Wheat Grain Protein Content Estimation Based on Multi-temporal Remote Sensing Data and Generalized Regression Neural Network

Abstract : Monitoring grain protein content in large areas by remote sensing is very important for guiding graded harvest, and facilitates grain purchasing for processing enterprises. Wheat grain protein content (GPC) at maturity was measured and multi- temporal Landsat TM and Landsat ETM + images at key stages in 2003, 2004 growth stages were acquired in this study. GPC was estimated with multi-temporal remote sensing data and generalized regression neural network (GRNN) method. Results show that the GPC prediction accuracy of the GRNN model is higher, with the average relative deviation of self-modeling, average relative deviation of cross-validation as 0.003%, 0.321%; 4.300%, 7.349% for 2003 and 2004 respectively. GRNN method proves to be reliable and robust to monitoring GPC in large areas by multi-temporal and multi-spectral remote sensing data.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.381-389, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_41〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361006
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 15:15:20
Dernière modification le : mardi 6 septembre 2016 - 16:06:06
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 13:46:14

Fichier

978-3-642-27278-3_41_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Cunjun Li, Qian Wang, Jihua Wang, Yan Wang, Xiaodong Yang, et al.. Wheat Grain Protein Content Estimation Based on Multi-temporal Remote Sensing Data and Generalized Regression Neural Network. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.381-389, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_41〉. 〈hal-01361006〉

Partager

Métriques

Consultations de la notice

146

Téléchargements de fichiers

22