Oriented Program-
ming Systems Languages and Applications, pages 307–309, 2010.

doi: 10.1145/1869542.1869625. URLhttp://doi.acm.org/
10.1145/1869542.1869625.

C. Hardebolle and F. Boulanger. Modhel'x: A component-oriented
approach to multi-formalism modeling. InModels in Software
Engineering, pages 247–258. Springer, 2008.

J. Hutchinson, M. Rounce�eld, and J. Whittle. Model-driven
engineering practices in industry. In2011 33rd International
Conference on Software Engineering (ICSE), pages 633–642,
May 2011a. doi: 10.1145/1985793.1985882.

J. Hutchinson, J. Whittle, M. Rounce�eld, and S. Kristoffersen.
Empirical Assessment of MDE in Industry. InProceedings
of the 33rd International Conference on Software Engineering
(ICSE'11), pages 471–480. ACM, 2011b. doi: 10.1145/1985793.
1985858.

J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and
F. Fouquet. Mashup of metalanguages and its implementation in
the kermeta language workbench.Software & Systems Modeling,
14(2):905–920, 2015.

J. Lara and H. Vangheluwe. Atom3: A tool for multi-formalism
and meta-modelling. In R.-D. Kutsche and H. Weber, editors,
Fundamental Approaches to Software Engineering, volume 2306,
chapter Lecture Notes in Computer Science, pages 174–188.
Springer Berlin / Heidelberg, 2002. ISBN 978-3-540-43353-8.

T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel. xMOF:
Executable DSMLs based on fUML. InProceedings of the 6th
International Conference on Software Language Engineering
(SLE'13), volume 8225 ofLNCS, pages 56–75. Springer, 2013.
doi: 10.1007/978-3-319-02654-1_4.

Object Management Group. Semantics of a Foundational Subset
for Executable UML Models (fUML), V 1.2.1, January 2015.
http://www.omg.org/spec/FUML/1.2.1 .

J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier. Formalizing
Execution Semantics of UML Pro�les with fUML Models. In
Proceedings of the 17th International Conference on Model
Driven Engineering Languages and Systems (MODELS'14),
volume 8767 ofLNCS, pages 133–148. Springer, 2014. doi:
10.1007/978-3-319-11653-2_9.

M. E. Vara Larsen, J. Deantoni, B. Combemale, and F. Mallet. A
Behavioral Coordination Operator Language (BCOoL). InInter-
national Conference on Model Driven Engineering Languages
and Systems (MODELS), number 18, page 462. ACM, Sept. 2015.
URL https://hal.inria.fr/hal-01182773 .

A. Demonstration Outline
During the demonstration of the execution framework, we
will exhibit the capabilities provided by the different metapro-
gramming approaches integrated with their associated exe-
cution engines (Section 4), and the various runtime services
integrated into the GEMOC studio (Section 5).

We will illustrate the different metaprogramming ap-
proaches integrated in the GEMOC execution framework
through the development of various tool-supported executable
domain-speci�c modeling languages (xDSMLs).

A.1 Bringing Simulation and Animation Capabilities
to Arduino Designer with Kermeta

Arduino Designer is a simple tooling based on Sirius which
provide a modeling language to graphically design programs
(namelysketches) based on a given hardware con�guration
(Arduino board with sensors and actuators). Once a program
is de�ned the user can automatically deploy it on an actual
Arduino board. Behind the scene, Arduino Designer will
generate the.ino �les, launch the compiler and upload the
binary.

Among the advantages of developing Arduino in the
GEMOC Studio, the simulation and animation capabilities
provide a convenient way to debug sketches at the level
of abstraction provided by the modeling language, without
having to systematically compile and deploy the binary on
an Arduino board. This helps the developer to minimize the
round-trip between the design of the sketch and the test of the
program, and to design the sketch without having necessarily
the Arduino board.

Figure 2 shows the language workbench to design the op-
erational semantics of Arduino Designer (left), and the mod-
eling workbench automatically obtained to edit, animate and
debug sketches on speci�c arduino con�guration (right). All
the sources are available in open source5. During the demon-
stration, we will present the different concerns to de�ne an
DSML, including the abstract syntax with Ecore, the oper-
ational semantics with Kermeta, and the graphical concrete
syntax with Sirius. From such a speci�cation, we will present
the different facilities provided by the modeling workbench
automatically obtained, including graphical animation, break-
point management, trace management and forward/backward
debugging.

The modeling language covers hardware and software as-
pects, which are de�ned in the abstract syntax as a domain
metamodel using Ecore. Once we have de�ned the meta-
model, one can expect to examine how a conforming model
(program and hardware) behaves step by step. One could even
simulate interactions, and all of that without having to com-
pile and deploy on the actual hardware. Instead of de�ning
all the interpretation logic using pure Java code, we provide
with Kermeta speci�c annotations to seamlessly extend an
Ecore metamodel with dynamic information related to the

5 Cf. https://github.com/gemoc/arduinomodeling

execution and the execution steps. The annotation@Aspect
allows to re-open a concept declared in an Ecore metamodel,
and to add new attributes / references corresponding to the
dynamic information, and operations corresponding to the
execution steps. These execution steps are usually de�ned
according to the interpreter pattern, traversing the metamodel
to declare the interpretation of instances. The operations cor-
responding to speci�c execution steps (i.e., , on which we
would pause the execution, hence de�ning the granularity of
the possible step-by-step execution) must be declared using
the annotation@Step, and the starting point of the execution
must be declared using the annotation@Main.

From these annotations and the logic de�ned with Ker-
meta, we generate the corresponding Java code so that:

� addons get noti�ed of the execution of steps,

� the execution control works with EMF transaction com-
mands,

� the dynamic information is displayed in the variable view,

� the animator gets noti�ed to update the views.

What remains is the de�nition of the graphical animation
layer itself. The animator is responsible for providing cus-
tomization to the diagram editor to adapt the shapes and
colors based on the runtime data. It rely on the customization
capabilities of Sirius.

The modeling workbench shows the debugging environ-
ment automatically obtained from the design of the model-
ing language as previously described. The debugging envi-
ronment is launched by doingright click ! Debugon the
model. The debugging environment is fully integrated with
the Eclipse debug UI and provides the usual debugging facili-
ties including:

� the control of the execution (pause, resume, stop), incl.
step-by-step execution (step forward into, over, out),

� a graphical animation of the model during the execution
to highlight the current state,

� the possibility to de�ne breakpoints on model elements,

� the stack of the execution steps,

� the binding of the dynamic information into the variable
view to show their value during the execution.

In addition, the debugging environment provides advanced
features related to omniscient debugging such as an ef�cient
management and visualization of the execution trace, the
possibility to restore the model in any state previously reached
during the execution, and step backward facilities (step
backward into/over/out).

Finally, the timeline of the multi-dimensional debugger
shows one speci�c execution trace per dynamic information
i.e., per dimension of the model. This allows the developer to
navigate through the global execution trace while focusing
only on the changes of a particular dynamic information
represented in theVariablesview.

(a) Language Workbench (b) Modeling Workbench

Figure 2: Workbenches for Kermeta-based language design and model execution (example of Arduino Designer)

A.2 Operational Semantics with Kermeta and
MoCCML

The emergence of modern concurrent systems (e.g., Cyber-
Physical Systems and Internet of Things) and highly-parallel
platforms (e.g., many-core, GPGPU and distributed plat-
forms) call for Domain-Speci�c Modeling Languages (DSMLs)
where concurrency is of paramount importance. Such DSMLs
are intended to propose constructs with rich concurrency se-
mantics, which allow system designers to precisely de�ne and
analyze system behaviors. Most of the time the concurrency
model remains implicit and ad-hoc in the language design and
implementation. The lack of an explicit concurrency model
in language speci�cations prevents : the precise de�nition,
the variation and the complete understanding of the DSML's
semantics, the effective usage of concurrency-aware analysis
techniques, and the exploitation of the concurrency model
during the system re�nement (e.g., during its allocation on a
speci�c platform).

Here, we illustrate the bene�ts of making explicit the con-
currency by specifying the operational semantics of fUML.
We implemented in the GEMOC studio the concurrency-
aware executable metamodeling approach for fUML, which
supports a modular de�nition of the execution semantics in-
cluding the concurrency model of fUML de�ned in the formal
MoCCML metalanguage (Deantoni et al. 2015) (central part
of Figure 3a), the semantic rules de�ned in Kermeta (aka.
domain-speci�c actions, DSA; depicted on the right part of
Figure 3a), and the xDSML speci�cation gluing together the
syntactic and semantics de�nitions (de�ned on the lower part

of Figure 3a). Of course the implementation of the underlying
engine follows the GEMOC engine API.

By using MoCCML, the proposed semantics provides:

� explicit observation points speci�ed by events linked
to execution functions and constraint between them to
specify their causalities

� possibly complex domain speci�c constraints embedded
into reusable libraries

At any time during a run, an event that does not violate
the constraints can occur. This mean that an operational
semantics de�ned in MoCCML exhibits the interleavings
of actions in the models (for example when using aForkNode
in an fUML model).

The constraints from the operational semantics are eventu-
ally instantiated to de�ne the execution model of a speci�c
model. The execution model is a symbolic representation of
all the acceptable schedules for a particular model. To enable
the automatic generation of the execution model, the concur-
rency model is weaved into the context of speci�c concepts
from the abstract syntax of a DSML. This contextualization
is de�ned by a mapping between the elements of the abstract
syntax and the constraints of the concurrency model. The sep-
aration of the mapping from the concurrency model makes
the concurrency model independent of the DSML so that it
can be reuse6.

In the GEMOC studio, the execution model is acting as
the con�guration of a generic execution engine, which can

6 for instance the fUML concurrency model, here applied on a speci�c
abstract syntax, may also be applied on the activity part of UML

be used for simulation or analysis of any model conforming
to the abstract syntax of the DSML.

On Figure 3b we can see the execution of a speci�c fUML
model where a fork node with to output actions are ready
to be executed. On the left part of the Figure the different
interleavings are represented: The designer can decide to
execute the action on the left of the fork node, the one on
the right or both together. Of course, according to the choice
made for this step the remaining of the execution can differ.
However, by using the multi-branch timeline represented on
the lower part of Figure 3b, the designer can go back on its
decision and explore other possibilities (i.e., interleavings)
offered by the model. Also, on Figure 3b, the VCD addon is
active so that the execution is traced according to the VCD
format.

A.3 Petri Nets Operational Semantics with xMOF

Petri nets is a common formalism used to represent processes
and distributed systems. We implemented the language as an
xDSML for the GEMOC Studio using the xMOF language
for de�ning the operational semantics. At runtime, we rely
on the xMOF engine to execute a Petri net model, and we
thereby automatically bene�t from animation and standard
debugging facilities.

Figure 4 shows the language workbench with the Petri nets
Ecore syntax and xMOF semantics (left), and the modeling
workbench when executing and animating a Petri net model
(left). During the demonstration, we will show that the
process is very similar to using Kermeta only (see Section
A.1), except that the operational semantics are de�ned only
using xMOF. Therefore, we refer to the Section A.1 for more
detailed information.

In the language workbench, we will de�ne the metamodel
of the abstract syntax using Ecore, then the operational
semantics using the xMOF graphical editor, and �nally the
concrete standard using Sirius. Similarly to using the@Step
annotation provided by Kermeta, we will use an annotation
provided by xMOF to indicate which xMOF operations lead
to execution steps.

In the modeling workbench, the deployed Petri nets
xDSML will be used to de�ne and execute a Petri net model.
The debugger will be directly available to display the content
of the stack, of the variables, and to animate the model.

A.4 Executing Arduino Designer in coordination with
a Scenario by using BCOoL

BCOoL is used to specify, at the language level, some co-
ordinator patterns (Figure 5a), which can be applied on spe-
ci�c models to determinate their coordinated execution (Fig-
ure 5b). A pattern is expressed according to the concurrent
operational semantics of some languages. For instance in
Figure 5a, the pattern imports two languages, namely the
Arduino language depicted previously and a simple scenario
language. Based on the explicit domain speci�c events de-
�ned in these languages, BCOoL de�nes operators, which are
de�ning how the models conforming such languages must
be coordinated. In this case we specify the actions from the
environment (the button push) by using the scenario language.
Once the pattern applied, a coordination engine can execute
the heterogeneous speci�cation (Figure 5c), taking bene�ts
of the animation, debugging and addons available for the
concurrent engines.

(a) Language Workbench (b) Modeling Workbench

Figure 3: Workbenches for (Kermeta/MoCCML)-based language design and model execution

(a) Language Workbench (b) Modeling Workbench

Figure 4: Workbenches for xMOF-based language design and model execution (example of Petri nets)

(a) Language Workbench: coordination pattern de�nition
(b) Modeling Workbench: coordination pattern application

(c) Modeling Workbench: heterogeneous execution of an Arduino Designer model and Scenario model

Figure 5: Workbenches for BCOoL-based model coordination of Arduino Designer and a Scenario language

