Decomposition of exact pfd persistence bimodules

Cochoy Jérémy 1 Steve Y. Oudot 1
1 DATASHAPE - Understanding the Shape of Data
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We identify a certain class of persistence modules indexed over $\mathbb{R}^2$ that are decomposable into direct sums of indecomposable summands called blocks. The conditions on the modules are that they are both pointwise finite-dimensional (pfd) and exact. Our proof follows the same scheme as the one for pfd persistence modules indexed over $\mathbb{R}$, yet it departs from it at key stages due to the product order not being a total order on $\mathbb{R}^2$, which leaves some important gaps open. These gaps are filled in using more direct arguments. Our work is motivated primarily by the study of interlevel-sets persistence, although the proposed results reach beyond that setting.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Steve Oudot <>
Soumis le : vendredi 2 septembre 2016 - 10:53:22
Dernière modification le : mercredi 10 octobre 2018 - 10:09:16

Lien texte intégral


  • HAL Id : hal-01359312, version 1
  • ARXIV : 1605.09726


Cochoy Jérémy, Steve Y. Oudot. Decomposition of exact pfd persistence bimodules. 2016. 〈hal-01359312〉



Consultations de la notice