Daily Reference Evapotranspiration Estimation Based on Least Squares Support Vector Machines

Abstract : As a key hydrological parameter, daily reference evapotranspiration (ETo) determines the accuracy of the hydrological number of the crop, and, consequently, the regional optimization disposition of water resources. At present, the main methods for ETo estimation are the Penman-Monteith (PM) equation and its modified formula, both of which are based on climatic factors such as temperature, radiation, humidity, and wind velocity, among others. Unfortunately, these required data are not always available in Xinjiang Uighur Autonomous Region, China, which is a semiarid area. Hence, this paper puts forward, for the first time, a least squares support vector machine (LSSVM) model for estimating ETo. The LSSVM model used in this study considers climatic factors as input variables and the ETo calculated by the Penman-Monteith equation as an output variable. Compared with the artificial neural network (ANN) model, which was developed with the same data, LSSVM prediction shows higher accuracy, efficiency, and generalization performance. Therefore, it can be used as a complementary ETo estimation method.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.54-63, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_7〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01360964
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 15:03:09
Dernière modification le : mardi 6 septembre 2016 - 16:07:32
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 13:18:46

Fichier

978-3-642-27278-3_7_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Dachun Chen. Daily Reference Evapotranspiration Estimation Based on Least Squares Support Vector Machines. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.54-63, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_7〉. 〈hal-01360964〉

Partager

Métriques

Consultations de la notice

73

Téléchargements de fichiers

48