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Online prediction of needle shape deformation in moving soft tissues
from visual feedback

Jason Chevrie Alexandre Krupa, Marie Babet

Abstract—With the increasing number of clinical interven-  this model to reduce its prediction error [5] and cope with

tions using needle shaped tools, robotic control of needle gofter tissue [6]. An energetic approach using the Rayleigh-

insertion procedures has been an active research eld for many Ritz method was also used by Miset al. [7] to take
years. In this work we propose a 3D model of a exible needle . ¢ t the int ti betw th ’ dl d th
that takes into account tissue deformations in order to predict Into accoun € Interaction between the needie an e

the needle Shape and trajectory when it is inserted using a tissues all along the needle shaft and at the bevel. HOWeVer,
robotic arm. To account for tissue displacements, we designed physiological motions of the patient, such as breathing, can
a method based on visual feedback that updates the interaction jnduce needle displacement and deformation all along the
model between the needle and the tissue using an unscentedgpafi [8]. This should be even more true with the very exible
Kalman Iter. Results obtained from several needle insertions . o
in a soft tissue phantom showed that the method gives good be\{eled ne_edle.s., that are requwed fOI’.t.hIS kind of approa_ches,
performance in terms of needle trajectory prediction. This typ|Ca”y thll’] n|t|n0| wires, since trad|t|0na.| needles eXh|b|t
model was also considered in a closed-loop control approach to too low natural curvature in real tissues [9]. Most of the
allow automatic reaching of a target. state-of-the-art work focused on tip-based needle steering
only considers the case of still tissues or, at most, motion
I. INTRODUCTION of virtual targets and obstacles. Moreigt al. [10] only

Image-guided surgical procedures using needle shapEfently pointed out the fact that the feasibility of tip-based
tools have become common minimally invasive interventiongeedle steering in moving tissues still has to be assessed.
for diagnosis or treatment of cancerous tissue [1]. AccuratEhey showed that tip-based control could be performed under
placement of the tip of the tool in soft tissues is Veran|aI tissue motioni.e. in the same d|rect|pn as the insertion.
important to avoid misdiagnosis or destruction of healthy-ateral motion, however, were not considered.
tissues. With current imaging modalities a trade-off has to be In this work we rst propose a model that can fully model
made between image acquisition rate and quality. Ultrasouig® 3D behavior of the needle and tissues. It provides the
(US) modality offers fast acquisition rates but at the expendossibility to move both needle and tissues in 3D space
of a low image quality. On the contrary MRI or CT-scans@nd model the resulting shape of the needle. The model
offer good quality 3D images of the needle and tissues but th& compared to real needle insertions performed with dif-
required acquisition time does not allow real-time trackingérent needles in gelatin phantom. Then we also propose
without degradation of the image quality. In both cases th@nd evaluate a method to estimate the displacement of the
modeling of the interaction between the tool and the tissue fi§Sues using visual feedback. This method was used with
of great importance. In the rst case (US) it can be used tgifferent gpda.te rates to tes.t'the.compaublllty with .rather
facilitate the needle tracking by providing an initial guess oflow medical imaging modalities like 3D ultrasound in the
the needle position in the image, thus reducing the size of tig@se of motorized US probes. .
search area, the tracking computation time and the risks of The paper is organized as follows: Section Il presents
aberrant detection. While in the second case (MRI and cfie 3D model that we propose to model the needle and
it can provide a prediction of the needle position betweeHSSue deformanon around. the needle path. It also details
two image acquisitions. These two aspects are crucial poirffi® algorithm that we designed to update the model from
toward a safe image-guided automatic control of needidsual feedback. We present in Section Il the experiments
manipulators. that we conducted to assess the performance of the model and

Flexible needle insertion modeling has thus been an acti{@€ method used to perform the online update of the model
research eld [2], ranging from simple kinematic models [3]Parameters. The algorlthm was then used in a targeting task
to complex nite element modeling [4]. The rst kinematic under lateral tissue motlon. Fmally,_ concIL_JS|ons and future
model, that approximated only the tip motion of a beveledork are presented and discussed in section IV.
tip needle by a unicycle or bicycle model [3], considered II. METHOD
the simple case of very exible wires embedded in stati

hard tissues. Many parameters have then been added .ONeedIe Modeling

In this section we present a model of the needle and tissue
~ 1Jason Chevrie is with Universitde Rennes 1 and IRISA, France, based on the Rayleigh-Ritz method. This model takes into
jaszon.chevne@msa.fr' _ _ account the interaction of the needle and tissues along the

Alexandre Krupa is with Inria Rennes - Bretagne Atlantique and IRISAghaft of the needle and the geometry of the needle tip. It
France,alexandre.krupa@inria.fr . .
3Marie Babel is with Insa Rennes and IRISA. France.Can be used to model both stiff and exible needles and

marie.babel@irisa.fr symmetric or asymmetric bevel geometry. The model is made



exerted force is proportional to the displacement of the tissue.

zgw ]:b Cl\ This should be a good approximation as long as the needle
o>y 1=0 remains near the rest cut path, what should be ensured in
= N practice to avoid tissue damage. The resulting force exerted
1T 2 on a segment of the needle between curvilinear coordinates
(& [, andl, will thus be expressed as
Z,,
Flul)= Ke o V() cT(hd 4)

Iy
whereK 1 denotes the interaction stiffness per unit length.
The energy that is stored in the tissue due to the needle

=L displacement can thus be expressed as
wms Z Lins
St Er = KTT Ny STy (5)
0

Fig. 1. Needle modeling: needle is red, rest position of the path cut in the

tissue is green and tissue surface is black. It has been shown in [11] that the bending energy and

tissue deformation energy are sufcient to represent the
guasi-totality of the energy stored in the system. So we
gompute the shape of the needle using the Rayleigh-Ritz
method and only considering these two terms. Continuity
gonstraints up to order two between the needle segments
are added. We also add the constraints imposed by the
eedle holder, which x the needle base positipp and

up of two parts, one for the needle and one for the tissue.
representation of the model is drawn on Fig. 1.

Let | be the curvilinear coordinate parameter along th
needle. We take the convention tHat O at the insertion
point, such that > 0 corresponds to the part of the needl’

that is in the tissue anti < O corresponds to the needle directionds:
outside the tissue. We denotg,ce the length outside the ¢V ( Liree ) = Po (6)
tissue and_ij,s the length inside the tissue. The needle of dcN
lengthL is modeled as a one dimensional beam represented ——( Liree ) = dp. @)
by a spline curveN of orderr containingn segments: di
0 The system is then solved as a minimization problem under
CN (l) - CiN (l) , (1) constraints. (

minEg + ET,
i=1 m

N)= MLl ], @ Am = b
wherem is a vector containing all the coef cients of the
matricesM ;. Matrix A and vectorb contain the constraints

C)

wherecN (1) 2 R3 is the position of a point of the needle

at the curvilinear coordinate M ; 2 R3 (**1) s a matrix < ;

containing the coef cients of the polynomial cung® and (G)A’\s(?zh?an?lézzIgoggcggzecso?itrﬁ:gtiissue the cut path is
on is the characteristic function of the curnveg. it takes . ' paih

the value 1 on the de nition domain of the curve and 0updated by adding new segments to the spline. To take into

elsewhere. Note that the parameterandr can be chosen to 1??:35 Z‘: fnpeenctl gu?:iotrrr:aettri); ﬁ;lizihr;eiﬂg S]P ’thvée (r:g\(/)i(c))lsjz
adapt the modeling accuracy and computational complexity, 9 P

According to the Euler-Bernouilli beam model, the bend- egment to the Iocat!on of .the very tip of the needle, .
. where the cut occurs in the tissue. In the case of a symmetric
ing energyEg of the needle can be expressed as

tip, the cut path is aligned with the needle axis. In the case

El Z L d2cN (1) 2 of a beveled tip, it is shifted with respect to the needle axis,
Es = —- aP dl, (3)  leading to the creation of a force that pull the needle toward
Ltree the bevel direction.
where E is the Young's modulus of the needle ahdits Experiments have shown that inserting the needle is suf-
second moment of area. cient to break the stiction and reset the lag between the tip

We model the tissue by the rest position of the path that thetation and the base rotation along the needle shaft caused
needle cut during the insertione. the shape of the resulting by torsional friction [12]. Hence we choose here to assume
cut path when the needle is removed from the tissue arbat the tip follows the rotation of the base without lag.
does not exert any force on the tissue anymore. This path is
also modeled as a spline curg&(l) (see the green path on B- Model Update
Fig. 1). Since the position of the needle corresponds to the We use an unscented Kalman Iter (UKF) [13][14] to
current deformed position of the cut path, the tissues exarpdate the lateral position of the tissue. The UKF provides a
a resulting force at each point of the needle where it getsigher order of approximation for non-linear systems than the
away from the rest position of the cut path. For simplicityextended Kalman Iter while the computation is similar with
we assume that the tissues have an elastic behadothe both methods when dealing with numerical systems [14].



We consider the lIter states 2 R? corresponding to the phantom. The characteristics of the different needles are
two lateral translations of the tissue in directionsandy  shown in table I. The effective length of the needle that re-
of the world frameF,, (see Fig. 1). In our model these mains outside the needle holder was measured and the other
translations are applied to the whole spline de ning theharacteristics were those provided by the manufacturer. We
rest cut path. We notP 4 the state covariance matrix. Themeasured the stiffness of the phantoms using elastography
measures arg = plT Il PN T T, where ];hepi are [16] and found a Young's modulus of 45 kPa.

N points on the inserted part of the needle. We rptthe We performed insertions of 10 cm in three scenarios:
curvilinear coordinate of poirg; on the needle. These points Scenario 1: the needle is inserted along zhdirection
are provided by a visual tracking of the needle. The state of the base fram&, (see Fig. 1), corresponding to its
representation of the UKF is then given by shaft direction.
_ Scenario 2: the needle is only inserted 2cm along its
x(k+1) = x(k) + w(k), ©) shaft direction. The needle base is then moved 2 mm in
y(k) = h(x(k)) + n(k), (10) they lateral direction before starting again the insertion

wherew is the process nois@, is the measure noise aid in the z direction.

is the relationship between the tissue motion and measured _Scenano 3: I|_ke scenario .2 except th_at the needle base
needle points. One advantage of the UKF is that it does not .'S tr.ansla.ted in the opposite lateral direction. o
require to know an analytic formulation fox; as long as our ~ Five insertions were performed for each combination
model provides a numerical way to compute the measurt9§ scenario _and needle, while avoiding to cross previous
from the states. In our case, our model of the needle allovi3sertions. Fig. 2 shows for each case the mean measured
computing the estimated position of the measured pdintsde ection of the tip,i.e. the orthogonal distance between the
via (8) directly from the position of the rest cut path (statefiP @nd the initial axis of the needle. As expected we can
and the pose of the needle base (given by robot odometrp€€ tr_lat the lateral trz_inslatlon of the needle bage during the
The position of the rest cut path is then updated accordirigsertion has a great in uence on the nal de ection .

to the new estimat&(k + 1) provided by the well-known ~ The model was then compared to the mean trajectory
Kalman lter equations obtained from these ve insertions. For the needle modeling

we chose to use polynomials of order 3 and divided the

(k+1)= &(k)+ K(y(k+1) 9(k+1)), (11) needle in segments of 1 cm. For the tissue modeling we

Puk+1)= P, (k) KP ,KT, (12) used 1 mm long polynomials of order 1 (straight lines).
K=p.p.l (13) In each case the paramet€r was optimized to give the

X oyye best t between the prediction and the real de ection. The

whereP , (k) is the predicted state covariance matik, de ection of the needle trajectory obtained from the model

is the covariance matrix between the states and the measufe§hown on Fig.2. We can see that the model gives a good
andP ,, is the covariance matrix of the innovation. t to the mean insertion trajectories. We found a mean value

The details of the computation &, (k), P, andP for the optimgl yalqe oK+ :-3203 1614 N/nt. The h_igh
in the UKF can be found in the literature [13] [14]. standard_ deviation in the optimal _vaIue_sK)f can certainly
Note that this method allows a high exibility regarding be gxplamed by _the fgct that the insertions where performed
the measurements and the tracking algorithm. Indeed, different locations in the phantom, such ti&¢ should
is independent of the imaging modality, provided that &ctually be different for each of these locations.
measure of the needle position can be acquired. Moreovey, Tissue motion tracking

the number of tracked points and their position along the i
needle can vary through time. This allows to perform an 10 @ssess the quality of our model and update method we

update even when the needle is only partially visible in th@erformed insertions of the biopsy needle while moving the

images, like can for example be the case in ultrasound imagggantom. We compared the prediction obtained with different

when shadows appears due to bones or a lack of gel. ~model update methods:
Case 1: the needle is modeled as a straight rigid needle.

[ll. EXPERIMENTAL RESULTS Case 2: the needle is modeled using our model of ex-

This section presents the experiments that we performed to ible needle. The cut path extremity is updated without
validate our needle insertion model and our update method. Visual measure to correspond to the very tip of the
We used a similar setup as in [15], where a six degrees needle model (as explained in section II-A).
of freedom manipulator is used to hold the needle and two Case 3: similar to case 2, except that the cut path
orthogonal calibrated cameras are used to provide a visual €xtremity is updated from visual feedback to correspond
feedback of the inserted needle. We also present and discuss t0 the measured position of the tip of the needle.

the results in this section. Case 4: similar to case 2 with the additional update of
o the tissue motion using the UKF.
A. Model validation Case 5: similar to case 3 with the additional update of

To validate our model, we made the comparison between the tissue motion using the UKF.
the prediction of our needle model and real insertions. Weor each case the pose of the base of the needle model is
tested three different needles inserted in a home-made gelatipdated using the odometry of the robot.



TABLE |
CHARACTERISTICS OF THE NEEDLES USED IN THE EXPERIMENTS

Needle type Reference Young's modulus  Outer diameter  Inner diameter  Length (cm) TipType Tip angle
Chiba biopsy needle  Angiotech MCN2208 200 GPa 22G (0.7mm) 0.48mm 12.6 Chiba 25
Chiba biopsy stylet ~ Angiotech MCN2208 200 GPa 26sG (0.48mm) 0.0 14.6 Chiba 25
Greene biopsy stylet  Angiotech ISN1915 200 GPa 19G (0.97mm) 0.0 10.8 Trocar tip 15
7 T T T T 6 T T T T 2 T T T T
~6 4 = —
Es % ]E® £
EXT / 1E4 3
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© = o 2 3]
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(a) Biopsy needle (b) Biopsy stylet (c) Symmetric needle

Fig. 2. Comparison between model and real needle de ection. Mean experimental values are acquired every centimeter and model deviation is represented
with lines: scenario 1 is green, scenario 2 is red and scenario 3 is blue.

We initialized the UKF process noise variance withmoving the phantom during the rst experiment are shown
2 = 10 8 m?. As the cameras used for the needlen Fig. 3a and the instantaneous positioning error between
tracking are orthogonal to each other, the accuracy of tithe modeled tip and the measured tip is shown on Fig. 3b. We
stereo vision system had the same value of around 0.25ngan see that the errors for the non-updated models (cases 1
in each direction . So we set the noise covariance matrand 2) tend to correspond to the motion of the tissues, while
of the UKF as a diagonal matrix with diagonal elementshe errors remain low at all time for the models that are
2=(2:5 10 %2 m?. The stiffness per unit length of updated with the UKF (cases 4 and 5).
the model was set to the mean value found previously, To evaluate the possibility to use our model and update
i.e. K1 =3202N=m?. For each frame the measured needl@|gorithm as a prediction tool, we compared the quality of
points are chosen such that they are spaced by 5Smm fraffe prediction provided in each case. We considered the case
each other and include the tip point. of a prediction after an insertion step of 1 cm. At each time-
We performed three insertions of the needle along its shaftep we compared the future measured position of the tip
direction, corresponding to scenario 1 of previous sectiono the prediction obtained with the model without update
with an insertion velocity of 5 mm/s, while applying manualfrom visual feedback during the 1 cm prediction step. The
lateral translations to the phantom. The ground truth data pfediction error is shown on Fig. 3c. We can see that when
the phantom motion were acquired by tracking four blackising the UKF the prediction error stays low if the tissues are
dots pasted on each visible side of the container (see Fig.4Jmost not moving and becomes larger when tissue motion
Fig. 4 shows a sampled sequence of the camera vieRscurred during the prediction step.
during the rst experiments with the model rest cut paths for To see if our method can be used with a slower imaging
each case (except case 1 that doesn't have tissue modelingpdality, like 3D ultrasound imaging or fast MRI slice
We can see that in case 2 (green) the cut path follows acquisition, we emulated a 1Hz acquisition rate system,
curve, corresponding to the classical behavior of a exibleorresponding to typical values of volume acquisition time
beveled needle inserted in still tissues. However this pathith a motorized 3D ultrasound probe. Our acquisition
stays xed in the world frame and does not follow any ofsystem has an acquisition rate of 30 frames per second
the displacement of the tissue. In case 3 (blue) the shape we run the tissue motion update by taking only one
of the cut path follows the trajectory of the needle tip inframe every 30 frames. The process noise variance was here
space but the path that is already de ned does not followcreased to 2 =3 10 ® m? to take into account the
the motion of the phantom. This leads to a nal estimatedreater variability in the motion.
cut path that does not correspond to the reality. The needlewe computed the same instantaneous tip position error
shape that is computed from this cut path tends to have and the 1 cm prediction error as de ned previously. The
unwanted deformation toward the previous position of thgesults are shown in Fig. 3d and Fig. 3e respectively. We
tissues while its tip tends to remain near the real position @fan see that both errors tend to increase when important
the tip. For cases 4 and 5 (red and yellow respectively) thissue motion occurs between two acquisitions, which is the
path follows the tissue displacements during the motion. Wease for example between 8 s and 13 s. However this error
can see that the nal paths stay near the observed needle pyifgreatly reduced by the UKF at each new acquisition. In
are slightly shifted on its side, meaning that the tissues atge case where the tissue motion is slow, we can see that
applying a force on the needle. the error is similar to what is obtained with a high image
The translations that we applied on the tissues by manualisamerate.
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(e) Prediction error between measured tip position
and predicted tip position 1cm deeper from
current position with acquisition rate of 1 Hz.

Fig. 4. Sequence of estimated cut paths. Front camera view is on top and
side camera view is on the bottom. Timing from left to right5s, 6s, 13s,
18s. Case 2: green, Case 3: blue, Case 4: red, Case 5: yellow

TABLE Il
MEAN INSTANTANEOUS POSITION ERRORS AND PREDICTION ERRORS AT
1 CMFOR THE DIFFERENT UPDATE METHODS DEFINED IN SECTIONI-B

Position error (mm)| Prediction error (mm)
Framerate| 30Hz | 1Hz 30Hz | 1Hz
Casel [ 59 39|59 39|60 35| 6.0 35
Case2 | 6.1 30| 6.1 30| 6.2 25| 62 25
Case3 | 21 16|19 15| 25 17| 24 17
Case4 | 06 03|09 05|20 14| 25 18
Case5 | 04 02| 07 05| 19 14| 23 17

Table Il recaps the average positioning errors and predic-
tion errors obtained with the different methods during the
experiments. As seen previously we can observe that the
more the model is updated from visual measures the more
the errors are reduced.

C. Targeting

In this section we present experiments that we performed
to test our model and estimators in a targeting task with the
presence of tissue motion.

We used the same control law as presented in [15], which
we briey recall here. The kinematic motion of the needle
base, described by its velocity screw vedtoy, is controlled
to obtain a desired velocity of the needle tip using:

V="V, (14)

where'J, denotes the pseudo-inverse of the Jacobian be-
tween the tip velocity and the base velocity screw vector.
This Jacobian is numerically obtained in real-time from
the current updated state of the needle model. The desired
tip velocity is computed from visual feedback such that it
always points toward the target and has a norm of 2 mm/s.

Fig. 3. Norm of the tip position error for the rst experiment. Case 1: b'aCkAdditionally the rotation of the needle along its shaft is

Case 2: green, Case 3: blue, Case 4: red, Case 5: yellow

controlled such that the bevel is always in the direction of the
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Kalman Iter could give a good tracking of the tissue motion.
Even if the algorithm requires the visual tracking of the 3D
shape of the needle, we showed that the prediction error can
be reduced even when using slow image acquisition systems.
Future work will address the test of the method using
3D ultrasound as visual feedback. The method should allow
the reduction of the complexity of the tracking algorithm
by providing an estimation of the needle position in the
volume. The time update of the tissue motion used in the
UKF will also be improved by using a more accurate model
that can take into account the typical characteristics of real
physiological motions. This should allow the reduction of
the modeling error when the tissues are moving between
two image acquisitions. We also plan to use the prediction
provided by the model to design a predictive controller and
use it in an image-guided closed-loop scheme to allow better

Distance (mm)
[e0]

0 5 10 15 20 25 30 35 40 [1
Time (s)
(b) Measure using the model [2]

Fig. 5. Orthogonal distance between the needle tip axis and target

(3]

target. The controller is stopped once the needle tip reach%
the target level.

A virtual target is de ned before each insertion at a xed
location in space such that it is 8 cm under the tissue surface
and 4 mm away from the initial needle axis. This way [5]
a motion of the phantom displaces the needle and leads
to a motion of the target with respect to the needle. Weg
performed two insertions with the update using the UKF
and two insertions without using the UKF. The phantom was
moved manually during the rst half of the insertion. 7]

Fig. 5 shows the orthogonal distance between the needle
tip axis and the target, both from measures and model. Note
that the measures are noisy at the beginning of the insertiofy
because small noisy variations in the measured tip orientation
lead to large motion of the needle axis near the distant
target. We can see that the target is reached in each ca
However the model is far from the target when the update
was not active. The targeting task can still perform well in
that situation due to the robustness of the control law with
respect to modeling errors in the Jacobidp. Nevertheless
the updated model is the only one that ts the observations
and can allow to perform predictions of the needle positio[’iLl
between two images acquisitions.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method to accurately prediﬁtg]
the trajectory of a needle during insertion under lateral
motion of the tissue. We proposed a 3D model of the exibld!4]
needle that allows to take into account the effect of the
motion of the tissues on the needle shape. The model can]
give an accurate short term prediction of the needle motion.
We demonstrated the advantage of updating the tissue mo
using visual feedback to reduce the prediction error of the
model. The proposed algorithm based on the unscented

[12]
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