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Particle Filter-based Direct Visual Servoing

Quentin Bateux, Eric Marchand

Abstract— With respect to classical visual servoing (VS)
technics based on geometrical features, the main drawback of
direct visual servoing is its limited convergence area. In this
paper we propose a new direct visual servoing control law that
relies on a particle filter to achieve non-local and non-linear
optimization in order to increase this convergence area. Thanks
to multi-view geometry and image transfer techniques, a set
of particles (which correspond to potential camera velocities)
are drawn and evaluated in order to evaluate the best camera
trajectory. This new control law is validated on a 6 DOF
positioning task performed on a real gantry robot and statistical
comparisons are also provided from simulation results.

I. INTRODUCTION

Visual servoing aims to control the dynamic of a system
based on visual information provided by one or multiple
cameras[4]. To achieve a positioning task, a visual ser-
voing control law regulates an error in the image space.
While the classical methods rely on extracting and tracking
a set of geometrical features in the image, direct visual
servoing [6][5] bypasses this matching and tracking process
(which remain under broad investigation) by relying solely
on the pixel intensities of the current and target images.
Direct VS approaches thus directly rely on the information
at hand with a minimal amount of image processing.

Building on this idea [6], various visual servoing control
laws have been proposed based on global descriptors, such as
mutual information [7] or histogram distances [3]. Although
these methods added improvements to the robustness of the
control schemes with respect to global changes such as illu-
mination changes, these methods remained restricted in terms
of convergence area due to the narrowness of the convex area
of the associated cost functions (which is highly non-linear)
around the desired positions. In order to tackle this issue,
as for other complex optimization problems we proposed to
rely on particle filters, also called Sequential Monte Carlo
approaches. Since its first introduction in [10] this method
proved to be a powerful tool, especially in the tracking field
where it expanded from single object tracking [14], [12] to
multitarget tracking [15]. This optimization method was also
applied to robot localization problems, such as SLAM [9].

To take advantage on the robustness of the particle filter,
this paper proposes a method to integrate a particle filter
within a visual servoing control law. The main issue for a
visual servoing control law is to establish a link between the
2D information and the 3D position of the robotic system.
The general idea of particle filter techniques is to represent
the required posterior density function by a set of random
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samples (particles) with associated weights and to drive the
camera toward the optimum based on these samples and
weights [2]. It is then important to be able to predict the
image view from a virtual position. To achieve this goal
we will rely on homographies [11] which allows the current
image to be warped into a virtual image as it should be
seen from a virtual camera position. After comparisons based
on the sum of squared differences (SSD), the best particle
(position) is then selected and the camera velocity to be sent
to the robot is then computed in order to move the camera in
the direction of this optimal particle (position). To illustrate
the behaviour of the control, we chose a photometric visual
servoing approach [6]. The main drawback of this method
being the limited convergence area, the proposed particle-
filter based control law demonstrated it efficiency. Let us
note that other works that consider predictive control are also
based on the prediction of a cost function estimated using
generated points of view (eg, [1]) however our goals (in-
creasing convergence area versus handling loss of visibility
of extracted features) and the developed approach (particle
filter versus predictive control) are clearly different.

This paper is structured as follows: the next section recalls
the basics of direct visual servoing control law, Section III
details the integration of a particle filter in a visual servoing
control law and Section IV presents experimental results
performed on a 6 DOF gantry robot, as well as a statistical
comparisons between the proposed method over the direct
visual servoing approach.

II. CLASSICAL DIRECT VISUAL SERVOING

The aim of a positioning task is to reach a desired pose
of the camera r*, starting from an arbitrary initial pose. To
achieve that goal, one needs to define a cost function that
reflects, in the image space, this positioning error and that
needs to be minimized. Given the actual pose of the camera
r the problem can therefore be written as an optimization
process:

r= argmrinp(r,r*) (D)

where T, the pose reached after the optimization process
(servoing process), is the closest to r* (optimally T = r*).

To avoid extraction and tracking of geometrical features
(such as points, lines, etc) [6][5] have introduced the notion
of direct (or photometric) visual servoing where the visual
feature is the image considered as a whole. In this case
the feature is the image itself: I(r). This means that the
optimization process is given by [5]:

T =arg rnrin(I(r) — 19T (I(r) = T7), (2)



where I(r) and I* are respectively the image seen at the
position r and the reference image (both N pixels).

In that case Ly, the interaction matrix, that links the
variation of I to the camera velocity, can be expressed as:

Li = —VI'L,. (3)

L is the interaction matrix of a point (see details in [5]).
This equation leads to the expression of the velocity that
is applied to the robot. The control law is given by:

v = —AL; (I(r) - I¥), 4

where ) is a positive scalar and L;r is the pseudo-inverse of
the interaction matrix. Note that this direct visual servoing
method is implemented in the ViSP library [13].

The strength of the direct visual servoing approach is
to provide a clear mathematical framework that will fully
exploit the convex properties of the SSD cost function
around the desired position [6]. However, this cost function
is highly non-linear and may be non-convex around the
current camera position. In that case, this class of methods
may not succeed in converging, either falling into a local
minimum, or even diverging completely. This is mainly due
to the use of a control law similar to a Newton optimization
scheme. Therefore, in order to tackle this limitation, this
paper presents an alternative approach for the optimization
strategy, namely the Sequential Monte Carlo method, also
called particle filter.

III. PARTICLE FILTER APPLIED AS VISUAL SERVOING
CONTROL LAW

The goal of this section is to propose a new visual servoing
control scheme based on the particle filter (PF). We first
explain the basics of the PF, and then propose a way to
instantiate the general concept of particle in terms of visual
servoing concepts.

A. Theoretical foundations of the PF

The main concept behind the PF set of methods is to
perform the optimization of a given cost function by es-
timating it iteratively. It does so by computing a set of
discrete estimations, where each element is a “particle”.
Then, according to the respective value of the estimated
cost function associated to each particle, the PF algorithm
updates its particles in order to optimize the global value
of the estimates. The most interesting property of the PF
is its ability to search a large space of solutions by not
restraining itself to local estimation as the classical Newton-
like optimization methods. This is linked to the fact that the
particles set is free to explore the cost function as far as it
can estimate its value, and the particles can be scattered in
the search space enough to bridge the potential gaps of local
minima, a property that a Newton-like optimization scheme
does not possess since it rely solely on the local value of the
cost function gradient.

PF is a general framework; multiple variations have been
proposed over time, each of which exploits the same prin-
ciples but with some changes regarding the update of the

particles’ parameters. Here we choose to apply the original
version of the PF proposed in [10]. This approach is now
widely referred to as Sequential Importance Sampling (SIS)
and can be explained as follows:

Given a set of random particles

{re_1(i):i=1,..,N,}, (5)

where N, is the number of particles in the set, obtained
from the probability density function (PDF) p(ri—_1|yx—1),
where yj_1 is the set of measurements at time k£ — 1 such
that yy—1 = {yx—1(¢) : ¢ = 1,..., N}, where y; = p(r;),
p(.) is the cost function to be optimized and where r is
a full camera pose. The goal is to propagate and update
these samples to get x;(¢) in order to get the distribution
p(rk|yr) that approximates the function p(.). In order to get
this approximation, the SIS algorithm performs the following
three-steps:

e Prediction step: we obtain the samples at time k with
ri(1) = f(rr—1(i), wr-1(i)) where f(ry(i)) is the
system transition function such as ry = f(rg—1,wi_1),
and wy(7) is the weight associated to the sample ¢ at
time k. In this paper, we do not assume any displace-
ment model for our system. In this case, the system
transition function becomes a randomization function
that diffuses the particles around their previous positions
to keep the system from degenerating into having all
particles at a single state (see 'Resampling step’).

o Update step: Once we can compute the measurements
Y&, we can evaluate the likelihood of each particle and
determine an associated weight wy (7). This likelihood
is defined as:

P(yr-1(3)[re—1())
S p(yr-1 () er-1(7))

e Resampling step: Once all the weights associated to the
particles set have been computed, each of the particles
is resampled by drawing a new particle from the PDF
defined by the current set of weighted particles. In more
practical terms, the resampling process will give every
particle the state of another particle within the current
particle set (including itself), with a chance proportional
to the weight of each particle. The consequence is that
statistically, the lower-weight particles are ruled out and
new ones are created in their place near (in the state
space) the higher-weight particle. This process can also
be referred to as a condensation process [12]. This leads
to a concentration of the particles set around the more
satisfying zones of the search space.

By applying this algorithm, given that the initial state of
particles overlap in a globally convex zone of the search
space in terms of cost function value, the algorithm [6]
converges toward an optimum, independently of the initial
position of the gravity center of the set of particles.

(6)

wk(z) =

B. PF-based visual servoing control law

As seen in the Section II, visual servoing can be viewed as
an optimization problem. In this section we will see how PF



can be considered to replace the classical control law (which
is similar to a Newton-like optimization technique).
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Fig. 1. Tllustration of the proposed control scheme

The main idea is described in figure 1: from the current
position we draw a set of particles which is just a set of
possible camera positions reachable from the current camera
position {r(i),i = 1..N,}. From these virtual camera
positions (particles), a virtual image I;(¢) can be simulated
(see Section III.B.1), and the weight wy (i) that measures
the quality of each particle (i.e., of each potential camera
position) is computed according to the quality criterion p
defined, in our case by the SSD (see Section III.B.2). The
best particle is then selected, and the camera velocity to be
sent to the robot is computed in order to move the camera in
the direction of this optimal particle (position). The particles
are then resampled, and the process is iterated until we reach
the desired position.

In order to consider such a control scheme, a few points
have to be defined:

1) the search space and how to generate particles within

this search space.

2) an evaluation of the quality of a particle (i.e., estima-

tion of wy(7) in equation (6)

3) the camera velocity
Let us now examine these three processes.

1) Search space and particles generation: We want to
control the 6 DOF of the robot; it seems natural then to
define the search space as the SE(3) space. Let us define F;,
as the camera frame at iteration k of the positioning process.
Each generated particle ry(i),i = 1...N,, is a virtual camera
position that is defined by a position expressed in Fy. ry(7) is

then a coordinate vector ry(i) = (tz,ty,tz, rz, ry,rz) that
defines both the translational and the rotational positions of
the particle in the camera frame. Alternately, one can denote
this position by a homogeneous matrix ()T}, defined as:

) EOR, k@
k@m, — k k 7
k < s 1 ) ; (7

where *(OR, and ¥("t;, are the rotation matrix and transla-
tion vector respectively that define the position of the particle
in the current camera frame Fj.

Since we work with 2D information only, we do not
accurately know the depth information between the camera
and the scene. This can prove to be problematic since the
projection ry (i) uses depth information. In case of strong
violation of this hypothesis, it may cause a strong discrep-
ancy between the predicted image and the actual image seen
from a particular viewpoint. This can result in a camera
motion that takes out of the camera field of view most of the
usable visual information and therefore causes the system
to diverge. This is illustrated in figure 2, where the black
camera represents the positioning that would be reached by
the robotic system, whereas the predicted image is simulated
as being seen from the blue camera. As illustrated, this offset
in position and orientation can potentially lead to taking most
of the useful image information out of the camera view.

In order to alleviate this issue and allow the system
to compensate for this error with translations during all
iterations rather than accumulating it as rotations offsets,
we perform a change in the transformation matrix *()T,
to compute the position of the virtual camera in camera
reference frame. The idea is that, in order to limit the offsets
in rotation that are easily harmful, we perform the rotation
part of the transformation in the image plane reference frame.
The effect of this change is illustrated in the figure 3 which
applies the same magnitude of rotation as in figure 2, but
this time with the change in reference frame. We can see
that the leverage effect disappears and that the center of the
initial image is still at the center of the warped image; the
offset due to the error in depth being transferred mainly into
the translation along the optical axis, inducing a translation
along the z-axis, which can be easily compensated by the
closed loop.

This change has two main consequences:

o Stronger rotations can be performed without risking
transferring the original image outside the virtual cam-
era view, since without leverage effect, the transfer no
longer displaces the center of the warped image in the
predicted view when performing rotations;

o In order to keep the projection aligned with the desired
view, the PF will select particles with a compensation
in the translations to make up for the case where the
camera is not facing the center of the desired image.

This latter point has important consequences regarding the
behaviour of the system as the drift will be kept minimal
since the PF will lead the system to keep facing toward the
desired part of the image as much as possible while acting
on the translations rather than on the rotations.
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frame with badly estimated depth conserves the expected camera orientation

The expression of ¥()T;, associated with this transforma-
tion is:

k(¢
0k VS ’f<>T11Tk+—d n (8)

where n and d are the normal and distance to the origin of
the scene plane expressed in camera frame F(;) and where
k()T is an intermediary transformation matrix defined such

as:
k(i)r]:!1 _ I3><3 Nyotated ’ (9)
031 1
where D,otareq iS the normal vector n = (ng,mn,, —1)"

associated with the image plane rotated as:
otated = " Ryn (10)

And T} is a second intermediary transformation matrix
defined such as:

1 0 0 mng

v |01 0 n

Ty = 0 0 1 dn, an
00 0 1

In order to explore the search space properly (both the
local and farther neighborhood), we define the system tran-
sition function f;, as a Gaussian function. f(x) can then be

expressed as:
1 _e=w?

e 202 12
oV 2T (12)

With o2 the variance and 4 the expected value. It has to be
noted that as this function’s role is to diffuse each particle
around its own position, we always have p = 0.

2) Particle evaluation: We now need to devise a feasible
way of computing the weight of each particles. However it is
not feasible to actually move the robot around the 3D space
to collect image samples in order to weight the particles, due
to considerations both in terms of speed and practicality.
Therefore, predicting the image that would be taken from
each particle position proves to be crucial for such system.

As stated in Section II-A, a key element of the PF is to
estimate the value of the weight wy () associated with each
particle. This weight, which reflects the particle quality, is
computed according to equation (6). Let us denote I}, as the
current image and I(ry(4)) as the predicted image acquired
from the virtual position defined by particle rg(¢) in the
current camera frame. According to equation (6) the weights
wy(7) are functions of p(yx(7)|xk(4))-

Since we use the SSD cost function expressed in equation
(2), then:

pyr(i)xi(5)) = p(L(rk(),T7))
= (L(rg () = 1) T (I(rp(i) - T)

where I* is the image taken at the desired position.

When the similarity between these two images increases,
the weight associated with this particle will be important,
driving the PF towards its position.

The main issue is then to predict the image I(ry(7))
using the current image Ij. The chosen solution relies on
image transfer techniques [11]. When a general motion is
considered, it is not possible to predict this image a priori
when only Iy is known. Nevertheless, if one assumes that
the scene is planar, a homography [11] can be considered to
achieve this prediction.

Indeed, assuming that the position of the particle in the
camera is given by *()'T; as seen in the previous paragraph,
the homography that will transfer image Ij, on image I(ry (7))
is given by:

f(x) =

13)

k(i k(i H0ty o
(l)Hk — (l)Rk + Tn 7 (14)



where n and d are the normal and distance to the origin of
the scene plane expressed in camera frame JF (). This means
that a pixel xy in I will be warped at coordinates xj, ;) in
I(r (7)) via a homography *()H, such that

Xk(i) = k(Z)Hk Xk (15)

Using equation (15), it is easy to synthesize virtual images
I(r(7)),7 = 1...N, for the whole set of particles as depicted
in figure 4.

Fig. 4. Generation of examples of transferred images though homography
to predict the view from virtual camera positions

3) PF-based control law: The general scheme that defines
the control law can be expressed as follows:

« Initialization of the PF with a large variance in order to
discover the convex zone;
o At the start of the control loop (iteration 0):

— perform an iteration of the PF: draw [V, particles
r (i) (as described in Section III.B.1) and compute
their weights wy (i) according to equations (6)
and (13). From these particles, select the one with
the highest weight: ry(best)

— send a velocity command to the robot in the direc-
tion of this particle (position):

V = A Tppest) p(Li, IY)) (16)

where rj pest 1S the position of the particle of
highest weight in the current camera frame and \ is
a gain that determines the amplitude of the system
velocity. The weighting by the current measure of
the cost function allows the velocity to decrease
evenly when approaching the optimal position.

o When the estimated cost of the highest-weighted par-
ticle and the current SSD cost are equal, we consider
that we are close enough to the optimal position and
we switch to the classical SSD-based control law [6]
presented in Section II. This provides the benefit of
the sub-pixel positioning accuracy of this approach by
allowing us to overcome the discretization error of the
PF that would lead to a less precise final position. An

alternative solution would be to increase greatly the
number of particles, but this proves to be prohibitive
in terms of computational costs.

C. Practical details on our Particle Filter implementation
for visual servoing

As we aim to apply this control scheme on a dynamic
real-time system, some adaptations have been performed in
order to build on the a-priori knowledge concerning visual
servoing tasks:

« around the desired position, the cost function exhibits a
locally convex area;

o the warped image generated by homography needs to
contain enough common information with the desired
image to be considered relevant.

In order to keep the computational cost low enough for real-
time application, we decided to perform a two step process:
we start with an exploration phase with 1000 particles
generated and a large variance in f(x). This increases greatly
the exploration of the search-space at the cost of a couple of
seconds delay before starting the robot motion. At the end
of this first phase, we sample only 100 particles from the
previous particle set and the variance is reduced to keep a
good density of particles. We then apply the process that as
been described the previous section.

In the current implementation, the variance parameters
are set empirically in order to generate a low number of
out-of-view images (illustrated by image B in figure 5), the
latter being also penalized in terms of particle weight by a
rejection ratio that penalizes images that feature low levels
of information (but which can still have a decent SSD cost
despite being off due to the nature of the SSD metric) so that
they cannot be selected and drive the system to divergence.
The amount of information is easily measured at warping
time by measuring the amount of background (unknown parts
of the scene) in the warped image.

Transfer image A

Transfer image B

Fig. 5. Warping an image into a suitable image and an uninformative one

IV. EXPERIMENTAL VALIDATION
A. Validation on a 6 DOF positioning task on Gantry robot

In order to validate this approach, we performed an
experiment on a 6 DOF robot. In figure 7 we can see the
results of the experiment: figure 7(f) shows the image seen



from the starting position of the camera, and figure 7(g)
shows the image taken at the end of the motion. In order to
visualize the error, the difference between these images and
the desired image can be seen in figure 7(h) and figure 7(i)
respectively. Since we use the SSD between these two images
as our cost function, this error image is directly linked to the
error measure that is visualized on figure 7(b). The error in
the positioning of the camera through the experiment can
be seen in figure 7(a) and this metric is computed from the
sum of the absolute values of the pose errors in translations
(figure7(c)). The rotational errors can be seen in figure 7(d).
Lastly, figure 7(e) displays the evolution of the velocities
applied on all 6 DOF of the robot. The initial pose consists
of an offset from the initial pose of (-10cm, -40cm, 18cm, -
52°, 2°, 10°), with a depth value of 80cm at the desired
position. The final recorded position error is less than 1mm.

The experiment consists of resolving the presented posi-
tioning problem by applying the proposed PF-based control
law in order to deal with the strong initial error, especially in
terms of rotation, which has a significant effect on the SSD
error value and makes impossible to solve by the traditional
direct SSD-based visual servoing (at this starting position,
the cost function is non-convex and highly non-linear and
therefore cannot be optimized properly with Gauss-Newton
related methods that rely on such properties), as seen in
figure 6 where we try unsuccessfully to solve this same
positioning task with the direct visual servoing method
presented in Section II.

We can see that the proposed control scheme succeeds in
converging efficiently toward the desired position, as seen in
figure 7(a) with a continuous decrease in positioning error.

At the end of the motion (here at the iteration 1404), when
the offset between the best predicted error and the currently
recorded error is small enough, we switch to the direct visual
servoing control in order to reach the desired position with
a sub-millimetric precision.

o 500 1000 1500 2000 2500
iterations

Positionning Distance

Fig. 6. Direct visual servoing. (a) Positionning error. (b) Initial image. (c)
I at the end of the motion.

05 8000

7000

6000

5000

4000

i
5

3000

2000

1000

0

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
terations iterations

Positionning Distance a Distance

b

error [m]
error [m]

1
0 500 1000 1500 2000 2500 3000 3500 4000
iterations iterations

B C

0 500 1000 1500 2000 2500 3000 3500 4000

®—y

"— 1y

=z

d

vitesse [m/s]

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

®—

v

i

Fig. 7. Hybrid visual servoing, first PF-based, then by classical direct VS
control (switch at iteration 1404). (a) Positionning error. (b) SSD distance.
(c) Translational errors. (d) Rotational errors. (e) Camera velocities in m/s
and rad/s. (f) Initial image. (g) I at the end of the motion. (h) I - I* at initial
position. (i) I - I* at the end of the motion



B. Statistical comparison between PF-based and direct vi-
sual servoing in simulated environment

Since this new method is validated on a real robot experi-
ment, further investigation is required to assert the advantage
in terms of increased convergence area. To this end, we
performed a statistical analysis of the convergence successes
in a simulated environment. The process is the following:
we define a desired pose and its associated image, and then
we perform several trials with randomized initial positions
around the desired position. These random positions are
created by adding a Gaussian noise to the desired position.
By increasing this noise’s variance, it is possible to smoothly
increase the difficulty of the positioning task. Figure 8 shows
the result of this process with 10 increases in the spatial
noise variances. 40 runs are performed to get the success
rate percentage at each noise iteration. The distance from
the camera to the image plane has been set to 20cm and the
noise’s variances are such as:

from O to 4cm for the x/y translations;

from O to 2cm for the z translation;

from O to 10° for the rotations around the x/y axis;
from O to 50° for the rotation around the z axis.

The rotation transformations being the most difficult to
handle.

We can clearly see from the resulting curves that the
proposed method has much better performances than the
direct visual servoing method in terms of convergence radius,
especially when strong rotations around the optical axis are
involved.

Convergence Curves

PFSSD ——
09 L Direct SSD ——

08 |

06 |
05 |

0.4

Convergence Rate

01 |

O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 [§] 7 8 9
Moise's variance increase index

Fig. 8. Convergence rates of direct visual servoing methods with PF-based
and classic control laws

V. CONCLUSION AND PERSPECTIVES

In this paper we presented a novel visual servoing control
scheme based on a particle filter. We presented a way to
represent a particle as a virtual camera position through the
use of a warp function based on homography in order to
predict the view of this camera and evaluate the associated
particle by computing an SSD measure. This experiment
showed that the integration of the particle filter improves
the convergence area of the control law.

Future works concerns the application of this technique
to other more elaborate costs functions such as histograms
of oriented gradients or mutual information that have been
proven to be robust global descriptors and adequate for
performing visual servoing tasks [3][8].
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