Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes

Abstract : A functional risk curve gives the probability of an undesirable event as a function of the value of a critical parameter of a considered physical system. In several applicative situations, this curve is built using phenomenological numerical models which simulate complex physical phenomena. To avoid cpu-time expensive numerical models, we propose to use Gaussian process regression to build functional risk curves. An algorithm is given to provide confidence bounds due to this approximation. Two methods of global sensitivity analysis of the models' random input parameters on the functional risk curve are also studied. In particular, the PLI sensitivity indices allow to understand the effect of misjudgment on the input parameters' probability density functions.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal.inria.fr/hal-01357005
Contributeur : Bertrand Iooss <>
Soumis le : mardi 25 juillet 2017 - 11:58:32
Dernière modification le : mercredi 26 juillet 2017 - 01:06:35

Fichiers

RESS17_FRC_v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01357005, version 3
  • ARXIV : 1704.00624

Collections

Citation

Bertrand Iooss, Loïc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes. 2016. <hal-01357005v3>

Partager

Métriques

Consultations de
la notice

29

Téléchargements du document

13