A Robust Graph Based Learning Approach to Agricultural Data Classification

Abstract : This paper proposes a novel graph based learning approach to classify agricultural datasets, in which both labeled and unlabelled data are applied to the classification procedure. In order to capture the complex distribution of data, we propose a similarity refinement approach to improve the robustness of traditional label propagation. Then the refined affinity matrix is applied to label propagation. Thus, the traditional pair-wise similarity is updated with scores using median filter of its neighbors in manifold space. And the proposed classification approach can propagate the labels from the labeled data to the whole dataset. The experiments over agricultural datasets have shown that embedding information fusion approach in manifold space is beneficial in classification.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.375-380, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_40〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361005
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 15:14:43
Dernière modification le : mardi 6 septembre 2016 - 16:06:06
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 13:36:45

Fichier

978-3-642-27278-3_40_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Baojie Ji, Caili Su, Wanzhong Lei. A Robust Graph Based Learning Approach to Agricultural Data Classification. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.375-380, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_40〉. 〈hal-01361005〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

26