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Abstract

The main step in numerical evaluation of classical Sl2(Z) modular
forms is to compute the sum of the first N nonzero terms in the
sparse q-series belonging to the Dedekind eta function or the Jacobi
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theta constants. We construct short addition sequences to perform
this task using N + o(N) multiplications. Our constructions rely on
the representability of specific quadratic progressions of integers as
sums of smaller numbers of the same kind. For example, we show that
every generalized pentagonal number c ≥ 5 can be written as c = 2a+b
where a, b are smaller generalized pentagonal numbers. We also give a
baby-step giant-step algorithm that uses O(N/ logrN) multiplications
for any r > 0, beating the lower bound of N multiplications required
when computing the terms explicitly. These results lead to speed-ups
in practice.

1 Motivation and main results

We consider the problem of numerically evaluating a function given by a
power series f(q) =

∑∞
n=0 cnq

en , where the exponent sequence E = {en}∞n=0 is
a strictly increasing sequence of natural numbers. If |cn| ≤ c for all n and the
given argument q satisfies |q| ≤ 1−δ for some fixed δ > 0, then the truncated
series taken over the exponents en ≤ T gives an approximation of f(q) with
error at most c|q|T+1/δ, which is accurate to Ω(T ) digits. This brings us to the
question of how to evaluate the finite sum f(q) ≈

∑
en≤T cnq

en as efficiently
as possible. To a first approximation, it is reasonable to attempt to minimize
the total number of multiplications, including coefficient multiplications and
multiplications by q.

Our work is motivated by the case cn, q ∈ C, but most statements transfer
to rings such as Qp and C[[t]]. The abstract question of how to evaluate
truncated power series, that is, polynomials, with a minimum number of
multiplications may even be asked for an arbitrary coefficient ring. We review
a number of generic approaches in §2.

More precisely, we are interested in highly structured exponent sequences,
namely, sequences given by values of specific quadratic polynomials that be-
long to the Jacobi theta constants and to the Dedekind eta function. Ex-
ploiting this structure, one may hope to obtain more efficient algorithms.

The general one-dimensional theta function is given by

ϑ(τ, z) =
∑
n∈Z

eπin
2τ+2πinz =

∑
n∈Z

wnqn
2

(1)

with q = eπiτ and w = e2πiz for z ∈ C and τ in the upper complex half-plane,
that is, =(τ) > 0. For some ` ∈ Z≥1 and a, b ∈ 1

`
Z, the theta function of
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level ` and with characteristic (a, b) is defined as

ϑa,b(τ, z) = eπia
2τ+2πa(z+b)ϑ(τ, z + aτ + b) =

∑
n∈Z

eπi(n+a)
2τ+2πi(n+a)(z+b).

The functions of level 2 are the classical Jacobi theta functions. Of special
interest are the theta constants, the functions of τ in which one has fixed
z = 0 or w = 1, respectively, and in particular, those of level 2, given by

ϑ0(τ) = ϑ0,0(τ, 0) =
∑
n∈Z

qn
2

= 1 + 2
∞∑
n=1

qn
2

= 1 + 2q
∞∑
n=1

qn
2−1,

ϑ1(τ) = ϑ0, 1
2
(τ, 0) = 1 + 2

∞∑
n=1

(−1)nqn
2

, (2)

ϑ2(τ) = ϑ 1
2
,0(τ, 0) = 2

∞∑
n=1

q
1
4
(2n+1)2 = 2q

1
4

∞∑
n=1

qn(n+1).

(Here and in the following, when q is defined as q = eγ, by a slight abuse of

notation we write q
1
` for the then unambiguously defined eγ/`.) The remain-

ing function ϑ 1
2
, 1
2
(τ, 0) is identically 0.

Different notational conventions are often used in the literature; the func-
tions we have denoted by ϑ0, ϑ1, ϑ2 are sometimes denoted ϑ3, ϑ4, ϑ2 and often
with different factors 1

2
or π among the arguments. Higher-dimensional theta

functions are the objects of choice for studying higher-dimensional abelian
varieties [31, 32, 33].

In dimension 1, that is, in the context of elliptic curves, the Dedekind eta
function is often more convenient [39, 37, 16, 17, 15]. It is a modular form
of weight 1

2
and level 24 defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) = q
1
24

∞∑
n=−∞

(−1)nqn(3n−1)/2 [22]

= q
1
24

(
∞∑
n=1

(−1)nqn(3n−1)/2 +
∞∑
n=0

(−1)nqn(3n+1)/2

)
(3)

for q = e2πiτ (where an additional 2 appears in the exponent compared to
the definition of q for theta functions). It is related to theta functions via
2η(τ)3 = ϑ0(τ)ϑ1(τ)ϑ2(τ) [39, §34, (10) and (11)], and η(τ) = ζ12 ϑ− 1

6
, 1
2
(3τ, 0)
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with ζ12 = e2πi/12. The latter property can be proved easily as an equality of
formal series.

Other functions that can be expressed in terms of theta functions include
Eisenstein series G2k(τ) and the Weierstrass elliptic function ℘(z; τ). Theta
functions are also useful in physics for solving the heat equation.

Another motivation for looking at theta and eta functions comes from
complex multiplication of elliptic curves. The moduli space of complex el-
liptic curves is parameterized by the j-invariant, given by a q-series j(τ) =
1
q

+ 744 + 196884q + 21493760q2 + · · · for q = e2πiτ , which can be obtained

explicitly from the series of the theta or eta functions as [39, §54, (5); §34,
(11)]

j =

(
f 24
1 + 16

f 8
1

)3

with f1(τ) =
η(τ/2)

η(τ)
,

or [39, §34, (10) and (11); §54, (6); §21, (14)]

j = 32
(ϑ8

0 + ϑ8
1 + ϑ8

2)
3

(ϑ0ϑ1ϑ2)8
. (4)

The series for j is dense, and the coefficients in front of qn asymptotically
grow as 21/2n−3/4e4π

√
n [35]; so it is in fact preferable to obtain its values

from values of theta and eta functions: Their sparse series imply that O(
√
T )

terms are sufficient for a precision of Ω(T ) digits, and they furthermore have
coefficients ±1.

Evaluating j at high precision is a building block for the complex analytic
method to compute ring class fields of imaginary-quadratic number fields
and then elliptic curves with a given endomorphism ring [12], or modular
polynomials encoding isogenies between elliptic curves [13]. For example,
the Hilbert class polynomial for a quadratic discriminant D < 0 is given by

HD(x) =
∏
(a,b,c)

(
x− j

(
−b+

√
D

2a

))
∈ Z[x],

where (a, b, c) is taken over the primitive reduced binary quadratic forms
ax2 + bxy + cy2 with b2 − 4ac = D. The exact coefficients of HD can be
recovered from |D|1/2+o(1)-bit numerical approximations.

The bit complexity of evaluating the theta or eta functions at a pre-
cision of T digits via their q-series is in O(T 3/2+o(1)). Asymptotically for
T tending to infinity there is a quasi-linear algorithm with bit complexity
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O(T log2 T log log T ) [11]; it uses the arithmetic-geometric mean (AGM) it-
eration together with Newton iterations on an approximation computed at
low precision by evaluating the series. The crossover point where the asymp-
totically faster quasi-linear algorithm wins is quite high. In earlier work [12,
Table 1], it was seen to occur at a precision of about 250 000 bits, used to com-
pute a class polynomial of size about 5 GB. So in most practical situations,
series evaluation is faster. This is also due to the experimental observation,
implemented in the software CM [14], that there are particularly short addi-
tion sequences for the exponents in the q-series of the Dedekind eta function,
which lead to a small constant in the complexity in O-notation.

Looking at eta and theta functions, respectively, in §§3 and 4, we show
that this is not a coincidence, but a consequence of their structured expo-
nents.

Some of our results depend on the Bateman-Horn conjecture for the spe-
cial case of only one polynomial, which can be summarized as follows:

Conjecture 1 (Bateman-Horn [1]). Let f ∈ Z[X] be a polynomial with
positive leading coefficient such that for every prime p, there is an x modulo
p with p - f(x). Then there exists a constant C > 0 such that the number
of primes among the first N values f(1), f(2), . . . , f(N) is asymptotically
equivalent to CN/ logN for N →∞.

In other words, the density of primes among the values of f is the same as
the density of primes among all integers of the same size, up to a correction
factor C, which is given by an Euler product encoding the behavior of f
modulo primes. The hypothesis of the conjecture is clearly necessary; if it is
not satisfied, then all values of f are divisible by the same prime p, so the
only prime potentially occurring is p itself, and this can happen only a finite
number of times (and then indeed one of the Euler factors defining C van-
ishes). All polynomials f that we consider have f(0) = 1, so the hypothesis
is trivially verified.

In particular, we show the following:

Theorem 2.

1. The first N terms of the η series may be evaluated with N + O(1)
squarings and N +O(1) additional multiplications. (This follows from
Theorem 5.)
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2. The first N terms of a series yielding η may be evaluated with N +
O(N/ logN) multiplications, assuming Conjecture 1 for the polynomi-
als 18n2 − 6n + 1 and 18n2 + 6n + 1. (This follows from Theorems 9
and 5.)

The same assertion holds for ϑ0 and ϑ1 assuming Conjecture 1 for the
polynomials 4n2 + 1 and 2n2 + 2n+ 1. (This follows from Theorems 12
and 13.)

The same assertion holds for ϑ2 assuming Conjecture 1 for the polyno-
mial 2n2 + 2n+ 1. (This follows from Theorems 10 and 11.)

3. Truncating ϑ0, ϑ1 and ϑ2 to N terms each, only 2N monomials occur.
The first N terms of series yielding all three theta constants (in the
same argument q) may be evaluated with 2N + O(1) multiplications.
(This is Theorem 15.)

The number of multiplications needed to evaluate a series is closely related
to the number of additions needed to compute the values of its exponent
sequences, as we discuss further in §2. Dobkin and Lipton have previously
proved a lower bound of N + N2/3−ε additions for computing the values of
certain polynomials at the first N integers [9], which in particular holds for
the squares occurring as exponents of ϑ0. Dobkin and Lipton conjecture
that this lower bound holds for arbitrary (non-linear) polynomials. While
not exactly a counterexample, the third point of Theorem 2 shows that the
conjecture does not hold when the values of two polynomial sequences are
interleaved.

Finally in §5 we present a new baby-step giant-step algorithm for evalu-
ating theta or eta functions that is asymptotically faster than any approach
computing all monomials occurring in the truncated series.

Theorem 3. There is an effective constant c > 0 such that the series for
η, ϑ0, ϑ1 or ϑ2, truncated at N terms, is evaluated by the baby-step giant-
step algorithm of §5 with less than N1−c/ log logN multiplications. (This is a
consequence of Theorem 17.)

Though asymptotically not as fast as the AGM method, this algorithm
gives a speed-up in the practically interesting range from around 103 to 106

bits, and further raises the crossover point for the AGM method; see §6.
The baby-step giant-step algorithm relies on finding a suitable sequence

of parameters m such that the exponent sequence takes few distinct values
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modulo m; we solve this problem for general quadratic polynomials and ex-
plicitly describe the parameters m corresponding to the squares, trigonal and
pentagonal numbers occurring as exponents of the eta and theta functions.

The general theta series (1) can be seen as the Laurent series
∑

n∈Z fnw
n.

Theorem 2 implies a fast way to compute the coefficients fn. This speeds
up computing the theta function (1) for general q, w and consequently also
speeds up computing elliptic functions and Sl2(Z) modular forms via theta
functions. The baby-step giant-step algorithm of Theorem 3 does not com-
pute the coefficients fn explicitly. It speeds up modular forms further, but
this speed-up only applies to the special case w = 1 (or other simple alge-
braic values of w, by a slight generalization), so it is less useful for elliptic
functions.

2 Power series and addition sequences

In this section, we review some of the known techniques for evaluating a
truncated power series f(q) =

∑N
n=0 cnq

en , where the exponent sequence
(en)∞n=0 is strictly increasing and the cut-off parameter N is chosen such that
eN ≤ T and eN+1 > T for some truncation order T depending on the required
precision. (As mentioned before, if a lower bound on |q| is given, T will be
linear in the desired bit precision.) We let E = (en)Nn=1 and distinguish
between the cases where this sequence is dense or sparse.

2.1 Dense exponent sequences

If the exponent sequence E is dense, that is, N ∈ Ω(T ), then Horner’s rule is
optimal in general. For example, if E is an arithmetic progression with step
length r, then T/r +O(log r) multiplications suffice.

It is possible to do better if the coefficients cn have a special form. Of
particular interest is when a multiplication cn · q is “cheap” while a multipli-
cation such as q · q is “expensive”. This is the case, for instance, when cn are
small integers or rationals with small numerators and denominators and q is
a high-precision floating-point number. In this case we refer to cn “scalars”
and call cn · q a “scalar multiplication” while q · q is called a “nonscalar mul-
tiplication”. All N multiplications in Horner’s rule are nonscalar. Paterson
and Stockmeyer introduced a baby-step giant-step algorithm that reduces
the number of nonscalar multiplications [34] to Θ(N1/2), originally for the
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purpose of evaluating polynomials of a matrix argument (which explains the
“scalar” terminology). The idea is to write the series as

N−1∑
n=0

cnq
n =

dN/me−1∑
k=0

(qm)k
(
m−1∑
j=0

cmk+jq
j

)
(5)

for some splitting parameter m. The “baby-steps” compute the powers
q2, q3, . . . , qm once and for all, so that all inner sums may be obtained using
multiplications by scalars. The outer polynomial evaluation with respect to
qm is then done by Horner’s rule using “giant-steps”. This requires about N
multiplications by scalars and, by choosing m ∈ Θ(N1/2) and thus balancing
the baby- and giant-steps, Θ(N1/2) nonscalar multiplications.

For even more special coefficients cn, further techniques exist [4, 3]:

• If E is an arithmetic progression and the coefficients cn satisfy a linear
recurrence relation with polynomial coefficients, then N1/2+o(1) arith-
metic operations (or N3/2+o(1) bit operations) suffice if fast multipoint
evaluation of polynomials is used. An improved version of the Paterson-
Stockmeyer algorithm also exists for such sequences [38, 27].

• If both q and the coefficients cn are scalars of a suitable type, binary
splitting should be used. For example, if the “scalars” are rational
numbers (or elements of a fixed number field) with O(log n) bits, the
bit complexity is reduced to the quasi-optimal N1+o(1). This result also
holds if E is an arithmetic progression, q ∈ Q, and the cn satisfy a
linear recurrence relation with coefficients in Q(n).

The last technique is useful for computing many mathematical functions
and constants, especially those represented by hypergeometric series, where
q often will be algebraic. It appears to be less useful in connection with theta
series, where q usually will be transcendental.

2.2 Sparse exponent sequences and addition sequences

If the exponent sequence E is sparse, for instance if en ∈ Θ(nα) so that
N ∈ Θ(T 1/α) for some α > 1, methods designed for dense series may be-
come inferior to even naively computing separately the powers of q that are
actually needed and evaluating

∑
n cnq

en as written. Addition sequences [6,
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Definition 9.32] provide a means of saving work by computing the needed
powers of q simultaneously.

An addition sequence consists of a set of positive integers A containing 1,
and for every c ∈ A>1, a pair a, b ∈ A<c such that c = a + b. An addition
sequence A ⊇ E allows us to compute {qe : e ∈ E} using at most |A| − 1
multiplications

qc = qa · qb, c ∈ A.

Given a list of positive integers E = {e1, e2, . . . , eN} with e1 < e2 < · · · < eN ,
we may have to insert extra elements to obtain an addition sequence. For
example, the Fibonacci sequence {1, 2, 3, 5, 8, 13, . . .} trivially forms an addi-
tion sequence without adding more elements, while the sequence of squares
{1, 4, 9, 16, 25, 36, . . .} requires adding intermediate steps. Minimizing the
number of insertions required to form an addition sequence becomes an in-
teresting problem; its associated decision problem is NP-complete in general
[10, Theorem 3.1].

Algorithm 1 Short addition sequence

Input: A finite list of positive integers E
Output: An addition sequence A ⊇ E

Let A = E.
While some element c ∈ A, c 6= 1, is not a sum of two smaller elements
of A, insert bc/2c and dc/2e into A.

A straightforward approach, Algorithm 1, is a close relative of the double-
and-add algorithm for the case of a single exponent, and it is easy to show
that it produces an addition sequence of length at most O(N log eN) =
O(N log T ). In practice, it is observed to produce nearly optimal addition
sequences for reasonably dense input. A more elaborate method (Yao 1976,
cited by Knuth [29, §4.6.3, exercise 37]) gives the upper bound

O

(
N

log eN
log log eN

+ log eN +
log eN log log log eN

(log log eN)2

)
.

We can improve the upper bounds for sequences of a special form. For
any integer-valued polynomial f ∈ Q[X] of degree d, the consecutive values
f(1), f(2), . . . can be computed using d additions for each new term by the
approach of finite differences, letting fd = f and considering the system of
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coupled recurrence equations fk(X + 1) = fk(X) + fk−1(X), 1 ≤ k ≤ d, in
which deg(fk) = k.

For the quadratic exponent sequences E appearing in the Dedekind eta
function and the Jacobi theta functions, this implies a cost of two multipli-
cations to generate each new power qf(n). We call these the classical addition
sequences, cf. Table 1.

f2(n) f1(n) = f2(n+ 1)− f2(n) f0(n) = f1(n+ 1)− f1(n)
n2 2n+ 1 2

n(n+ 1) 2n+ 2 2
n(3n− 1)/2 3n+ 1 3
n(3n+ 1)/2 3n+ 2 3

Table 1: Construction of the classical addition sequences for squares, trigo-
nal numbers, and pentagonal numbers via finite differences.

The classical addition sequences are often used in implementations [5,
Algorithm 6.32], but they are still not optimal. For the sequence of squares,
Dobkin and Lipton [9] give an algorithm which requires N + O(N/

√
logN)

additions. Asymptotically, this amounts to a cost of only 1 + o(1) multipli-
cations for each power qn

2
in the series for ϑ0 or ϑ1. The second point of

Theorem 2 (heuristically) improves this bound to N +O(N/ logN).

2.3 Cost of an addition sequence

Since squaring is usually cheaper than a general multiplication, it makes sense
to count the number of doublings c = 2a separately from general additions
c = a+b in an addition sequence. We may even go further and regroup entries
in an addition sequence, thus obtaining more complex atomic operations, to
each of which a different cost can be assigned.

Suppose in particular that multiplying two real floating point numbers
costs M , that squaring such a number costs S ≤ M and that additions and
subtractions and, by extension, multiplications by small integer constants
are essentially free. (In fact, we will not need to consider integer constants
other than 1 and −1.) At high precision, multiplication may rely on the fast
Fourier transform (FFT), the dominant steps of which are the computation of
two forward and one inverse transforms. When squaring, one of the forward
transforms can be skipped, resulting asymptotically in S = 2

3
M . Using school
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book multiplication, one would have S = 1
2
M asymptotically instead. (We

can lower costs some more by saving the Fourier transform of an operand
that is reused several times, but this results in a more complicated analysis,
which we do not pursue here.)

For complex numbers represented by two reals in Cartesian coordinates,
we have

(x+ yi)2 = (x2 − y2) + 2x · yi,
(x+ yi)(t+ ui) = (x · t− y · u) +

(
(x+ y) · (t+ u)− xt− yu

)
i,

(x+ yi)3 = x · (x2 − 3y2) + y · (3x2 − y2)i.

Accordingly, if the complex numbers qa and qb have already been com-
puted (i.e., if a and b are already in the addition sequence), then we may
evaluate the cost for forming the respective new power (i.e., extending the
addition sequence, possibly twice), in increasing order as in Table 2.

Step in addition sequence Generic cost FFT School book
2a 2S +M 2.33M 2M
a+ b 3M 3M 3M
3a 2S + 2M 3.33M 3M
4a 4S + 2M 4.67M 4M
2a+ b or 2(a+ b) 2S + 4M 5.33M 5M

Table 2: Costs associated with evaluating complex series using addition
sequences.

3 Addition sequences for the Dedekind eta

function

The exponents en = n(3n − 1)/2 in (3) for n ≥ 1 are called (ordinary) pen-
tagonal numbers ; for arbitrary n, generalized pentagonal numbers (A001318
in the On-Line Encyclopedia of Integer Sequences). In the ordered sequence
of exponents, ordinary and generalized pentagonal numbers alternate.

The sequence of generalized pentagonal numbers is too sparse to be an
addition sequence. The classical addition sequence effectively doubles the

11
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density. Our observation is that an addition sequence can be formed by oc-
casionally inserting an extra doubling (that is, performing an extra squaring
when evaluating the series).

Algorithm 2 Dedekind eta function using optimized addition sequence
Input: T ≥ 2, q ∈ C
Output: S =

∑
en≤T snq

en , where E = (en)∞n=1 = (0, 1, 2, 5, 7, . . .) is the
ordered sequence of generalized pentagonal numbers, and sn ∈ {±1} is
such that S approximates the value of η
N ← the maximal n such that en ≤ T
S ← 1− q, A← {1}, Q← {q}
for c← e3, . . . , eN do

if c = 2a for some a ∈ A then
q′ ← (qa)2

else if c = a+ b for some a, b ∈ A then
q′ ← (qa) · (qb)

else if c = 2a+ b for some a, b ∈ A then
q′ ← (qa)2 · qb

end if
if sn = +1 then

S ← S + q′

else
S ← S − q′

end if
A← A ∪ {c}, Q← Q ∪ {q′}

end for

Algorithm 2 attempts to write each occurring power of q as a product
of previously computed powers. It first attempts the cheapest operation
(squaring) according to Table 2 and proceeds to more expensive operations
if this fails.

In the following, we will prove that the algorithm is correct; that is, at
least one of the branches can always be entered. In fact, the c = 2a + b
case alone is guaranteed to succeed. That is, every generalized pentagonal
number is a sum of a smaller generalized pentagonal number and twice a
smaller generalized pentagonal number (Theorem 5). We also show that the
c = a + b case heuristically almost always succeeds (Theorem 9), so that
Algorithm 2 approaches on average one multiplication per computed term.
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Experimentally, we observe that Algorithm 2 uses slightly fewer multi-
plications than an addition sequence constructed with Algorithm 1 when N
is large, and a larger proportion of the multiplications are squarings (see
Figure 1 in §5.1).

The starting point for our considerations is the following characteriza-
tion of the generalized pentagonal numbers, which is immediate from their
definition.

Lemma 4. When restricted to generalized pentagonal numbers, the strictly
increasing map

σ : c 7→
√

24c+ 1 (6)

is a bijection between generalized pentagonal numbers and positive integers
coprime to 6. More precisely, it sends ordinary pentagonal numbers to inte-
gers that are 5 (mod 6) and generalized, non-ordinary pentagonal numbers
to integers that are 1 (mod 6).

Proof. The equation c = (3n− 1)n/2 is equivalent to 24c+ 1 = (6n− 1)2 =
(6(−n) + 1)2.

The first few generalized pentagonal numbers and associated values of σ
are given in Table 3.

c 0 1 2 5 7 12 15 22 26 35 40 51 57 70
σ(c) 1 5 7 11 13 17 19 23 25 29 31 35 37 41

Table 3: Generalized pentagonal numbers

3.1 One squaring and one multiplication

The following result provides a proof of the first point of Theorem 2.

Theorem 5. Every generalized pentagonal number c ≥ 5 is the sum of a
smaller one and twice a smaller one, that is, there are generalized pentagonal
numbers a, b < c such that c = 2a+ b.

In other words, the series of η may be computed with one multiplication
and one square instead of two multiplications per term, reducing the cost in
the FFT model from 6M to 5.33M according to Table 2.
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Hirschhorn shows [26, (1.20)] that the number of ways in which an ar-
bitrary number c can be written as twice a generalized pentagonal number
plus another pentagonal number is given by

d1,8(24c+ 3)− d7,8(24c+ 3)−
(
d1,8((8c+ 1)/3)− d7,8((8c+ 1)/3)

)
,

where di,j counts the number of positive divisors that are i (mod j) for in-
tegral arguments, and equals 0 for non-integral rational arguments. Using
quadratic reciprocity and Proposition 7 below, one can show that this quan-
tity is at least 1 if c is a generalized pentagonal number. We prefer to give
direct proofs of Theorem 5 as well as for similar results below, as they are in-
structive and are scarcely more involved than proofs relying on Hirschhorn’s
results.

Using Lemma 4, the theorem becomes essentially a statement about rep-
resentability of integers as sums of squares. Its proof relies on the following
well-known lemma, for which we give a quick proof for the sake of self-
containedness.

We say that a quadratic form q(X, Y ) = AX2 +BXY + CY 2 represents
an integer k if there are x, y ∈ Z such that k = q(x, y). The representation
is primitive if x and y are coprime. We are only concerned with the case
B = 0, and then we say that the representation is positive if x, y > 0. If
moreover A = C = 1, we say that the representation is ordered if 0 < x < y.

Lemma 6. A positive integer k is primitively represented by the quadratic
form 2X2+Y 2 if and only if all its odd prime divisors are 1 or 3 (mod 8) and
it is not divisible by 4. Its number of positive primitive representations is then
given by 2ω

′(k)−1, where ω′(k) denotes the number of odd primes dividing k.

Euler [21] proves that a number is primitively representable in this way
if and only if all its prime factors are, and that being congruent to 1 or
3 (mod 8) is a necessary condition for odd primes. Conversely, Euler [18,
p. 628] shows that any prime number that is congruent to 1 (mod 8) is
represented this way. The missing case of primes congruent to 3 (mod 8) is
treated by Dickson [8, p. 9] with a proof attributed to Pierre-Simon de la
Place; we were, however, unable to locate the original reference of 29 pages
from 1776, Théorie abrégée des nombres premiers, in the Gauthier–Villars
edition of the Œuvres complètes de Laplace printed in Paris between 1878 and
1912; the previous and less complete edition of the Œuvres de Laplace printed
by the Imprimerie Royale in Paris between 1843 and 1847 does not contain
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any number theoretic articles. Concerning the number of representations,
Euler [21] shows that only the odd primes need to be taken into account,
and essentially contains the formula for square-free k, mentioning explicitly
products of two or three primes and hinting at products of four primes. Using
modern number theory concepts, it is easy to provide a complete proof of
the statements.

Proof. Representations of k by 2X2+Y 2 correspond to elements α = x
√
−2+

y of the ring of integers OK = Z[
√
−2] of K = Q(

√
−2) such that NK/Q(α) =

k. They are primitive if and only if α is primitive in the sense that it is not di-
visible inOK by a positive rational integer other than 1. Let k = 2e0

∏ω′(k)
i=1 peii

be the prime factorization of k. A necessary condition for the existence
of a primitive representation, assumed to hold in the further discussion, is
that all the pi are split in K, which is indeed equivalent to pi ≡ 1 or 3
(mod 8) [7, p. 1], and that e0 ∈ {0, 1}. Write piOK = pipi, where · de-
notes complex conjugation, the non-trivial Galois automorphism of K/Q,
with pi = NK/Q(pi); and write 2OK = p20. Then α ∈ OK is of norm k (and
thus leads to a representation of k) if and only if there are αi ∈ {0, . . . , ei}
such that pe00

∏ω′(k)
i=1 pαi

i pei−αi
i is a principal ideal generated by α, and the

representation is primitive if and only if none of the pi and pi appear si-
multaneously, that is, αi ∈ {0, ei}. Here the ring OK is principal, so that
principality does not form a restriction. Letting pi = πiOK with πi ∈ OK ,
the primitive elements of norm k are exactly the

α = επe00

ω′(k)∏
i=1

ωeii ,

where ε ∈ {±1} is a unit in OK and ωi ∈ {πi, πi}, so there are 2ω
′(k)+1 of

them. Now there are four possibilities for the signs of x and y, meaning that
there are 2ω

′(k)−1 positive primitive representations.

Proof of Theorem 5. Let z = σ(c), and x = σ(a) and y = σ(b) with the
purported generalized pentagonal numbers a and b, where σ is given by (6).
Then c = 2a+ b translates as

z2 + 2 = 2x2 + y2, (7)

so we need to show that for z ≥ 11 and coprime to 6, the integer k = z2 + 2
admits a positive representation (x, y) by the quadratic form 2X2 +Y 2 other
than (x, y) = (1, z) and with x and y coprime to 6.
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The existence of the primitive representation (1, z) shows, using Lemma 6
and the fact that y is coprime to 6, that all prime divisors of k are 1 or
3 (mod 8), and that as soon as k has at least two prime factors, there is
another positive primitive representation. Notice that k is divisible by 3,
so we conclude that unless k is a power of 3, it admits a positive primitive
representation (x, y) with x, y < z. The following Proposition 7 shows that
k cannot be a power of 3 unless k = 3 (and z = 1 and c = 0) or k = 27 (and
z = 5 and c = 1), which are not covered by the theorem.

It remains to show that x and y can be taken coprime to 6. Consider-
ing (7) modulo 8 shows that x and y are automatically odd. The left hand
side of (7) is divisible by 3, while the right hand side is divisible by 3 only
if both x and y are coprime to 3, or both are divisible by 3. The second
possibility is ruled out by the primitivity of the representation.

Proposition 7. The only solutions to −2 = x2 − 3n with integers x, n ≥ 0
are given by n = 1 and x = 1, and by n = 3 and x = 5.

Proof. Assume that there are other solutions (x, n) apart from the given ones.
If n = 2m were even, then we would have {x−3m, x+3m} ⊆ {±1,±2}, whose
only solution is x = 0, m = 0. But this does not lead to a solution of the
equation. Write n = 2m+ 1 and let y = 3m, so that

− 2 = x2 − 3y2. (8)

Let K = Q(
√

3). Then (8) is equivalent to x + y
√

3 being an element of
OK = Z[

√
3] of norm −2. An initial solution is given by α = 1 +

√
3;

according to PARI/GP [2] a fundamental unit of OK is ε = 2 +
√

3 of
norm 1, so that all elements of OK of norm −2 are given by the ±αεk with
k ∈ Z. Let ρ :

√
3 7→ −

√
3 denote the non-trivial Galois automorphism of

K/Q. Since elements that are conjugate under ρ lead to the same solution
of (8) up to the sign of y, aρ = −aε−1 and (aε−k)ρ = −aεk−1, it is enough to
consider solutions with k ≥ 0 (which are in fact exactly the solutions with x,
y > 0). Write αεk = xk + yk

√
3 with xk, yk ∈ Z. Then

x0 = y0 = 1, xk = 2xk−1 + 3yk−1 and yk = xk−1 + 2yk−1 for k ≥ 1.

To exclude the already known solutions with n ≤ 3, we now switch to the
norm equation

− 2 = x2 − 243y2 (9)
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in the order O = Z[9
√

3] of conductor 9. An initial solution is given by
α′ = αε4 = 265 + 17 · 9

√
3, and the fundamental unit of O is ε′ = ε9 =

70226+4505 ·9
√

3, the smallest power of ε that lies in O. Then the solutions
of (9) (up to the signs of x and y) are derived from the α′(ε′)k = xk+yk ·9

√
3

with x0 = 265, y0 = 17,

xk = 70226xk−1 + 1094715yk−1, yk = 4505xk−1 + 70226yk−1 for k ≥ 1.

One notices that all yk are divisible by 17 and thus not a power of 3.

3.2 One multiplication

The previous section gave an upper bound of one square and one multipli-
cation for each term of the series of η. Even more favorable situations are
more difficult to analyze. They do not happen for all generalized pentago-
nal numbers, and the non-existence of a primitive representation does not
rule out the existence of an imprimitive representation, which is enough for
our purposes and thus needs to be examined. For instance, the cases of one
square c = 2a or of one multiplication c = a + b translate by Lemma 4 into
z2 + 1 = 2x2 and z2 + 1 = x2 + y2, respectively, where z = σ(c), x = σ(a)
and y = σ(b). Now k = 2x2 is the “maximally imprimitive” representation
of k = x2 + y2.

Lemma 8. A positive integer k is primitively represented by the quadratic
form X2 + Y 2 if and only if all its odd prime divisors are 1 (mod 4) and it
is not divisible by 4. Its number of ordered positive primitive representations
is then given by 2ω

′(k)−1.

The first part of the result is proved by Euler [19, 20] using elementary
arguments. Concerning the number of representations, Euler [19] does not
provide a closed formula, but a number of arguments: the case that k is an
odd prime is covered in §40; factors of 2 are handled in §4; the general case of
odd square-free numbers follows by induction from §5, where “productum ex
duobus huiusmodi numeris duplici modo in duo quadrata resolvi posse” refers
to the factor of 2 for each additional prime number, and examples for prod-
ucts of two or three odd primes are given; odd prime powers are not handled
explicitly, but it should be possible to derive the number of not necessarily
primitive representations by induction from the previous argument and then
derive the number of primitive representations from an inclusion–exclusion
principle. Again, modern number theory provides an easy proof.
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Proof. The arguments are the same as in the proof of Lemma 6, but using the
maximal order OK = Z[i] of K = Q(i). There are now four units {±1,±i}
instead of just two, but the unit i only swaps |x| and |y|, which is taken into
account by considering only ordered representations.

Theorem 9. A generalized pentagonal number c ≥ 2 is the sum of two
smaller ones, that is, there are generalized pentagonal numbers a, b < c such
that c = a+ b, if and only if 12c+ 1 is not a prime.

Proof. Let z = σ(c), x = σ(a) and y = σ(b). By Lemma 4, c = a + b is
equivalent with k = x2 + y2 for k = z2 + 1 = 2(12c + 1), which is even, but
not divisible by 4. The existence of the primitive representation (1, z) shows
by Lemma 8 that all primes dividing k/2 are 1 (mod 4), and the lemma also
implies that there is another primitive representation unless k = 2pα with
p prime and α ≥ 1. If α ≥ 2, we may take a primitive representation of k/p2

and multiply it by p. For α = 1, there is no other representation.

The first generalized pentagonal number that is not a sum of two previous
ones is 5 = 2 · 2 + 1. For larger numbers, it will be less and less likely that

12c+ 1 is prime. Heuristically, it is expected to happen for only O
( √

T
log T

)
of

the Θ(
√
T ) generalized pentagonal numbers up to T .

The first generalized pentagonal number requiring an imprimitive repre-
sentation is c = 70 with z = 41. From 412 + 1 = 2 · 292 we deduce c = 2a
with the generalized pentagonal number a = 35.

Theorem 9 proves the second point of Theorem 2 for η, since the 12c +
1 for generalized pentagonal numbers c are exactly the values of the two
polynomials given there, separately for ordinary pentagonal numbers and
the other ones, and omitting the single value c = 0.

3.3 One squaring

As seen in the previous section, it is possible that a generalized pentagonal
number is twice a previous one. But the following discussion shows that this
happens for a negligible (exponentially small) proportion of numbers.

By Lemma 4, c = 2a translates into z2 + 1 = 2x2 for z = σ(c) and
x = σ(a); in other words, z + x

√
2 is a unit of norm −1 in OK = Z[

√
2]. An

initial solution is given by the fundamental unit ε = 1+
√

2, of which exactly
the odd powers

ε2k+1 = (1 +
√

2)(3 + 2
√

2)k = zk + xk
√

2
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have norm −1. They satisfy the linear recurrence

z0 = x0 = 1, zk = 3zk−1 + 4xk−1, xk = 2zk−1 + 3xk−1,

which, considered modulo 2 and 3, shows that all the zk and xk are coprime
to 6. However, growing exponentially, they are very rare.

3.4 One cube

In the cases where a generalized pentagonal number is not the sum of two
previous ones, it may still be three times a previous one, which leads to a
slightly faster computation of the term than by a square and a multiplication
according to Table 2. But again, this case is exceedingly rare, since c = 3a
corresponds by Lemma 4 to z2 + 2 = 3x2 with z = σ(c) and x = σ(a). Using
the initial solution z0 = x0 = 1 and the fundamental unit 2 +

√
3 of Z[

√
3],

all solutions are given by

zk = 2zk−1 + 3xk−1, xk = zk−1 + 2xk−1.

All xk and zk are odd, and zk ≡ (−1)k (mod 3). However, 3 | xk for k = 1,
or k ≥ 4 and 4 | k, in which cases the associated a is not a generalized
pentagonal number.

4 Addition sequences for ϑ-functions

We now consider the Jacobi theta functions, showing that the associated
exponent sequences can be treated in analogy with the pentagonal numbers
for the eta function.

4.1 Trigonal numbers and ϑ2

According to (2), the series for ϑ2 can be computed by an addition sequence
for the trigonal numbers n(n + 1) for n ∈ Z≥0. (The usual terminology
calls the numbers n(n + 1)/2 triangular numbers and excludes n = 0; the
addition sequences for triangular numbers are in bijection with those for
trigonal numbers by doubling each term of a sum and adding the initial step
2 = 1 + 1.)

Trigonal numbers permit a characterization similar to that of general-
ized pentagonal numbers in Lemma 4: The strictly increasing map σ : c 7→
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√
4c+ 1 is a bijection between trigonal numbers and odd positive integers.

So considering trigonal numbers c, a and b with z = σ(c), x = σ(a) and
y = σ(b), we can write c = a+ b if and only if z2 + 1 = x2 +y2 and c = 2a+ b
if and only if z2 + 2 = 2x2 + y2. As for η, it is clear that there is an addition
sequence for the trigonal numbers with two additions per number using

a0 = 0 an = an−1 + 2 = 2n

b0 = 0 bn = bn−1 + an = n(n+ 1)

The following result, which is analogous to Theorems 9 and 5, holds for
trigonal numbers.

Theorem 10. A trigonal number c ≥ 6 is the sum of two smaller ones if
and only if 2c+ 1 is not a prime. It is the sum of a smaller one and twice a
smaller one if and only if 4c+ 3 is not a prime.

Proof. This follows from Lemma 8 and 6, using the same techniques as in
the proofs of Theorems 9 and 5. A subtlety arises for c = 2a + b when
k = z2 + 2 = pα = 2x2 +y2 is the power of a prime. As there is no restriction
on the divisibility of z by 3, we may now have p 6= 3. If α ≥ 3, the primitive
representation for k/p2 can be multiplied by p as in the proof of Theorem 9.
If α = 2, the primitive representation 1 = 2 · 02 + 12 is degenerate and
meaningless in our context; then there is no second positive representation
apart from k = 2 · 12 + z2. However, z2 + 2 = p2 has no solution in integers,
so this case does in fact not occur.

As z is odd, there is no such problem for c = a+ b, k = z2 + 1 = x2 + y2,
since then k equals twice an odd number, and even when k = 2p2 we can lift
the primitive and positive representation 2 = 12 + 12.

The addition sequence derived from Theorem 10 by letting c = a + b
whenever possible and c = 2a + b otherwise still has holes; the first trigonal
number c such that both 2c + 1 and 4c + 3 are prime is 20 = 4 · 5. To
fill these holes, one cannot use the generic addition sequence above, as the
sequence of the an = 2n is not contained in our more optimized one. However,
20 = 12 + 6 + 2, and the following general result holds.

Theorem 11. Every trigonal number c ≥ 6 is the sum of at most three
smaller ones.
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Proof. Legendre has shown that every number is the sum of three triangular
numbers including 0 [30, pp. 205–399]. But this result is useless in our
context, since we do not wish to write a trigonal number as a sum of itself
and 0. We need to solve z2 +2 = x2 +y2 + t2 with odd x, y and t. The parity
condition holds automatically from the fact that z is odd, as can be seen by
examining the equation modulo 4. If only one of x, y and t equals 1, we have
found a meaningful representation of z2+1 = x2+y2 and written the trigonal
number as a sum of two smaller ones. So we only need to show that there is
another representation of z2 + 2 as a sum of three squares apart from the 24
representations obtained from (x, y, t) = (z, 1, 1) by permutations or adding
signs. The number of primitive representations has been counted by Gauss
[23, §291] [24, Theorem 4.2], for k ≥ 5 and k ≡ 3 (mod 8), as 24h(−k), where
h(−k) is the class number of the order of discriminant −k in Q(

√
−k). So we

have an essentially different primitive representation whenever h(−k) ≥ 2,
which is the case for c = (k2 − 1)/4 ≥ 12. For c = 6 we have 6 = 3 · 2,
corresponding to an imprimitive representation.

Together, Theorems 10 and 11 prove the second point of Theorem 2 for ϑ2,
since the 2c+1 for trigonal numbers are exactly the values of the polynomial
given there.

4.2 Squares and ϑ0 and ϑ1

At first sight, for the squares occurring as exponents of the usual series for ϑ0

and ϑ1, the relative scarcity of Pythagorean triples leaves little hope of finding
good addition sequences. Indeed, precise criteria are given by Lemma 8 and 6.
But whereas in §§3 and 4.1 the existence of one primitive representation
was obvious from the shape of the numbers and we merely needed to check
whether a second, non-trivial representation existed, in the case of squares
there will be no primitive representation at all when the number is divisible
by a prime not satisfying the necessary congruences modulo 4 or 8. However,
Dobkin and Liption [9] show the existence of an addition sequence for the first
N squares containing N + O(N/

√
logN) terms by considering imprimitive

representations; they also mention an unpublished result, communicated by
Donald Newman to Nicholas Pippenger, that improves the bound to N +
O(N/ec logN/ log logN) for some unknown constant c > 0.

Using a simple trick and the techniques of the previous sections, we may
easily obtain an asymptotically worse, but practically very satisfying result,
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namely the second point of Theorem 2 for ϑ0 and ϑ1. For that, we split
off one common factor of q and consider exponents of the form c = n2 − 1
for n ∈ Z≥1, which we will call almost-square in the following. The map
σ : c 7→

√
c+ 1 is a bijection between almost-squares and positive integers.

Theorem 12. An almost-square c ≥ 3 is the sum of two smaller ones if and
only if c+ 2 is neither a prime nor twice a prime. It is the sum of a smaller
one and twice a smaller one if and only if c+ 3 is neither a prime nor twice
a prime nor twice the square of a prime.

Proof. The same techniques as for Theorem 10 apply. As now we have no
restriction any more on the parity of z in k = z2 + 1 or k = z2 + 2, we
need to consider all the special cases k = p, k = 2p, k = p2 (which cannot
occur) and k = 2p2 (which poses problems only for k = 2x2 + y2 and not for
k = x2 + y2).

Theorem 13. Every almost-square c ≥ 24 is the sum of at most three smaller
almost-squares.

Proof. The case c even or equivalently z = σ(c) =
√
c+ 1 odd is handled as

in Theorem 11, and we find a non-trivial primitive representation for z ≥ 7
with c ≥ 48, and the imprimitive representation z2 + 2 = 27 = 3 · 32 for
z = 5 and c = 24 = 3 · 8. In the case c odd, z even, the number of primitive
representations is given by Gauss as 12h(−4k) for k = z2 + 2 = c + 3, and
we have h(−4k) ≥ 3 for z ≥ 6.

Together, Theorems 12 and 13 prove the second point of Theorem 2 for ϑ0

and ϑ1. If c is an almost-square, then c+2 can only be prime if c = (2n)2−1
is odd, leading to the first polynomial of Theorem 2. Conversely, c + 2 can
only be twice a prime if c = (2n + 1)2 − 1 is even, leading to the second
polynomial.

4.3 Computing ϑ functions simultaneously

The two previous sections have shown that good addition sequences for single
ϑ functions exist, which asymptotically approach an average of one multipli-
cation per term of the series (under the heuristic assumption that the values
of quadratic polynomials occurring in the theorems are prime, or twice a
prime, or twice the square of a prime with the same logarithmic probabili-
ties as arbitrary numbers). In practice, one will often want to compute all
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ϑ functions simultaneously. By considering all exponents at the same time,
one may potentially save a few additional multiplications.

Instead of considering almost-square numbers for ϑ0 and ϑ1, we will revert
to squares and consider the sequence A002620 of quarter-squares 0, 1, 2, 4,
6, 9, 12, 16, . . . defined by t(n) = b(n+ 1)2/4c for n ∈ Z≥0, which interleaves
the squares t(2m− 1) = m2 and the trigonal numbers t(2m) = m(m+ 1) in
increasing order.

Theorem 14. Every quarter-square c > 1 is the sum of a smaller one and
twice a smaller one.

Proof. We use the following formula as a starting point:

t(2an+ α) = a2n2 + a(α + 1)n+

⌊
(α + 1)2

4

⌋
.

Considering the primitive representation 32 = 2 · 22 + 12, it becomes natural
to examine

t(6n+ α)− 2t(4n+ β)− t(2n+ γ) =

(3α− 4β − γ − 2)n+

(⌊
(α + 1)2

4

⌋
− 2

⌊
(β + 1)2

4

⌋
−
⌊

(γ + 1)2

4

⌋)
. (10)

Then for each α ∈ {0, . . . , 5} there are β and γ for which this expression van-
ishes, and we obtain the following explicit recursive formulæ for the addition
sequence:

t(6n) = 2t(4n) + t(2n− 2)

t(6n+ 1) = 2t(4n) + t(2n+ 1)

t(6n+ 2) = 2t(4n+ 1) + t(2n)

t(6n+ 3) = 2t(4n+ 2) + t(2n− 1)

t(6n+ 4) = 2t(4n+ 2) + t(2n+ 2)

t(6n+ 5) = 2t(4n+ 3) + t(2n+ 1).

This shows that when computing all ϑ functions simultaneously, each
additional term of the series may be obtained with at most one squaring and
one multiplication, which has the merit of giving a uniform result without any
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exceptions, but which is unfortunately worse than computing the functions
separately as in §§4.1 and 4.2 with only one multiplication per term most of
the time.

To solve this problem, we consider yet another sequence of exponents

given by f(n) = 2
⌊
n2

8

⌋
for n ≥ 1, which interleaves in increasing order

the trigonal numbers m(m + 1) for n = 2m + 1; the even squares (2m)2 for
n = 4m; and the even almost-squares, (2m+1)2−1, for n = 4m+2. Ignoring
initial zeros, this sequence is equivalent to A182568. By separating the terms
with odd and even exponents into two series and by splitting off one power
of q in the series with odd exponents, the squares and almost-squares can be
used to compute ϑ0 and ϑ1.

Theorem 15. Every element c ≥ 4 in the sequence (f(n))n≥1 =
(

2
⌊
n2

8

⌋)
n≥1

is the sum of two smaller ones.

Proof. We may consider the sequence g(n) = f(n)/2 in place of f(n) itself.
The starting point of the proof, which is similar to that of Theorem 14, is
the following formula:

g(4an+ α) = 2a2n2 + aαn+

⌊
α2

8

⌋
.

We now replace a by the elements of the Pythagorean triple 52 = 42 +32 and
compute

g(20n+α)−g(16n+β)−g(12n+γ) = (5α−4β−3γ)n+

(⌊
α2

8

⌋
−
⌊
β2

8

⌋
−
⌊
γ2

8

⌋)
.

It is easy to check that for every α ∈ {−9, . . . , 10}, the values β and γ given
in the following table make this expression vanish.
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α β γ
0 0 0
±1 ±2 ∓1
±2 ±1 ±2
±3 ±3 ±1
±4 ±2 ±4
±5 ±4 ±3
±6 ±6 ±2
±7 ±5 ±5
±8 ±7 ±4
±9 ±6 ±7
10 8 6

For n = 0 and α ∈ {4, 6}, the table entries lead to the trivial relation
g(α) = g(α) + g(2), but one readily verifies that g(4) = 2g(3) and g(6) =
2g(4).

So when one or both of ϑ0 and ϑ1 are computed together with ϑ2, the
series may be evaluated with one multiplication per required term, which
proves the third point of Theorem 2.

5 Baby-step giant-step algorithm

For evaluating the series expansions of the eta function and theta constants,
we may ignore the cost of multiplying by the coefficients cn since they are all
1 or −1.

To evaluate a power series truncated to include exponents en ≤ T , the
baby-step giant-step algorithm of (5) with splitting parameter m requires

(m− 1) + (d(T + 1)/me − 1) ≈ m+ T/m (11)

multiplications. The first term accounts for computing the powers q2, . . . qm

(baby-steps) and the second term accounts for the multiplications by qm

(giant-steps). Settingm ≈
√
T in (11) gives the minimized cost of 2

√
T+O(1)

multiplications.
The exponent sequences for the Jacobi theta functions and the Dedekind

eta function are just sparse enough so that the baby-step giant-step algorithm
performs worse than computing the powers of q by an optimized addition
sequence, provided the latter is of length N + o(N). Indeed, there are N ∈
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√
T + O(1) squares up to T , and N ∈

√
8T/3 + O(1) ≈ 1.633

√
T + O(1)

generalized pentagonal numbers.
When computing all three theta functions simultaneously, the baby-steps

can be recycled, but the giant-steps have to be done separately for each
function. The approximate cost of

m+ 3T/m (12)

is minimized by taking m ∈
√

3T + O(1), yielding 3.464
√
T + O(1) multi-

plications. This is again worse than computing the powers by an addition
sequence, since there are 2

√
T +O(1) squares and trigonal numbers up to T .

One gets slightly smaller constants for the baby-step giant-step algorithm
by recognizing that half of the powers q, q2, . . . qm can be computed using
squarings, but the conclusion remains the same.

We can, however, do better in the baby-step giant-step algorithm by
choosing m such that only a sparse subset of the exponents q2, . . . , qm need
to be computed. For example, when considering squares en = n2, we seek
m such that there are few squares modulo m. If we denote this number by
s(m), the cost to minimize is

s(m)1+ε + T/m. (13)

where the left term denotes the length of an addition sequence for all the
distinct values of n2 mod m as obtained, for instance, by Algorithm 1. In the
following, we show that m can be chosen so that (13) becomes o(

√
T ), giving

an asymptotic speed-up. In fact, Theorem 17 establishes this result not only
for squares, but for all quadratic exponent sequences. We shall also explicitly
derive suitable choices of m for squares, trigonal numbers, and generalized
pentagonal numbers.

5.1 Modular values of quadratic polynomials

5.1.1 Squares

We are interested in the number s(m) of squares modulo a positive inte-
ger m ≥ 2. By the Chinese remainder theorem, s(m) is a multiplicative
number theoretic function, so it is enough to consider the case that m = pe

is a power of some prime p. It is well-known that (Z/peZ)× is cyclic of order
pe−1(p − 1) if p is odd, as shown by Gauss [23, §§52–56] for e = 1 and also
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by Gauss [23, §§82–89] for e ≥ 2; that it is cyclic of order 2e−1 if p = 2 and
e ∈ {1, 2}, and isomorphic to Z/2Z×Z/2e−2 if p = 2 and e ≥ 3, again shown
by Gauss [23, §§90–91]. This determines the size of the kernel of the group
endomorphism of (Z/peZ)× given by x 7→ x2, and shows that the size of the
image, that is, the number of squares modulo pe that are not divisible by p,
is given by 1

2
pe−1(p − 1) if p is odd; by 1 if p = 2 and e ≤ 3; and by 2e−3 if

p = 2 and e ≥ 3.
It remains to count the number of squares modulo pe that are divisible

by p. These are given by 0 and by the p2kz, where 2 ≤ 2k < e and z is a
square modulo pe−2k that is coprime to p. So the number of such squares is
given by

1 +

b e−1
2 c∑

k=1

∣∣∣((Z/p2kZ)×
)2∣∣∣ .

Distinguishing the cases that p is odd or even, that e is odd or even, and
using the result of the previous paragraph, a little computation gives the
total number of squares modulo pe as

s(pe) =


1
2
pe − 1

2
pe−1 + pe−1−p(e+1) mod 2

2(p+1)
+ 1, for p odd;

2, for p = 2 and e ≤ 2;

2e−3 + 2e−3−2(e+1) mod 2

3
+ 2, for p = 2 and e ≥ 3;

(14)

where the exponent (e+ 1) mod 2 is understood to be 0 or 1.
We are interested in low numbers of squares, that is, small values of

the ratio s(m)/m. Let pk denote the k-th prime and let ϑ(x) denote the
logarithm of the product of all primes not exceeding x. Then (14) shows
that the sequence s(m)/m tends to 0 roughly as 1/2k for m = eϑ(pk), so
that the inferior limit of the full sequence of s(m)/m is 0. We consider
the subsequence of ratios providing successive minima, in the sense that
s(m)/m < s(m′)/m′ for all m′ < m; the m realizing these successive minima
are given by the sequence A085635, the corresponding s(m) form sequence
A084848. Using (14) and the multiplicativity of s(m), one readily computes
the values of these sequences for m ≤ 108, see Table 4; we have augmented
the table by the values for the m = eϑ(pk).
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k m = A085635(k) s(m) = A084848(k) s(m)/m
1 2 = 2 2 1.0
2 3 = 3 2 0.67
3 4 = 22 2 0.50

6 = 2 · 3 4 0.67
4 8 = 23 3 0.38
5 12 = 22 · 3 4 0.33
6 16 = 24 4 0.25

30 = 2 · 3 · 5 12 0.40
7 32 = 25 7 0.22
8 48 = 24 · 3 8 0.17
9 80 = 24 · 5 12 0.15

10 96 = 25 · 3 14 0.15
11 112 = 24 · 7 16 0.14
12 144 = 24 · 32 16 0.11

210 = 2 · 3 · 5 · 7 48 0.23
13 240 = 24 · 3 · 5 24 0.10
14 288 = 25 · 32 28 0.097
15 336 = 24 · 3 · 7 32 0.095
16 480 = 25 · 3 · 5 42 0.088
17 560 = 24 · 5 · 7 48 0.086
18 576 = 26 · 32 48 0.083
19 720 = 24 · 32 · 5 48 0.067
20 1008 = 24 · 32 · 7 64 0.063
21 1440 = 25 · 32 · 5 84 0.058
22 1680 = 24 · 3 · 5 · 7 96 0.057
23 2016 = 25 · 32 · 7 112 0.056

2310 = 2 · 3 · 5 · 7 · 11 288 0.12
24 2640 = 24 · 3 · 5 · 11 144 0.055
25 2880 = 26 · 32 · 5 144 0.050
26 3600 = 24 · 32 · 52 176 0.049
27 4032 = 26 · 32 · 7 192 0.048

...
94 41801760 = 25 · 32 · 5 · 7 · 11 · 13 · 29 211680 0.0051
95 42325920 = 25 · 32 · 5 · 7 · 13 · 17 · 19 211680 0.0050
96 48454560 = 25 · 32 · 5 · 7 · 11 · 19 · 23 241920 0.0050
97 49008960 = 26 · 32 · 5 · 7 · 11 · 13 · 17 217728 0.0044
98 54774720 = 26 · 32 · 5 · 7 · 11 · 13 · 19 241920 0.0044
99 61261200 = 24 · 32 · 52 · 7 · 11 · 13 · 17 266112 0.0043

100 68468400 = 24 · 32 · 52 · 7 · 11 · 13 · 19 295680 0.0043
101 82882800 = 24 · 32 · 52 · 7 · 11 · 13 · 23 354816 0.0043
102 89535600 = 24 · 32 · 52 · 7 · 11 · 17 · 19 380160 0.0042

Table 4: Successive minima of s(m)/m for squares.
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5.1.2 Trigonal numbers

We now turn to general quadratic polynomials aX2 + bX + c ∈ Z[X]. Com-

pleting the square as a
(
X + b

2a

)2
+
(
c− b2

4a

)
shows that they take as many

values modulo m as there are squares, unless gcd(m, 2a) 6= 1; and hereby,
rational coefficients a, b, c are also permitted as long as the denominators
are coprime to m.

For the polynomial X2 + X defining trigonal numbers, this means that
their number of values modulo odd prime powers is still given by (14). Mod-
ulo 2e, one quickly verifies that x and a−x yield the same value of X2 +X if
and only if (a+1)(2x−a) ≡ 0 (mod 2e), which yields the exact two solutions
a = −1 (for a odd) and a = 2x (for a even). So X2 + X takes each value
twice or zero times; as all its values are even, it takes the even values exactly
twice, and there are 2e−1 of them.

Table 5 summarizes the successive minima of the ratio between the num-
ber t(m) of trigonal numbers modulo m and m for m ≤ 104 and some values
just below 108.

5.1.3 Generalized pentagonal numbers

The number of values p(m) of the polynomial (3X−1)X
2

modulo m is given
by (14) outside of 2 and 3.

Modulo 3e, it is a bijection. If it takes the same value at x and x + a,
then a(6x+ 3a− 1) ≡ 0 (mod 3e), so a = 0.

Modulo powers of 2, it is to be understood that the values of the polyno-
mial in Q[X] in integer arguments, which are integers, are reduced modulo 2e.
The number of such values equals the number of values of (3X−1)X modulo
2e+1. As with the trigonal numbers examined above, this polynomial takes
every even value twice: It takes the same value in x and in a− x if and only
if (3a− 1)(a− 2x) ≡ 0 (mod 2e+1), which has the even solution a = 2x and
the odd solution a = 1/3 mod 2e+1. So the number of values is 2e, and the
polynomial induces a bijection of Z/2eZ.

Successive minima of p(m)/m for m up to 104 and just below 108 are given
in Table 6. In line with the previous reasoning, none of the m achieving a
successive minimum is divisible by 2 or 3.

In the remainder of this section, we let f(m) denote the number of dis-
tinct values modulo m taken by a quadratic polynomial F (including, but not
limited to, the number of squares, trigonal and generalized pentagonal num-
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k m t(m) t(m)/m
1 2 = 2 1 0.50
2 6 = 2 · 3 2 0.33
3 10 = 2 · 5 3 0.30
4 14 = 2 · 7 4 0.29
5 18 = 2 · 32 4 0.22
6 30 = 2 · 3 · 5 6 0.20
7 42 = 2 · 3 · 7 8 0.19
8 66 = 2 · 3 · 11 12 0.18
9 70 = 2 · 5 · 7 12 0.17

10 90 = 2 · 32 · 5 12 0.13
11 126 = 2 · 32 · 7 16 0.13
12 198 = 2 · 32 · 11 24 0.12
13 210 = 2 · 3 · 5 · 7 24 0.11
14 330 = 2 · 3 · 5 · 11 36 0.11
15 390 = 2 · 3 · 5 · 13 42 0.11
16 450 = 2 · 32 · 52 44 0.098
17 630 = 2 · 32 · 5 · 7 48 0.076
18 990 = 2 · 32 · 5 · 11 72 0.073
19 1170 = 2 · 32 · 5 · 13 84 0.072
20 1386 = 2 · 32 · 7 · 11 96 0.069
21 1638 = 2 · 32 · 7 · 13 112 0.068
22 2142 = 2 · 32 · 7 · 17 144 0.067
23 2310 = 2 · 3 · 5 · 7 · 11 144 0.062
24 2730 = 2 · 3 · 5 · 7 · 13 168 0.062
25 3150 = 2 · 32 · 52 · 7 176 0.056
26 4950 = 2 · 32 · 52 · 11 264 0.053
27 5850 = 2 · 32 · 52 · 13 308 0.053
28 6930 = 2 · 32 · 5 · 7 · 11 288 0.042
29 8190 = 2 · 32 · 5 · 7 · 13 336 0.041

...
107 47477430 = 2 · 32 · 5 · 7 · 11 · 13 · 17 · 31 290304 0.0061
108 49639590 = 2 · 32 · 5 · 7 · 11 · 13 · 19 · 29 302400 0.0061
109 51482970 = 2 · 32 · 5 · 7 · 11 · 17 · 19 · 23 311040 0.0060
110 60090030 = 2 · 32 · 5 · 7 · 11 · 13 · 23 · 29 362880 0.0060
111 60843510 = 2 · 32 · 5 · 7 · 13 · 17 · 19 · 23 362880 0.0060
112 76715730 = 2 · 32 · 5 · 7 · 13 · 17 · 19 · 29 453600 0.0059
113 82006470 = 2 · 32 · 5 · 7 · 13 · 17 · 19 · 31 483840 0.0059
114 87297210 = 2 · 33 · 5 · 7 · 11 · 13 · 17 · 19 498960 0.0057
115 95611230 = 2 · 32 · 5 · 11 · 13 · 17 · 19 · 23 544320 0.0057

Table 5: Successive minima of t(m)/m for trigonal numbers.
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k m p(m) p(m)/m
1 2 = 2 2 1.0
2 5 = 5 3 0.60
3 7 = 7 4 0.57
4 11 = 11 6 0.55
5 13 = 13 7 0.54
6 17 = 17 9 0.53
7 19 = 19 10 0.53
8 23 = 23 12 0.52
9 25 = 52 11 0.44

10 35 = 5 · 7 12 0.34
11 55 = 5 · 11 18 0.33
12 65 = 5 · 13 21 0.32
13 77 = 7 · 11 24 0.31
14 91 = 7 · 13 28 0.31
15 119 = 7 · 17 36 0.30
16 133 = 7 · 19 40 0.30
17 143 = 11 · 13 42 0.29
18 175 = 52 · 7 44 0.25
19 275 = 52 · 11 66 0.24
20 325 = 52 · 13 77 0.24
21 385 = 5 · 7 · 11 72 0.19
22 455 = 5 · 7 · 13 84 0.18
23 595 = 5 · 7 · 17 108 0.18
24 665 = 5 · 7 · 19 120 0.18
25 715 = 5 · 11 · 13 126 0.18
26 935 = 5 · 11 · 17 162 0.17
27 1001 = 7 · 11 · 13 168 0.17
28 1309 = 7 · 11 · 17 216 0.17
29 1463 = 7 · 11 · 19 240 0.16
30 1547 = 7 · 13 · 17 252 0.16
31 1729 = 7 · 13 · 19 280 0.16
32 1925 = 52 · 7 · 11 264 0.14
33 2275 = 52 · 7 · 13 308 0.14
34 2975 = 52 · 7 · 17 396 0.13
35 3325 = 52 · 7 · 19 440 0.13

...
128 76491415 = 5 · 7 · 11 · 13 · 17 · 29 · 31 1088640 0.014
129 80925845 = 5 · 7 · 11 · 13 · 19 · 23 · 37 1149120 0.014
130 82944785 = 5 · 7 · 11 · 17 · 19 · 23 · 29 1166400 0.014
131 88665115 = 5 · 7 · 11 · 17 · 19 · 23 · 31 1244160 0.014
132 98025655 = 5 · 7 · 13 · 17 · 19 · 23 · 29 1360800 0.014

Table 6: Successive minima of p(m)/m for pentagonal numbers.
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bers modulo m). Our goal is to prove that a judicious choice of m leads to
f(m)/m sufficiently small so that the baby-step giant-step algorithm applied
to a q-series with exponents given by F (and trivial coefficients) takes sub-
linear time in the number of terms of the series. We use standard estimates
of analytic number theory, as given, for instance, in [36], and elementary
analytic arguments like the following observation.

Lemma 16. Consider functions k, m : N→ N. If

| logm(n)− k(n) log k(n)| ∈ o(k(n) log k(n)) and k(n)→∞ for n→∞,

then
k ∈ Θ(logm/ log logm).

Proof. More precisely, we show that k(n) log logm(n)/ logm(n)→ 1 for n→
∞, so the constant implied in Θ-notation is 1. The main hypothesis can be
reformulated as

logm

k log k
→ 1. (15)

Since x
y
→ 1 implies log x

log y
→ 1 for y positive and bounded away from 0, we

also have
log logm

log k
(

1 + log log k
log k

) → 1.

With k →∞, we obtain log logm
log k

→ 1, and the desired statement follows from

a division by (15).

Theorem 17. For a fixed quadratic polynomial F (X) ∈ Q[X] that takes
integral values at integral arguments, and for N →∞, a judicious choice of m
(detailed in the proof) leads to an effective constant c > 0 such that the baby-
step giant-step algorithm computes the series

∑N
n=1 q

F (n) with N1−c/ log logN

multiplications, which grows more slowly than N/ logrN for any r > 0.

Proof. The number of multiplications of the baby-step giant-step algorithm
is bounded above by

F (N)

m
+ 2f(m) log2m+O(1) ∈ O

(
N2

m
+ f(m) logm

)
, (16)

where the first term accounts for the giant-steps and f(m) is the number of
values of F modulo m. Here we pessimistically assume that each of the values

32



is obtained by a separate addition chain using at most log2m doublings and
log2m additions; in practice, we expect the number of additional terms in
the addition sequence to be negligible and the number of multiplications to
be rather of the order of f(m).

Following the discussion for trigonal numbers above, we have f(m) =
s(m) if m is odd and coprime to the common denominator of the coefficients
of F and to its leading coefficient. To minimize s(m) and thus f(m), fol-
lowing (14) it becomes desirable to build m with as many prime factors as
possible. So we choose m as the product of the first k primes p1, . . . , pk,
but avoiding 2 and the finitely many primes dividing the leading coefficient
and the denominator of F . For the time being, k is an unknown function of
the desired number of terms N ; it will be fixed later to minimize (16). The
quantity m depends on k (and thus ultimately also on N) and on F . We will
have k(N)→∞ and m→∞ as N →∞.

In a first step, we estimate k in terms of m, uniformly for all F . Let
ϑ(x) denote the logarithm of the product of all primes not exceeding x. For
N → ∞, the finite number of primes excluded from m have a negligible
impact, so that

| logm− ϑ(pk)| ∈ O(1). (17)

We use the following standard results [36, Theorems 4 and 3] from analytic
number theory:

|ϑ(x)− x| ∈ O(x/ log x) (18)

and
|pk − k log k| ∈ O(k log log k). (19)

From (19) we obtain pk
k log k

→ 1 and, as in the proof of Lemma 16, log pk
log k
→

1, so that pk
log pk

∈ Θ(k) after division. Together with (18), in which x has
been replaced by pk, this implies

|ϑ(pk)− pk| ∈ O(k). (20)

Summing up (17), (20) and (19), and using the triangle inequality implies

| logm− k log k| ∈ O(k log log k).

Lemma 16 then implies that k ∈ Θ(logm/ log logm), so that pk ∈ Θ(logm)
by (19). (In other words, the largest prime contributes roughly log logm bits,
so that logm/ log logm primes are needed.)
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Now by (14) we have

f(m) = s(m) =
∏
p|m

p+ 1

2
∈ O

(
m

2k

k∏
i=1

(
1 +

1

pi

))
⊆ O

(
m log logm

2k

)
,

where the last inclusion stems from

0 ≤ log

(
k∏
i=1

(
1 +

1

pi

))
≤

k∑
i=1

1

pi
∈ log log pk + Θ(1)

by [36, Theorem 5], and from the above relation between pk and m.
So the second term of (16) lies in O

(
m logm log logm/2k

)
. We now use

k ∈ Θ(logm/ log logm), and let c1 > 0 be such that 2k ≥ m2c1/ log logm. Since
logm log logm ∈ O

(
mc1/ log logm

)
, the second term of (16) is an element of

O
(
m1−c1/ log logm

)
.

We may still choose the magnitude of m with respect to N . We let
m ∈ Θ

(
N1+c2/ log logN

)
for a sufficiently small 0 < c2 ≈ c1/2, so that

the first term of the complexity (16) lies in O
(
N1−c2/ log logN

)
. Moreover,

| log logm − log logN | ∈ o(1), so the second term is essentially bounded by
N1+(c2−c1)/ log logN ≈ N1−c2/ log logN ; in any case, there is a 0 < c3 < c2 such
that the second term lies in O

(
N1−c3/ log logN

)
. By replacing c3 with a suit-

able 0 < c < c3, the constant of the big-Oh can be made 1 (or any other
positive value).

5.2 Implementation

To realize the baby-step giant-step algorithm for computing a sum such
as
∑

n2≤T q
n2

, we may use a precomputed table of word-sized m for which
s(m)/m attains its successive minima, and a table of corresponding values
s(m).

Given T , we search the table to choose the m minimizing T/m + s(m).
Once m is chosen, we create a table of the baby-step exponents (the squares
modulo m) and insert by Algorithm 1 extra exponents into this table as
necessary until its entries form an addition sequence. Few such insertions
are needed in practice, making s(m) an accurate estimate for the length of
the baby-step addition sequence, unlike the pessimistic bound 2s(m) log2(m)
in the proof of Theorem 17.
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The procedure is, of course, analogous with trigonal numbers or general-
ized pentagonal numbers as exponents. Figure 1 illustrates the theoretical
speed-up for generalized pentagonal numbers based on counting multiplica-
tions.

101 102 103 104
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1.0

1.5

2.0
N
or
m
al
is
ed

co
st

AS (classical)

AS (Alg. 1)

AS (Alg. 2)

BSGS

Figure 1: Normalized theoretical cost in the FFT model ((3m+2.333s)/(3N)
for m complex multiplications and s complex squarings) to add the first N
nonzero terms in the q-series of the Dedekind eta function, using three differ-
ent addition sequences (AS) or the baby-step giant-step algorithm (BSGS).
The classical addition sequences approaches 2 multiplications per term. The
short addition sequences generated with Algorithm 1 and Algorithm 2 both
approach 1 multiplication per term. BSGS is asymptotically better than any
addition sequence.

6 Benchmarks

We have implemented the Jacobi theta functions and the Dedekind eta func-
tion in the Arb library [28], and complemented the existing implementation
of the Dedekind eta function in release 0.3 of CM [14] by the baby-step
giant-step algorithm. The complete function evaluation involves three steps:

1. Reduce τ ∈ C,=(τ) > 0 to the fundamental domain of the action of
Sl2(Z) on the upper complex half-plane.

2. Compute q = exp(2πiτ) (for η) or q = exp(πiτ) (for ϑi).
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3. Sum the truncated q-series.

The first step has negligible cost. For the third step, we have implemented
the optimized addition sequences (AS) as well as the baby-step giant-step
(BSGS) algorithm. AS and BSGS are used automatically at low and high
precision, respectively. Here, we compare both methods. The measurements
were done on an Intel Core i5-4300U CPU running a 64-bit Linux kernel.
MPIR 2.7.2 [25] was used for multiprecision arithmetic. Tables 7, 8 and 9
show timings with Arb, and Table 10 compares old implementations with
the new implementations in Arb and CM.

We take τ = (−B+
√
D)/(2A) with A = 1305, B = 1523, D = −6961631,

which is a typical complex multiplication point occurring in class polynomial
construction. The magnitude |q| ≈ 0.00174 is slightly smaller than the worst
case |q| ≈ 0.00433 at the corner of the fundamental domain. For p bits of
floating point precision, the truncation order is T ≈ 0.11p when computing
the eta function and T ≈ 0.22p when computing theta functions.

Our code includes a small practical optimization: For a tolerance of 2−p,
the term qn needs to be computed to a precision of only p−n| log2(|q|)| bits,
and we change the internal precision for each term accordingly. Empirically,
this saves roughly a factor of 1.5 when using addition sequences and a factor
of 1.2 in the BSGS algorithm (which is improved less since the baby-steps
have to be done at essentially full precision). The speed-up of the BSGS
algorithm compared to addition sequences is therefore somewhat smaller than
what one might predict by counting multiplications.

Bits T Exponential Sum (AS) Sum (BSGS) Speed-up Theory
102 7 0.000 001 59 0.000 001 79 0.000 002 86 0.63 0.74
103 100 0.000 018 0 0.000 026 1 0.000 023 6 1.11 1.34
104 1080 0.001 52 0.001 69 0.001 20 1.41 1.63
105 10880 0.066 1 0.128 0.080 9 1.58 2.06
106 108676 1.74 6.12 3.11 1.97 2.32
107 1090987 32.4 259 119 2.18 2.77

Table 7: Timings for computing the Dedekind eta function at different
precisions. From left to right: bit precision, truncation order T (last included
exponent), seconds to compute q = exp(2πiτ), seconds to evaluate the sum
using (AS), seconds to evaluate the sum using (BSGS), measured speed-up
AS / BSGS, and theoretical speed-up based on counting multiplications in
the FFT cost model.
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Timings for the eta function are shown in Table 7. Here, AS is the opti-
mized addition sequence of Algorithm 2. We time the complex exponential
separately and only show the speed-up of (BSGS) over (AS) for the series
summation. At lower precision, the complex exponential takes a compara-
ble amount of time to summing the series, making the real-world speed-up
smaller. The speed-up for the series summation by itself is nonetheless useful
since there are situations where q is available without the need to compute
the full complex exponential, for example, during batch evaluation over an
arithmetic progression of τ values.

Bits T Sum (AS) Sum (BSGS) Speed-up Theoretical
102 20 0.000 003 50 0.000 005 80 0.60 0.67
103 210 0.000 038 6 0.000 049 2 0.78 0.89
104 2162 0.002 29 0.002 16 1.06 1.18
105 21756 0.178 0.134 1.33 1.55
106 218089 8.97 5.71 1.57 1.78
107 2181529 380 199 1.91 2.18

Table 8: Time in seconds to compute the theta functions ϑ0(τ), ϑ1(τ), ϑ2(τ)
simultaneously, given q = eπiτ . Timings to compute the complex exponential
are the same as in Table 7 and thus omitted.

Bits T Sum (AS) Sum (BSGS) Speed-up Theoretical
102 16 0.000 002 44 0.000 003 21 0.76 0.84
103 196 0.000 031 1 0.000 024 5 1.27 1.51
104 2116 0.001 86 0.001 10 1.69 2.23
105 21609 0.147 0.065 3 2.25 2.88
106 218089 6.81 2.67 2.55 2.95
107 2181529 280 90.1 3.11 3.58

Table 9: Time in seconds to compute ϑ0(τ) alone, given q = eπiτ . Timings
to compute the complex exponential are the same as in Table 7 and thus
omitted.

Table 8 shows the corresponding timings to compute three theta functions
simultaneously. Here, AS uses Theorem 15, computing each term with one
multiplication or squaring. The speed-up for BSGS is smaller compared to
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the eta function since three independent giant-step evaluations are done, one
for each theta function. Table 9 shows timings for computing a single theta
function. For AS, we use Algorithm 1 to generate a short addition sequence
for the squares alone. Here the BSGS algorithm gives the largest speed-up.

Finally, Table 10 compares the new implementations with three previous
implementations for the evaluation of η(τ). The eta function in PARI/GP [2]
uses the classical addition sequence without the precision trick. CM [14] in
version 0.2.1 used an optimized addition sequence (Algorithm 2) without the
precision trick. An implementation of the AGM method courtesy of Régis
Dupont (unpublished, cf. [11]) is also tested. All implementations were linked
against the same version 2.7.2 of MPIR for multiprecision arithmetic.

Bits PARI/GP CM-0.2.1 AGM New CM-0.3 New Arb
104 0.008 69 0.004 57 0.007 89 0.002 97 0.002 72
105 0.654 0.284 0.245 0.164 0.147
106 29.9 10.9 6.78 4.77 4.85
107 1 310 440 124 150 151

Table 10: Time in seconds to compute η(τ).

In conclusion, we achieve a small but measurable speed-up. At practical
precisions, the baby-step giant-step algorithm saves somewhat less than a
factor of 2 in running time over an optimized addition sequence, which itself
saves a factor of 2 over the widely used classical addition sequence. Using an
optimized addition sequence instead of the classical addition sequence raises
the crossover point between series evaluation and the AGM method from
about 104 bits to 105 bits, while the baby-step giant-step method raises it
further to about 106 bits, very roughly. The exact crossover point will vary
depending on the system, the libraries used for multiprecision arithmetic, the
size of |q| (a smaller value is more advantageous for series evaluation), and
whether q needs to be computed from τ by a full exponential evaluation.
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deaux, 14:325–343, 2002.

[38] D. M. Smith. Efficient multiple-precision evaluation of elementary func-
tions. Math. Comp., 52:131–134, 1989.

[39] H. Weber. Lehrbuch der Algebra, volume 3: Elliptische Funktionen und
algebraische Zahlen. Vieweg, 2nd edition, 1908.

2010 Mathematics Subject Classification: Primary 11Y55; Secondary 11B83,
11F20.
Keywords: addition sequence, pentagonal number, theta function, Dedekind
eta function, polynomial evaluation, baby-step giant-step algorithm

(Concerned with sequences A001318, A002620, A084848, A085635, and
A182568.)

42

http://oeis.org/A001318
http://oeis.org/A002620
http://oeis.org/A084848
http://oeis.org/A085635
http://oeis.org/A182568

	Motivation and main results
	Power series and addition sequences
	Dense exponent sequences
	Sparse exponent sequences and addition sequences
	Cost of an addition sequence

	Addition sequences for the Dedekind eta function
	One squaring and one multiplication
	One multiplication
	One squaring
	One cube

	Addition sequences for theta-functions
	Trigonal numbers and theta2
	Squares and theta0 and theta1
	Computing theta functions simultaneously

	Baby-step giant-step algorithm
	Modular values of quadratic polynomials
	Squares
	Trigonal numbers
	Generalized pentagonal numbers

	Implementation

	Benchmarks
	Acknowledgments

