Comparison of Spectral Indices and Principal Component Analysis for Differentiating Lodged Rice Crop from Normal Ones

Abstract : Hyperspectral reflectance of normal and lodged rice caused by rice brown planthopper and rice panicle blast was measured at the canopy level. Over one decade broad- and narrow-band vegetation indices (VIs) were calculated to simulate Landsat ETM+ with in situ hyperspectral reflectance. Principal component analysis (PCA) was utilized to obtain the front two principal components (PCs). Probabilistic neural network (PNN) was employed to classify the lodged and normal rice with VIs and PCs as the input vectors. PCs had 100% of overall accuracy and 1 of Kappa coefficient for the training dataset. While PCs had the greatest average overall accuracy (97.8%) and Kappa coefficient (0.955) for the two testing datasets than VIs consisting of broad- and narrow-bands. The results indicated that hyperspectral remote sensing with PCA and artificial neural networks could potentially be applied to discriminate lodged crops from normal ones at regional and large spatial scales.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.84-92, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_10〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01360967
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 15:03:43
Dernière modification le : mardi 6 septembre 2016 - 16:07:32
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 13:02:44

Fichier

978-3-642-27278-3_10_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Zhanyu Liu, Cunjun Li, Yitao Wang, Wenjiang Huang, Xiaodong Ding, et al.. Comparison of Spectral Indices and Principal Component Analysis for Differentiating Lodged Rice Crop from Normal Ones. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.84-92, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_10〉. 〈hal-01360967〉

Partager

Métriques

Consultations de la notice

74

Téléchargements de fichiers

190