Tracking Multiple Persons Based on a Variational Bayesian Model

Yutong Ban 1 Sileye Ba 1, 2 Xavier Alameda-Pineda 3 Radu Horaud 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Object tracking is an ubiquitous problem in computer vision with many applications in human-machine and human-robot interaction, augmented reality, driving assistance, surveillance, etc. Although thoroughly investigated, tracking multiple persons remains a challenging and an open problem. In this paper, an online variational Bayesian model for multiple-person tracking is proposed. This yields a variational expectation-maximization (VEM) algorithm. The computational efficiency of the proposed method is due to closed-form expressions for both the posterior distributions of the latent variables and for the estimation of the model parameters. A stochastic process that handles person birth and person death enables the tracker to handle a varying number of persons over long periods of time. The proposed method is benchmarked using the MOT 2016 dataset.
Type de document :
Communication dans un congrès
Gang Hua; Hervé Jégou. Computer Vision – ECCV 2016 Workshops, Oct 2016, Amsterdam, Netherlands. Springer, 9914 (Part II), pp.52-67, Lecture Notes in Computer Science. 〈http://www.eccv2016.org/〉. 〈10.1007/978-3-319-48881-3_5〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-01359559
Contributeur : Team Perception <>
Soumis le : vendredi 2 septembre 2016 - 16:24:13
Dernière modification le : jeudi 11 janvier 2018 - 01:48:44

Fichiers

eccv2016submission.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yutong Ban, Sileye Ba, Xavier Alameda-Pineda, Radu Horaud. Tracking Multiple Persons Based on a Variational Bayesian Model. Gang Hua; Hervé Jégou. Computer Vision – ECCV 2016 Workshops, Oct 2016, Amsterdam, Netherlands. Springer, 9914 (Part II), pp.52-67, Lecture Notes in Computer Science. 〈http://www.eccv2016.org/〉. 〈10.1007/978-3-319-48881-3_5〉. 〈hal-01359559v2〉

Partager

Métriques

Consultations de la notice

556

Téléchargements de fichiers

513