Minimizing Rental Cost for Multiple Recipe Applications in the Cloud

Abstract : Clouds are more and more becoming a credible alternative to parallel dedicated resources. The pay-per-use pricing policy however highlights the real cost of computing applications. This new criterion, the cost, must then be assessed when scheduling an application in addition to more traditional ones as the completion time or the execution flow. In this paper, we tackle the problem of optimizing the cost of renting computing instances to execute an application on the cloud while maintaining a desired performance (throughput). The target application is a stream application based on a DAG pattern, i.e., composed of several tasks with dependencies, and instances of the same execution task graph are continuously executed on the instances. We provide some theoretical results on the problem of optimizing the renting cost for a given throughput then propose some heuristics to solve the more complex parts of the problem, and we compare them to optimal solutions found by linear programming.
Type de document :
Communication dans un congrès
IPDPS Workshops, 2016, Chicago, United States. pp.28--37, 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops. 〈10.1109/IPDPSW.2016.71〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01356152
Contributeur : Equipe Roma <>
Soumis le : jeudi 25 août 2016 - 09:40:55
Dernière modification le : vendredi 20 avril 2018 - 15:44:27
Document(s) archivé(s) le : samedi 26 novembre 2016 - 13:11:58

Fichier

hcw2016final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fouad Hanna, Loris Marchal, Jean-Marc Nicod, Laurent Philippe, Veronika Rehn-Sonigo, et al.. Minimizing Rental Cost for Multiple Recipe Applications in the Cloud. IPDPS Workshops, 2016, Chicago, United States. pp.28--37, 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops. 〈10.1109/IPDPSW.2016.71〉. 〈hal-01356152〉

Partager

Métriques

Consultations de la notice

362

Téléchargements de fichiers

69