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Abstract—Device drivers are essential components of any
operating system (OS). They specify the communication protocol
that allows the OS to interact with a device. However, drivers for
new devices are usually created for a specific OS version. These
drivers often need to be backported to the older versions to allow
use of the new device. Backporting is often done manually, and is
tedious and error prone. To alleviate this burden on developers,
we propose an automatic recommendation system to guide the
selection of backporting changes. Our approach analyzes the
version history for cues to recommend candidate changes. We
have performed an experiment on 100 Linux driver files and
have shown that we can give a recommendation containing the
correct backport for 68 of the drivers. For these 68 cases, 73.5%,
85.3%, and 88.2% of the correct recommendations are located in
the Top-1, Top-2, and Top-5 positions of the recommendation lists
respectively. The successful cases cover various kinds of changes
including change of record access, deletion of function argument,
change of a function name, change of constant, and change
of if condition. Manual investigation of failed cases highlights
limitations of our approach, including inability to infer complex
changes, and unavailability of relevant cues in version history.

Index Terms—Backporting, Recommendation System, Linux,
Device Drivers

I. INTRODUCTION

The Linux kernel today runs servers, desktop PCs, and
laptops, as well as being at the heart of the Android OS, which
runs the majority of smartphones, tablets, and a multitude
of other devices. Device manufacturers increasingly find it
important to have support for their products, in the form of
device drivers, in the Linux kernel. The Linux kernel, however,
is fast evolving, with frequent kernel-level API changes. This
raises a challenge for device driver developers who have to
choose a target kernel version that will be acceptable to the
potential users of the device. A solution that helps ensure
the continuing availability of the driver code is to target the
current mainline version of the Linux kernel, so that the driver
code can be integrated into the Linux kernel distribution itself
and maintained by the mainline kernel developers [12]. Users,
however, typically run older versions of the kernel, which are
considered to be more stable. For such users, the driver must
then be backported to older kernel versions.

Currently backports are typically done manually, on a
case by case basis. An alternative is provided by the Linux
backports project, which provides a compatibility library to
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hide differences between the current mainline and a host of
older versions, and provides patches that allow a set of 800
drivers to target this compatibility library. These patches are
either created manually by the backports project maintainers,
or are created using manually written rewrite rules, based
on the transformation tool Coccinelle [27]. In either case,
however, the backports project maintainer has to determine
where changes are needed in the code to backport and how to
carry out these changes. Both of these operations are tedious
and error prone.

While the Linux backports project provides partial automa-
tion, the user is limited to the versions for which backports
have been prepared. In this paper, we propose a step towards
truly automating these tasks, in the form of a recommendation
system for backporting driver files over code changes. Our
approach accepts as input a driver file in a given Linux version,
the older Linux version to which the driver file needs to be
backported (the target version), and the git repository that
stores the changes to the Linux source code. It first bisects the
repository to find two subsequent commits in the repository
such that compiling the driver file results in a compilation
error in the older commit version and a successful compilation
in the newer commit version. Next, our approach analyzes
the differences between the two commits and compares them
with the line of code containing the error, as indicated by the
compiler. Our approach currently only considers cases where
there is only one error line and analyzing these differences is
enough to fix the error line and backport the driver file. Based
on this analysis, our approach constructs a recommendation
list that contains possible changes that can be applied to the
error line to make the driver compilable in the target version.
The changes are ranked by the similarity between the error
line and the result of applying the change to the error line.
Our experiment shows that, if a semantically correct change
exists in the recommendation list, it is often ranked highly.

The contributions of this work are as follows.

1) To the best of our knowledge, we are the first to work
on recommending changes with the goal of automating
backporting.

2) We propose a recommendation system that identifies
a change in the code history that breaks the driver,
and recommends code change candidates that enable
backporting of the driver code.

3) We evaluate our approach on 100 Linux device driver



files. The recommendation list contains the correct back-
ported code for 68 of the device driver files. Among
these driver files, 85.3% of the correct recommendations
are located in the Top-1 of the recommendation list.

The remainder of this paper is structured as follows. We pro-
vide some background in Section II. In Section III, we present
our proposed approach. We then describe our experiments in
Section IV. We present related work in Section V. Finally, we
conclude and mention future work in Section VI.

II. PRELIMINARIES

In this section, we provide some background about the git
version control system [8], and about GumTree [4], a tree
differencing tool that we use in our approach.

A. Git

Git is a decentralized version control system that has
recently become very popular due to the services that it
provides and the tools that have been developed around it.
Git is currently used by many software projects, including the
Linux kernel. Git is designed around a workflow in which
developers pull changes from other developers, modify their
copy of the code on top of these changes, and request that other
developers pull the changes that they have made. Pulling from
another repository creates a merge node, representing the result
of merging the two sets of changes. Technically, the commits
are organized as a directed acyclic graph (DAG), although they
are often collectively referred to as a tree.

To be sure to have access to complete information about
earlier changes in a software project, we focus on the case
where there is a single main developer of the system, with
whom other developers want to regularly synchronize. The
development of the mainline Linux kernel follows this model,
as developers request that Linus Torvalds pull their changes
prior to each release. In this case, we can view the commits
and merges made by the main developer as a single primary
trunk (level 1), and the commits made by other developers
subsequent to pulling from the main developer and prior to
requesting a pull from the main developer as being a secondary
trunk (level 2), extending from the developer’s initial pull to
the merge. Such developers may furthermore serve as the main
developer with respect to other developers, perhaps their local
colleagues, leading to tertiary (level 3), quaternary (level 4),
quinary (level 5), senary (level 6) trunks, etc. Figure 1 presents
an example git tree illustrating pulls, merges, and primary,
secondary, and tertiary trunks.

B. GumTree

A critical point of our approach is to be able to precisely
identify changes between two commits in a code base. Line-
based tools such as GNU diff are not sufficient, because
a change can be mixed with irrelevant code fragments that
happen to appear on the same line. To address this issue, we
use tree differencing, as implemented by the tool GumTree
[4]. GumTree identifies common subtrees in an abstract syntax
tree, and then integrates common ancestors as long as there
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Fig. 1. Example of a Git Tree

are not too many differences among their other descendants.
A user study has found that the results of GumTree are
considered to be better than those of a text-base differencing
tool about half of the time, and mostly the same otherwise.

III. PROPOSED APPROACH

We first present a high-level overview of our automatic
recommendation-based backporting approach and then elab-
orate on the different phases.

A. Overall Framework

As shown in Figure 2, our approach is divided into three
phases: 1) error inducing change (EIC) search, 2) code
transformation extraction, and 3) recommendation ranking.
We define an error-inducing change as a patch between two
consecutive commits in which compiling a target backport file
in the older commit version leads to a compile error.

In the first phase, our approach gives as input a driver
file that needs to be backported (input driver file), the Linux
version to which we want to backport the driver file (rarget
Linux version), and the git repository containing the change
history between the target Linux version and the Linux version
where the input driver file currently exists (version control
system). The EIC search phase searches for two consecutive
commits such that compiling the input driver file results in a
compilation error in the older commit version, and no error
in the newer commit version. The goals of this phase are
then two-fold: (1) Find the relevant change in the Linux
kernel implementation that results in the input driver file not
compiling in the target Linux version, (2) Find the changes
that have been performed to existing Linux driver files to
adapt them to this Linux kernel change. These adaptations
are often committed at the same time as the relevant change
to the underlying Linux kernel to prevent compilation errors.
By reversing these adaptations, we can obtain hints on how to
backport the input driver file.

The EIC search phase has one processing component,
namely the EIC Search Engine, which uses a binary search,
starting with the target version, to jump through the change
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Fig. 2. Our Automatic Backporting Framework

history recorded in the version control system and tries to
compile the input driver file in each visited commit version.
The search stops when it finds the commit version in which
compiling the input driver file leads to no compilation error
and the previous commit version still has compilation error.
The change between this commit version and the previous
commit version is the EIC. For example, an EIC may include
the removal of a function definition on which the driver relies.
Note that, in a more general case, there would be many
EICs, however, we consider only cases where there is only
one EIC. This one EIC may consist of many code changes
between two consecutive commits that together render the
code uncompilable. This EIC is output to the next phase.

In the second phase, our approach takes as input the EIC
obtained in the previous phase and the input driver file. This
phase searches for changes in the EIC that are relevant to the
line in the input driver file that the compiler has marked as
erroneous (which we refer to as the error line), and generates
candidate transformations to backport the input driver file.
This phase has one processing component, namely the Code
Transformation Extractor, which matches the error line with
each deleted line in the EIC. It then generates candidate trans-
formations based on how the deleted lines are changed to the
corresponding added lines. These candidate transformations

are the recommendations produced by our approach.

In the third and final phase, our approach passes the
candidate transformations to the Ranker, which ranks the
transformations based on the similarity between the error line
and the result of applying the transformation. We favor the
minimal change between them. A developer who needs to
backport the driver file can then examine the generated ranked
recommendation list from top to bottom to find a suitable
transformation.

We now describe each phase of our approach in more detail.

B. Error Inducing Change Search

To find the EIC, an approach could be to linearize the git
commit history and perform a binary search on it. However,
linearizing the history in any way would break the parent-
child relationship between two consecutive commits, which
represent the actual change made when a developer commits
to its local repository. For example, linearizing commit history
by date would result in a series of commits that is ordered by
date. However, two consecutive commits in this case may not
represent the actual change since the two commits might be
made by two developers in their own local repository and just
accidentally happen at around the same time.

Instead, we follow the approach presented in Algorithm 1.
This algorithm takes as input the driver file DF' to backport,
the original Linux version origRev for which the driver file
has been implemented and the target Linux version target Rev
to which we want to backport the driver file.

The algorithm starts by retrieving the list revList of all
the commit hashes that lie in the main trunk ranging from the
original version to the target version (Line 2). To achieve this,
we use the command: git log —pretty=%H —first-parent (target
version)..{original version). The option pretty=%H causes the
result to be a list of commit hashes and the option —first-parent
causes the log to follow only the first parent commit after a
merge. Next, at Line 3, the algorithm passes this list to the
function EIC_Search, defined just below. EIC_Search first
performs a binary search of the commit hashes in revList
to find a pair of consecutive commits, child and errParent,
such that the driver file does compile in the code resulting
from child but does not compile in the code resulting from
errParent. Next, if child is a merge commit (Line 6),
then it must have some other parent in which the driver
file does compile, because a merge commit does not itself
change any code. In Line 7, FIC_Search checks each parent
commit other than errParent until it finds one in which the
driver file compiles, which is named ok Parent. Based on our
assumption that there is a single main developer from whom
all code is initially obtained, err Parent and ok Parent have
a common ancestor, which is named ancestor in Line 8.
This ancestor is obtained using the command: git merge-
base errParent okParent. EIC_Search then obtains the
sequence of commit hashes from ancestor to okParent. To
achieve this, we use the command: git log —pretty=%H -
first-parent (ancestor)..(okParent). On the other hand, if
the binary search in Line 5 yields a node that commits a



Algorithm 1: Error Inducing Change Search

Input : DF = driver file to be backported
origRev= the Linux version where D F' works fine
target Rev = target Linux version

Output: error inducing change

Main Algorithm Main_Search (origRev, targetRev, DF')

1
2 revList = [origRev, target Rev] FirstParent
3 return EIC_Search (revList);
4 Procedure EIC_Search (revList)
5 (child, err Parent) = Binary_Search(revList)
6 if child is a merge then
7 ok Parent=child’s parent that can compile
8 ancestor =
findCommonAncestor(okParent, err Parent)
9 newRevList = [okParent, ancestor|"rstParent
10 return EIC_Search(newRevList)
1 else
12 \ return patch from child to the commit before it
13 end

code change, rather than a merge node, EIC_Search returns
immediately with the patch from the commit node to its
previous commit as the result (line 12).

Alternatively to Algorithm 1, we could potentially have
used git bisect [9]. In our preliminary experiments, however,
we have found that the commit returned by git bisect does
not always have the property that the driver file to backport
compiles in the returned commit and does not compile in its
immediate predecessor. We will study this issue further in
the future, but have chosen to rely on our algorithm, which
integrates and ensures the property that we require.

Example: An example of the behavior of Algorithm 1 is
illustrated in Figure 3. In this example, we take as an input
a driver that works fine in the Original version. Our goal is
to find the error inducing change that helps us backport the
driver to the Target version, for which the driver currently
cannot compile.

We start the search at the level 1 trunk, within the range of
the Original version and the Target version. At this level, we
perform binary search to find a pair of consecutive commits
Child L1 and errParent LI such that the driver file successfully
compiles in the code resulting from Child LI but does not
compile in the code resulting from errParent LI. In this
example, since Child L1 is a merge commit, it must have
another parent in a different trunk level, for which the driver
file successfully compiles. We denote this parent of Child LI
as okParent L2. Next, we find Common Ancestor LI, which
is the common ancestor of the errParent LI and okParent L2.
Afterwards, we perform another binary search on the range
of commits between okParent L2 and Common Ancestor LI
to find a pair of consecutive commits Child L2 and errParent
L2, such that the driver compiles with the code resulting from
Child L2 but does not compile with the code resulting from
errParent L2. We repeat the search in a similar manner until
we find a pair of consecutive commits Child L3 and errParent
L3, such that Child L3 is not a merge commit and the driver
file compiles successfully in the code resulting from Child L3,
but does not compile in the code resulting from errParent L3.

Newer
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Child L1 w.J
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) W
Child L2 @

okParentl3 _ /
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Fig. 3. Example of our Error Inducing Change Search Algorithm
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Fig. 4. Code transformation extraction illustration. Error Line AST is
extracted from the driver file. Deleted Line and Added Line AST are extracted
from historical changes found in the Linux kernel.

Finally, we report Child L3 as the error inducing change.

C. Code Transformation Extraction

The Code Transformation Extractor processes the input
driver file and the error inducing change (EIC) obtained by
the previous phase. First, we compile the driver file in the
target Linux version. By the definition of the backporting
problem, we know that this will result in a compilation error.
We then record the contents of the line containing the error.
The goal is to find a change in the EIC that can be applied to
the error line to remove the compiler error. The EIC can be
viewed as a code difference (diff) composed of hunks, each
of which is a contiguous sequence of lines corresponding to
a sequence of line deletions, line additions, or both. Since we
consider a backporting setting (changing code that works on
a newer version to adapt it to an older version), to view a
transformation in a natural way, we reverse the direction of
a normal patch and thus a deleted line is a line in the newer
code whereas an added line is a line in the older code. A hunk
containing only line additions or deletions does not correspond
to a code change from which we can infer a transformation.
Thus, we exclude such hunks from our analysis. We also
ignore hunks that appear in non source-code files.



Algorithm 2: Code Transformation Extraction

Input : ASTE, = AST of the error line
ASTpe; = AST of a deleted line
ASTaqq = AST of an added line
Output: A code transformation or &
1 (Ng, Mp) = Tree differencing (ASTgrr, ASTpe1);
2 (Np, M4) = Tree differencing (ASTper, ASTAdq);
3 if Ng # {}, Mp # {}, Np # {}, My # {}, and Mp N Np #
{} then
STErr = Smallest subtree in ASTg,.- covering all mapped nodes;
STpe; = Corresponding subtree of STy in ASTper;
ST aqq = Corresponding subtree of STpe; in AST 444;
varMap = Matched identifier mappings from ASTE",
ASTDPel, AsTAdd;
8 ST%M = Apply var Map to STAdd,
9 Output (STgrr = STHL )
10 else
n |
12 end

4
5
6
7

Output &;

The Code Transformation Extractor constructs an Abstract
Syntax Tree (AST) for the error line and for each deleted line
and each corresponding added line in the EIC. In general, a
line in the source file might not represent a complete term in
the C language. Since the complete source files are available,
via git, our approach constructs an AST for the function
containing each line, and then extracts from that the smallest
sub-AST that contains all of the tokens of the considered line.
The Code Transformation Extractor then tries to map the nodes
of the AST of the error line to nodes of the AST of every
deleted line, and the nodes of the AST of a deleted line to
the nodes of the AST of every added line in the same hunk.
For each combination of error line, deleted line, and added
line, the Code Transformation Extractor identifies a subtree
in the error line’s AST that matches a subtree in the deleted
line’s AST, which in turn matches a subtree in the added line’s
AST. For each matching, we transplant the matching subtree
in the added line’s AST to the error line’s AST and adapt
it with any necessary substitutions of identifier names. The
adapted transplantation amounts to a transformation. A set of
such possible transformations is output to the next phase.

For each combination of error line, deleted line, and added
line, Code Transformation Extractor follows Algorithm 2 to
produce zero or one candidate transformations. This pro-
cess involves three main steps: node mapping, extraction of
matching subtrees, and subtree transplantation and subterm
replacement.

a) Node Mapping: Given an error line’s AST, a deleted
line’s AST, and an added line’s AST, we want to find two
node mappings: (1) between the nodes in the error line’s
AST and the deleted line’s AST, and (2) between the deleted
line’s AST and the added line’s AST. For this, we use the
tree differencing tool GumTree [4] (lines 1-2), described in
Section II-B. GumTree maps nodes in the two input ASTs
based on some heuristics. It outputs a set of mapped nodes,
denoted as (N, M) = {(Ny, My), ..., (N, My)} where N =
{N1,...,Nt} and M = {My, ..., My} are the mapped nodes
in the two ASTs and k is the number of mapped nodes. If

the set of mapped nodes between the error line’s AST and
deleted line’s AST ((Ng, Mp)) and the set of mapped nodes
between the deleted line’s AST and the added line’s AST
((Np, M4)) are both non-empty, and the intersection of the
mapped nodes in the deleted line’s AST based on the two
differencing operations is non-empty (Mp N Np # {}), then
we proceed with the next steps (Lines 3-9), otherwise we
output no transformation (Line 11).

b) Extraction of Matching Subtrees: Given a mapping
of nodes in the ASTs, our approach next extracts the minimal
subtrees that cover all the mapped nodes. Our approach first
identifies the minimal subtree in the error line’s AST (Line 4)
and the corresponding subtree in the deleted line’s AST
(Line 5). Next, it finds nodes in the added line’s AST that
are mapped to the minimal subtree in the deleted line’s AST
and then extracts a minimal subtree that covers these mapped
nodes (Line 6).

As an example, we can employ GumTree to generate the
mapping between the error line’s AST and deleted line’s AST
in Figure 4 (solid arrows in the figure). There are three nodes
that are mapped between these ASTs: B to F, C to G, and D
to H. We then extract the smallest subtree of each tree that
covers all of the mapped nodes. This gives the ABCD subtree
for the error line’s AST and the EFGH subtree for the deleted
line’s AST.

Next, we again can employ GumTree to generate the
mapping between EFGH subtree in the deleted line’s AST
and the added line’s AST in Figure 4 (dashed arrows in the
figure). There are three mapped nodes: R is mapped to S, F is
mapped to J, and G is mapped to K. Our approach only focuses
on the EFGH subtree since it is the only part that matches
with the error line’s AST and thus, for fixing the error code,
our approach only needs to care about the mappings inside
this subtree. Next, our approach marks the relevant mapped
nodes in the added line’s AST and extracts a subtree, IJK,
that covers all of the marked nodes. ABCD, EFGH, and IJK
are the matching subtrees that are output to the next step.

c) Subtree Transplantation and Subterm Replacement:
In this step, we have three matching subtrees, ST, STDei,
and STA44 extracted from the error line’s AST, the deleted
line’s AST, and the added line’s AST, respectively. Our ap-
proach generates a candidate transformation by transplanting
an adapted ST49 to replace ST in the error line’s AST.
Adaptation to ST9 is needed since subterms used in ST
may differ from those used in ST®™". We infer the necessary
replacements of subterms from the mapped nodes between
STE™ and STPe, and between STPe and STA. For a
term v in node n in STF™ that is mapped to n’ in ST
(that contains term v’), which is subsequently mapped to n’
in ST494 that contains term o', our approach will store a
replacement (v,v’) (Line 7). Each replacement (v,v’) is applied
to nodes in ST 444 to create ST %M where any subterm v’ is
replaced with v (Line 8). We will then output a transformation
(STgrr = STA,) which corresponds to the transplantation
of the adapted subtree (Line 9). At this point, our approach
has essentially learned a transformation from an example.



To illustrate how Algorithm 2 works, consider Figure 4.
In that figure, we need to transplant the adapted IJK subtree
to replace the ABCD subtree in the error line’s AST. The
IJK subtree is adapted by renaming subterms in the subtree
with their corresponding mapped subterms. The subterms are
inferred from the mapped nodes between ABCD and EFGH
subtrees and EFGH and 1JK subtrees. Consider any subterms a
and b in the ABCD subtree, any subterms c and d in the EFGH
subtree, and any subterm c in the IJK subtree. The mapping
may then indicate that a in the ABCD subtree is mapped to
c in the EFGH subtree which in turn is mapped to ¢ in JK
subtree. Our approach then creates a replacement (a,c) and
will replace all subterms c in IJK with a before transplanting
IJK to the error line’s AST. The corresponding transformation
is (ABCD = IIK[c—a]).

The above illustration applies to many kinds of changes,
such as changes in the field/constant accessed, an argument of
a function, the name of a function, or the condition of an if.
As a concrete example, we consider a function name change:
Error Line:

node=acpi_ns_validate_handle (target_handle);

Deleted and Added Lines:
— node=acpi_ns_validate_handle (obj_handle);

bde=acpi_ns_map_handle_to_node (obj_handle);

Matching the error line AST against the deleted line AST
matches node with node, = with =, acpi_ns_vali-
date_handle with acpi_ns_map_handle_to_node,
( with (, target_handle with object_handle, and )
with ) . All of the tokens are accounted for. In this special case,
the subtree transplantation will basically replace the error line
with the added line. However, the subterm object_handle
does not exist in the code containing the error line. Thus,
we perform a replacement, (object_handle, target_-—
handle), which is learned from the mapping. At this point,
we have transplanted the added line’s subtree to the error line
AST and adapted the corresponding subterm to match the one
found in the error line.

D. Recommendation Ranking

Ranker takes as input the set of candidate transformations
produced by the previous phase and applies each one to the
error line in the input driver file to produce a changed error
line. Following Occam’s razor, our intuition is that the correct
transformation is likely to be the one that transforms the error
line to something that remains similar to it.

To compute the similarity between the error line and a
changed error line, Ranker takes the sequence of strings
in the error line and changed error line and removes all
whitespace from both sequences. It then compares the resulting
sequences of characters using Ratcliff and Obershelp’s string
alignment algorithm [3], which finds a semi-optimal matching
of characters in two sequences. Specifically, the algorithm first
finds the longest contiguous subsequence between the two
sequences. It then recursively processes the subsequences to
the left and right of the longest contiguous subsequence. After
the matching characters between the two sequences are found,

TABLE I
DISTRIBUTION OF THE 100 DRIVER FILES IN OUR DATASET ACROSS
DEVICE DRIVER FAMILIES

Driver Driver Driver

Family #Drivers | Family #Drivers | Family #Drivers
ata 24 char 3 serial 1
media 15 md 3 $390 1

net 11 mtd 3 usb 1
gpu 7 spi 2 power 1
bluetooth 5 hid 2 cpuidle 1
isdn 5 leds 2 ide 1
infiniband 4 scsi 2

acpi 4 xen 1

the similarity between the two sequences SeqSim is computed

as follows:
2x M

SeqSim =

where 7' is the total number of characters in both sequences,
and M is the number of matched character pairs. As an
example, consider two sequences “abcd” and “bcde”. Both
sequences have “bcd” sequence as their string subsequence.
Thus, T'=4 and M=3, and the value of SeqSim is 0.75.
Ranker ranks the transformations by decreasing SegSim
values, and then outputs a ranked recommendation list.

IV. EXPERIMENTS & ANALYSIS

In this section, we first describe our dataset, evaluation
measure, and experimental settings. We then list our research
questions and provide our experimental results. We finish with
a discussion and a description of the threats to validity.

A. Dataset

Our dataset consists of 100 device driver files from Linux
2.6.x versions. Using this dataset, we intend to simulate a
backporting scenario. Since general automatic backporting is
a new and hard problem, we limit the problem to make it
more feasible to solve. Specifically, we select driver files and
starting and target versions according to the following criteria.

1) The driver file should have only one changed line of
source code between two consecutive Linux versions,
e.g., Linux versions 2.6.1 and 2.6.2. We focus on one-
line changes to limit the difficulty of making the new
code work in the older version. We consider that one-line
changes represents a reasonable difficulty for an initial
attempt at automatic backporting.

2) Following the first criteria, the driver file will be present
in two versions: the old and new versions. We should be
able to compile the old and new versions of the driver
file in their corresponding Linux kernel versions.

3) When we compile the new version of the driver file
within the old version of the Linux kernel, a compilation
error should occur. Our goal is to modify the a copy of
the new driver to fix this compilation error.

Table I shows the distribution of the 100 Linux driver files
selected according to the above criteria.



B. Evaluation Measure

We use Hit@N to measure the effectiveness of our ranking
strategy. We define it as follows:

1, if CC is in the Top-N of RecCC.
0, otherwise.

HitQN = {

where C'C' denotes the correct code change, RecC'C' denotes a
code change recommendation list containing the correct code
change, and N denotes the number of entries considered at
the top of the recommendation list. We compute the average
Hit@N across the recommendations to measure the effective-
ness of our ranking strategy.

C. Experimental Settings

We simulate a backporting scenario for the 100 driver
files in our dataset. For each driver file, we pretend that the
driver file is new and has never existed before in the Linux
kernel source code. We use the command make defconfig
to prepare a configuration in which to compile the kernel. We
then apply our approach and find the error inducing change for
this input driver file. Since the change to the driver file itself is
also included in the version control system history, we exclude
this change if it appears in the error inducing change. We then
find the candidate changes for the input driver file using the
remaining examples. To check whether our backport is correct,
we simply compare the backported code with the actual old
version of the driver file. We consider that the backport is
successful only if the backported code is exactly the same as
the old version of the code.

D. Research Questions

Research Question 1. How effective is our proposed approach
in extracting correct code changes for a given device driver
file? We report the accuracy of our approach in extracting the
correct change. We also investigate the distribution of extracted
correct code changes among different driver families.

Research Question 2. When the correct code change exists
in the recommendation list, how high is it ranked by our
approach? We then investigate the rankings of correct code
changes in this set. The higher the rankings, the better the
recommendations. We measure the recommendation effective-
ness using the average Hit@N metric.

Research Question 3. In what kinds of cases can our ap-
proach extract the correct code changes? We show some cases
where our approach extracts correct code changes and assess
why our approach works well in these cases.

Research Question 4. In what kinds of cases is our approach
unable to extract the correct code changes? We show some
cases where our approach extracts either incorrect changes or
nothing at all. These cases can guide future work.

E. RQI: Effectiveness of Code Change Extraction

Our approach produces correct code changes to successfully
backport 68 out of 100 drivers, giving a success rate of 68%.
Table II shows the distribution of the successful cases. Our

TABLE I
DISTRIBUTION OF CORRECT CODE CHANGES THAT ARE SUCCESSFULLY
EXTRACTED PER DRIVER FAMILY. THE NUMBER IN PARENTHESES IS THE
TOTAL NUMBER OF SELECTED DRIVERS IN THE DRIVER FAMILY.

Driver Family  #Successful | Driver Family  #Successful
ata 24 (24) scsi 2(2)
media 10 (15) serial 1(1)
bluetooth 50 cpuidle 1(D)
gpu 4 (7) md 1(3)
net 4 (11) xen 0 (D)
infiniband 34 3390 0 (1)
isdn 3(5 usb 0 (1)
acpi 34 power 0 (1)
mtd 303) hid 0(2)
char 2 (3) leds 0Q)
spi 2(2) ide 0 (1)
TABLE III

EFFECTIVENESS OF OUR RANKING APPROACH

N  #Correct Code Changes Average Hit@N

1 50 0.735
2 58 0.853
3 58 0.853
4 58 0.853
5 60 0.882

approach successfully extracts all required code changes for
all selected drivers from 7 driver families: ata, bluetooth, mtd,
spi, scsi, serial, and cpuidle. For many other remaining driver
families, it is successful on some and fails on others.

F. RQ?2: Effectiveness of Code Change Ranking

Table III shows the effectiveness of our ranking strategy,
for the 68 driver files for which our approach extracts correct
code changes. By only recommending the Top-1 code change,
we recommend the correct code change for 50 out of the
68 driver files, giving an average Hit@1 of 0.735. Increasing
the recommendation to Top-2, we find that there are 8 more
driver files whose correct code changes are recommended.
This translates to an average Hit@2 of 0.853. Increasing the
recommendation to Top-3 and Top-4 does not change the
number of driver files for which the correct code change
is recommended. When the recommendation is increased to
Top-5, there are 2 more such driver files. Thus, by only
recommending Top-5 candidate code changes, our approach
can successfully find the correct code change 88.2% of the
time, thus achieving an average Hit@5 of 0.882.

G. RQ3: Cases where Correct Code Changes are Successfully
Extracted

Case 1: Change of record access.

Driver File: drivers/char/drm/drm_agpsupport.c
Error Line:

return drm_agp_acquire (

(struct drm_devicex)

Change example:

- struct drm_device xdev = priv->minor->dev;

+ struct drm_device 1 lev
Corrected Error Line:

file_priv->minor->dev);

—>head->dev;

*aev priv



return drm_agp_acquire (

(struct drm_devicex) file_priv->head->dev);

In this case, file_priv—minor—dev is the part of the er-
ror line that provokes a compile error. This code matches
priv—minor—dev in the deleted line of the change example.
This portion of the deleted line matches priv—head—dev in
the added line. Thus, the file_priv—minor—dev portion of the
error line is replaced with priv—head—dev from the added
line. However, we know that the identifier priv in the deleted
line matches the identifier file_priv in the error line. Based on
the change example, we also know that priv is not changed.
Thus, file_priv should not change either. We thus map back
priv to file_priv, which is found in the corresponding context
in the error line.

Case 2: Deletion of a function argument.

Driver File: drivers/ata/pata_artop.c
Error Line:

return ata_pci_sff_init_one (pdev, ppi, &artop_sht,NULL,0) ;
Change Example:

— return ata_pci_sff init_one(dev,ppi, &generic_sht, NULL,0);

re >i_sff_init_one (dev,ppi, &generic_sht,NULL);

Corrected Error Line:
return ata_pci_sff_init_one (pdev, ppi, &artop_sht,NULL) ;

When we match the error line with the deleted line in the
change example, the entire ata_pci_sff_init_one function call
in the former matches the ata_pci_sff_init_one function call in
the latter. pdev of the error line matches dev of the deleted line.
Similarly, ppi is mapped to ppi, &artop_sht to &generic_sht,
NULL to NULL, and 0 to 0. The matched portion of the error
line is then replaced with the matched portion of the added
line. We then rename the variables in the matched portion of
the added line by changing dev to pdev and generic_sht to
artop_sht.

Case 3: Change of function name.

Driver File: drivers/acpi/acpica/nsnames.c
Error Line:
node=acpi_ns_validate_handle (target_handle);
Change Example:
— node=acpi_ns_validate_handle (obj_handle);
+ ode=acpi_ns_map_handle_to_node (obj_handle);
Corrected Error Line:
node=acpi_ns_map_handle_to_node (target_handle) ;

In the above example, the entire error line has the same
structure as the entire deleted line. The function names from
the two lines are matched and the argument target_handle is
matched with the argument obj_handle. After the algorithm
replaces the error line portion with the added line portion,
the function name acpi_ns_validate_handle will be changed
to acpi_ns_map_handle_to_node. To complete the backport,
obj_handle is renamed to target_handle.

Case 4: Change of constant.

Driver File: drivers/media/video/cx23885/cx23885-input.c
Error Line:
rc_map=RC_MAP_HAUPPAUGE;
Change Example:
— dev->init_data.ir_codes = RC_MAP_HAUPPAUGE;
lev->init_data.ir_codes RC_MAP_RC5_HAUPPAUGE_NEW;
Corrected Error Line:

rc_map=RC_MAP_RC5_HAUPPAUGE_NEW;

In this example, again the entire error line matches the entire
deleted line, with rc_map matched with dev—init_data.ir_-
codes, the assignment node in the error line with the assign-
ment node in the deleted line, and RC_MAP_HAUPPAUGE in
the error line with the occurrence of the same constant in the
deleted line. The error line is then replaced with the added line.
To complete the backport, dev—init_data.ir_codes is renamed
to rc_map.

Case 5: Change of if condition.

Driver File: drivers/ata/pata_oldpiix.c
Error Line:

if (ata_dma_enabled (adev))
Change Example:

- if (ata_dma_enabled (adev))

+ (adev—->dma_mode)
Corrected Error Line:

if (adev->dma_mode)

In this case, the if condition in the error line is identical to
the one in the deleted line. All matched nodes are of the same
type and name. Thus, we directly replace the if condition in
the error line with the if condition in the added line to perform
the backport.

H. RQ4: Cases where Correct Code Changes are Not Suc-
cessfully Extracted

Case 1: The correct transformation needs to be learned from
multiple deleted-added line pairs.

Driver File: drivers/net/wireless/ath/ath9k/virtual.c
Error Line:
txctl.frame_type =
ps ? ATHO9K_IFT_PAUSE :
Corrected Error Line:
txctl.frame_type =
ps ? ATH9K_INT_PAUSE :

ATHO9K_IFT_UNPAUSE;

ATHO9K_INT_UNPAUSE;

In this case, the transformation of the error line into the cor-
rected line involves two changes: transforming ATH9K IFT _-
PAUSE into ATH9K_INT_PAUSE, and transforming ATH9K _-
IFT _UNPAUSE into ATH9K INT _UNPAUSE. Each of these
transformations can be obtained from different deleted-added
line pairs in the EIC. Although both transformations exist in
the EIC, our approach can currently only learn from a single
deleted-added line pair. Thus, it applies only one of the two
transformations and fixes the error line partially.

Case 2: The EIC provides no relevant example.

The EIC may only contain changes in the definitions that
are used by the error line, but all other code that used these
definitions could have been updated in earlier commits. Thus,
we might not find similar lines of code in the EIC that would
suggest how to fix the error line. For such cases, our approach
is not be able to recommend correct code changes.

1. Discussion

The quality of our automatic backporting approach depends
on the capabilities of each phase in our framework. We assess
the possible limitations in each case.



The error inducing change search phase is intended to find
a change that contains an example from which we can learn
how to backport the code. However, as noted above, all such
examples may occur in earlier commits. To address this issue,
we would need to extend our search to relevant commits that
occurred prior to the error inducing change.

The error transformation extraction phase is intended to
learn a potential candidate transformation from a change be-
tween a pair of added and deleted lines. Our evaluation shows
that there are some cases in which learning from only one
pair of added and deleted lines is not enough. Thus, we need
a capability to decide which transformation can be combined
with another transformation to make a recommendation.

Our approach ranks the candidate transformations, in the
ranking recommendation phase, because we have no way to
know for sure which transformation is the correct one. A
possible way to check the transformation’s correctness would
be through the use of test cases. Nevertheless, device drivers
are difficult to test automatically, because doing so requires
installing the device driver on an OS connected to a real
hardware or an emulator, and checking whether the hardware
is detected and that all of its functionalities can be accessed
by the OS. And even if test cases existed for the new driver,
they might not be directly usable in the older version. Thus,
we would need to to backport the test cases and check whether
their backport is correct, repeating the same problem.

Regarding the transformation results, although some may
look simple, it is not trivial for developers to perform them.
Many people have contributed to the Linux kernel, and around
70,000 commits were made on the Linux kernel in 2015 alone.
A developer is unlikely to be knowledgable about the large
number of diverse changes made by others. Moreover, state-
of-the-art works in automated bug fixing also can only fix
a small number of bugs that span one or a few lines of
code [16], [19], showing the level of difficulty of automatically
inferring correct fix for even one line of code. Although bug
fixing and backporting are two different problems, both involve
transforming a broken piece of code to another that works.

Last but not least, our approach currently targets backports
that require only a one-line change. We have evaluated it on
a simulation where we backport a driver file across two con-
secutive Linux versions. Analyzing a diff of two consecutive
Linux versions, for all versions between 2.6.11 to 3.13.3, we
found 944 driver files having a one line change that affects the
driver functionality, meaning that using the newer version of
the driver in the previous version of Linux will not work. Thus,
even though one-line change is very limited, it still covers quite
a number of potential backporting situations.

Another limitation in our evaluation is that we assume
that syntactic correctness equals semantic correctness. Since
our simulation is based on actual changes, we believe this
assumption holds as we only consider backporting to be
successful if the resulting code is exactly the same.

In a more general case, a developer may be called upon
to backport a driver that requires more than one line of
changes. Indeed, the changes required may involve not only

multiple lines, but also multiple files, and may require a
deeper understanding of the relationships between them. Our
approach could still be helpful if the task can be broken down
into individual issues that involve only one error line.

J. Threats to Validity

Possible threats to validity include threats to construct
validity, to internal validity, and to external validity.

Threats to Construct Validity. These threats refer to the suit-
ability of our evaluation measures. We make use of accuracy
and Hit@N as the effectiveness measures of our approach.
These measures have been used in past studies and thus we
believe the threats are minimal.

Threats to Internal Validity. These threats correspond to
experiment errors. To reduce the likelihood of this threat, we
have checked the implementation of our approach multiple
times. Still, there may be errors that we missed.

Threats to External Validity. These threats refer to the
generalizability of our experimental results. We have only in-
vestigated 100 Linux device driver files and backporting cases
that involve two successive Linux versions. The effectiveness
of our approach beyond these driver files and for two arbitrary
Linux versions is not guaranteed to be the same. In the future,
we plan to reduce this threat by evaluating our approach on
more device driver files and arbitrary pairs of Linux versions.

V. RELATED WORK

We now present related work on identifying and analyzing
changes, mining change rules, and automatic program repair.
Due to page limitations, our survey is by no means complete.

Identifying and Analyzing Changes. Many studies focus on
identifying and analyzing changes between two code versions.
For example, Neamtiu et al. [23] use partial abstract syntax
tree matching to compare the source code of different C
program versions. Horwitz et al. [10] focus on identifying
semantic changes in programs. Fluri et al. [5] track the co-
evolution of comments and source code over multiple program
versions, leveraging Evolizer [7] and ChangeDistiller [6] for
extracting fine-grained source code changes between program
versions. Marinescu et al. [20] present Covrig, an infras-
tructure that collects static and dynamic software metrics
when running different program versions, to study the co-
evolution of source code and test cases. Zaidman et al. [30]
examine the co-evolution of source code and tests, inferring
the development style employed by a number of Java projects.

Our work differs from those above in that, rather than
just identifying and analyzing differences, we automatically
suggest transformations that can change code in a newer
version to be compatible with an older version. We thus
need to identify which changes can help us to learn the
correct transformation, as implemented by our error inducing
change search phase, and to learn and rank these candidate
transformations, as implemented by our code transformation
extraction and recommendation ranking phases.



Mining Change Rules. Wu et al. [29] propose an approach to
mine method call change rules between two versions of a Java
program. They combine call dependency and text similarity
analyses to extract method change rules. Similarly, Meng et
al. [22] extract method change rules between two versions of
a Java program. However, rather that considering only one big
change between two versions of a program, they consider all
changes between two consecutive commits that are located in
the change history between the two versions of the program.
This allows them to analyze changes in a finer detail and
enables them to mine chains of method changes. These works
deal with a forward porting problem, which involves porting
function calls to use a newer version of a library in Java
programming language. We address a backporting problem,
which is the task of porting a new version of some code
(in our case, drivers) to work with an older version of a
system (in our case, the Linux kernel). Thus, backporting can
be seen as reverse forward porting. However, different than
existing forward porting approaches, we have found that it is
not sufficient to focus only on function calls, as we found the
need to also port data structures.

Negara et al. [24] develop a tool for automatically mining
Jfrequent change rules from fine-grained edits. Different from
their work, we focus on finding transformations that can
backport drivers and these transformations are often not the
frequent ones. Andersen et al. [1], [2] infer safe and concise
transformation rules from a collection of transformation ex-
amples. We do not require users to provide transformation
examples, but instead find them automatically.

Automatic Program Repair. Recently, automated program
repair has received considerable attention in the software
engineering research community, and several techniques have
been proposed [11], [14], [17], [18], [19], [21], [25].

Le Goues et al. propose GenProg, the first search-based
automated patch generator [17], [18]. GenProg uses genetic
programming to generate a large number of possible patch
candidates. A valid patch candidate can be found by iterating
through a pool of generated candidates and searching for the
one that passes all the test cases of a given regression test
suite. On a suite of 105 real-world bugs GenProg was able to
create plausible fixes (i.e., fixes that pass all test cases) for 55
of them [17]. However, recently Qi et al. have shown that out
of the 55 plausible fixes, only 2 are correct fixes [26].

Kim et al. propose Pattern-based Automatic program Repair
(PAR), that applies patterns learned from existing human-
written patches to fix bugs [11]. Ten fix templates learned from
more than 60,000 human-written patches were created and
applied to generate patches for buggy programs. The results
of their experiment show that PAR can automatically generate
patches that are comparable to human-written patches.

Weimer et al. [28] propose an adaptive search strategy that
uses a cost model for search-based automated program repair,
to reduce the cost of validating candidate patches. The cost
estimation allows the model to suggest an appropriate strategy
for evaluating repair candidates, e.g., which candidates should
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be evaluated first and how the test cases should be prioritized
to allow an invalid candidate to be recognized as soon as
possible. Their experimental results show that adaptive search
finds repairs more quickly than GenProg.

Most recently, Long and Rinard and Le et al. propose
approaches that learn from historical bug fixes to guide a
GenProg-style automated program repair technique to cor-
rectly fix bugs with a higher success rate [16], [19]. Mechtaev
et al. propose Angelix that can fix bugs using semantics
analysis and program synthesis [21]. Subsequently, Le et al.
propose to use syntax-guided synthesis [15] and deductive
verification [13] for program repair. However, even state-of-
the-art approaches can only fix a small number of bugs whose
fixes span one or a few lines of code.

Automatic program repair deals with the problem of fixing
general bugs, where a bug is usually considered fixed when
a program passes all test cases. Our backporting problem
is related to automatic program repair in that we need to
fix the error line when we compile a driver in the older
Linux version. However, we do not have test cases to evaluate
whether the fix is correct. Thus, we cast the problem as fix
recommendation (i.e., code change recommendation) rather
than a fully automatic fix. The approach used by existing
automated program repair techniques also differs from our
approach; most of them randomly generate possible fixes and
rank these possible fixes based on the number of test cases
that pass after each fix is applied. In our case we do not have
the test cases and thus we generate and rank changes that fix
the driver in a different way.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a recommendation system
that generates a ranked list of candidate transformations for
(semi-)automatic backporting of Linux device drivers. Our
approach consists of three phases. First, we search for a change
that can give us a clue on how to fix the error when we back-
port a driver to an older Linux version. Then, we extract code
transformation candidates that we may apply to fix the error.
Finally, we rank the transformation candidates. Our simulated
backporting experiment on 100 Linux device drivers shows
that our approach can extract the correct transformation for
68% of the device drivers. Among the device drivers having a
correct transformation in the recommendation list, our ranking
approach ranks first 85.3% of the correct transformations. We
then illustrate some successes and limitations of our approach.

In future work, we plan to improve our search algorithm by
extending our search beyond the error inducing change, espe-
cially to older changes involving the modified data structure or
function in the error inducing change. We plan to extend our
code transformation extraction algorithm to be able to learn
from many deleted-added line pairs. We also plan to consider
a more general backporting scenario, such as multi line and
multi file backporting. We also plan to explore possibility
of lightweight testing for improving the correctness of the
backported device drivers. Finally, we plan to experiment on a
bigger dataset to ensure the generalizability of our approach.
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