P. Bratley, B. L. Fox, and H. Niederreiter, Implementation and tests of low-discrepancy sequences, ACM Transactions on Modeling and Computer Simulation, vol.2, issue.3, pp.195-213, 1992.
DOI : 10.1145/146382.146385

L. Gilquin, E. Arnaud, H. Monod, and C. Prieur, Recursive estimation procedure of Sobol' indices based on replicated designs, preprint available at https, 2016.

L. Gilquin, . Jiménez-rugama, . A. Ll, E. Arnaud, F. J. Hickernell et al., Iterative construction of replicated designs based on Sobol' sequences, preprint available at https, 2016.

F. J. Hickernell, . Jiménez-rugama, and . A. Ll, Reliable Adaptative Cubature Using Digital Sequences: Monte Carlo and Quasi-Monte Carlo Methods, pp.367-383, 2016.

H. S. Hong and F. J. Hickernell, Algorithm 823, ACM Transactions on Mathematical Software, vol.29, issue.2, pp.95-109, 2003.
DOI : 10.1145/779359.779360

W. F. Hoeffding, A Class of Statistics with Asymptotically Normal Distribution, The Annals of Mathematical Statistics, vol.19, issue.3, pp.293-325, 1948.
DOI : 10.1214/aoms/1177730196

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur, Asymptotic normality and efficiency of two Sobol' index estimators, ESAIM Probab, pp.342-364, 2014.
DOI : 10.1051/ps/2013040

URL : http://arxiv.org/abs/1303.6451

J. Rugama, . A. Ll, and F. J. Hickernell, Adaptive Multidimensional Integration Based on Rank-1 Lattices: Monte Carlo and Quasi-Monte Carlo Methods, pp.407-422, 2016.

C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, 2009.

T. A. Mara and R. Joseph, Comparison of some efficient methods to evaluate the main effect of computer model factors, Journal of Statistical Computation and Simulation, vol.1, issue.2, pp.167-178, 2008.
DOI : 10.1016/S0378-7788(00)00127-4

URL : https://hal.archives-ouvertes.fr/hal-01093033

M. D. Mckay, Evaluating prediction uncertainty, Los Alamos National Laboratory Report NUREG/CR-6311, 1995.

H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods: CBMS-NSF Regional Conference Series in Applied Math, 1992.
DOI : 10.1137/1.9781611970081

A. B. Owen, Randomly permuted pt, m, sq-nets and pt, sqsequences: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp.299-317, 1995.

A. B. Owen, Better estimation of small sobol' sensitivity indices, ACM Transactions on Modeling and Computer Simulation, vol.23, issue.2, p.11, 2013.
DOI : 10.1145/2457459.2457460

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

I. M. Sobol-', On the distribution of points in a cube and the approximate evaluation of integrals, USSR Computational Mathematics and Mathematical Physics, vol.7, issue.4, pp.86-112, 1967.
DOI : 10.1016/0041-5553(67)90144-9

I. M. Sobol-', Sensitivity indices for nonlinear mathematical models, Mathematical Modeling and Computational Experiment, vol.1, pp.407-414, 1993.

J. Y. Tissot and C. Prieur, A randomized orthogonal array-based procedure for the estimation of first- and second-order Sobol' indices, Journal of Statistical Computation and Simulation, vol.3, issue.2, pp.1358-1381, 2015.
DOI : 10.1214/aos/1069362310

URL : https://hal.archives-ouvertes.fr/hal-00743964

C. Tong, Self-validated variance-based methods for sensitivity analysis of model outputs, Reliability Engineering & System Safety, vol.95, issue.3, pp.301-309, 2010.
DOI : 10.1016/j.ress.2009.10.003