R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration: guidelines for computing crop water requirements, Proceedings of the Irrigation and Drainage Paper No. 56. Food and Agricultural Organization, 1998.

M. Kumar, N. S. Raghuwanshi, and R. Singh, Estimating Evapotranspiration using Artificial Neural Network, Journal of Irrigation and Drainage Engineering, vol.128, issue.4, pp.224-233, 2002.
DOI : 10.1061/(ASCE)0733-9437(2002)128:4(224)

S. Trajkovic, B. Todorovic, and M. Stankovic, Forecasting of Reference Evapotranspiration by Artificial Neural Networks, Journal of Irrigation and Drainage Engineering, vol.129, issue.6, pp.454-457, 2003.
DOI : 10.1061/(ASCE)0733-9437(2003)129:6(454)

L. O. Odhiambo, R. E. Yoder, and D. C. Yoder, OPTIMIZATION OF FUZZY EVAPOTRANSPIRATION MODEL THROUGH NEURAL TRAINING WITH INPUT??OUTPUT EXAMPLES, Transactions of the ASAE, vol.44, issue.6, pp.1625-1633, 2001.
DOI : 10.13031/2013.7049

H. Aksoy, A. Guven, and A. Aytek, Discussion of ???Generalized regression neural networks for evapotranspiration modelling???, Hydrological Sciences Journal, vol.43, issue.2, pp.825-831, 2007.
DOI : 10.1061/(ASCE)0733-9437(2003)129:6(454)

O. Ki?i, Generalized regression neural networks for evapotranspiration modelling, Hydrological Sciences Journal, vol.1, issue.6, pp.1092-1104, 2006.
DOI : 10.1061/(ASCE)0733-9437(2003)129:6(454)

O. Ki?i and O. Ozturk, Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation, Journal of Irrigation and Drainage Engineering, vol.133, issue.4, pp.368-379, 2007.
DOI : 10.1061/(ASCE)0733-9437(2007)133:4(368)

L. Gorka, O. B. Amaia, and J. L. Jose, Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) Agricultural Water Management, pp.553-565, 2008.

R. K. Ali, Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment, Irrigation Science, vol.26, pp.253-259, 2008.

K. Sungwon and H. S. , Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling, Journal of Hydrology, vol.351, pp.299-317, 2008.

W. Yu-min, T. Seydou, and K. Tienfuan, Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso, WSEAS Transactions on Computers, vol.7, pp.704-713, 2008.

T. Seydou, Y. Wang, and K. Tienfuan, Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone Agricultural Water Management, pp.707-714, 2010.

S. S. Eslamian, J. Abedi-koupai, and M. J. Amiri, Estimation of daily reference evapotranspiration using support vector machines and artificial neural networks in greenhouse, Res. J. Env. Sci, vol.3, pp.439-447, 2009.

O. Kisi and M. Cimen, Evapotranspiration modelling using support vector machines / Mod??lisation de l'??vapotranspiration ?? l'aide de ???support vector machines???, Hydrological Sciences Journal, vol.12, issue.5, pp.918-928, 2009.
DOI : 10.1016/j.jhydrol.2008.05.028

V. N. Vapnik, The Nature of Statistical Learning, 1995.

J. A. Suykens and J. Vandewale, Least squares support vector machine classifiers. Neural Processing Letters, pp.293-300, 1999.