FHE Circuit Privacy Almost for Free

Florian Bourse 1, 2, 3, 4 Rafaël Del Pino 1, 2, 3, 4 Michele Minelli 1, 2, 3, 4 Hoeteck Wee 1, 2, 3, 4
Abstract : Circuit privacy is an important property for many applications of fully homomorphic encryption. Prior approaches for achieving circuit privacy rely on superpolynomial noise flooding or on bootstrapping. In this work, we present a conceptually different approach to circuit privacy based on a novel characterization of the noise growth amidst homomorphic evaluation. In particular, we show that a variant of the GSW FHE for branching programs already achieves circuit privacy; this immediately yields a circuit-private FHE for NC1 circuits under the standard LWE assumption with polynomial modulus-to-noise ratio. Our analysis relies on a variant of the discrete Gaussian leftover hash lemma which states that e G −1 (v) + small noise does not depend on v. We believe that this result is of independent interest.
Type de document :
Communication dans un congrès
Crypto 2016 - 36th Annual International Cryptology Conference, Aug 2016, Santa Barbara, United States. Springer Verlag, Crypto 2016, Lecture Notes in Computer Science (9815), 2016, Crypto 2016. 〈10.1007/978-3-662-53008-5_3〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01360110
Contributeur : Florian Bourse <>
Soumis le : lundi 5 septembre 2016 - 13:56:59
Dernière modification le : jeudi 26 avril 2018 - 10:29:07
Document(s) archivé(s) le : mardi 6 décembre 2016 - 13:16:21

Fichier

381.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Florian Bourse, Rafaël Del Pino, Michele Minelli, Hoeteck Wee. FHE Circuit Privacy Almost for Free. Crypto 2016 - 36th Annual International Cryptology Conference, Aug 2016, Santa Barbara, United States. Springer Verlag, Crypto 2016, Lecture Notes in Computer Science (9815), 2016, Crypto 2016. 〈10.1007/978-3-662-53008-5_3〉. 〈hal-01360110〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

221