
HAL Id: hal-01361161
https://inria.hal.science/hal-01361161

Submitted on 6 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Guaranteed Cost Control for Uncertain Distributed
Delay System with Neutral Type
Yuyan Zhang, Dan Zhao, Yan Zhao, Na Zhang

To cite this version:
Yuyan Zhang, Dan Zhao, Yan Zhao, Na Zhang. Guaranteed Cost Control for Uncertain Distributed
Delay System with Neutral Type. 5th Computer and Computing Technologies in Agriculture (CCTA),
Oct 2011, Beijing, China. pp.372-382, �10.1007/978-3-642-27275-2_42�. �hal-01361161�

https://inria.hal.science/hal-01361161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

 

Guaranteed Cost Control for Uncertain Distributed 

Delay System with Neutral Type 

Yuyan Zhang1,1, Dan Zhao
1
, Yan Zhao

1
, Na Zhang1 

 
1 Department of Automatic Control Engineering, Shenyang Institute of Engineering, 

110136 Shenyang, China 

{zhangyy, zhaodan, zhaoyan}@sie.edu.cn 

Abstract. This paper investigates the problem of guaranteed cost control for a 

class of uncertain distributed delay systems with neutral type. A sufficient 

condition for the solvability of this problem is obtained. A novel Lyapunov-

Krasovskii functional is constructed to reduce conservatism of the criterion in 

form of LMIs. Some mathematical techniques are utilized flexibly. Especially, 

the exchange of the order of repeated integral is required. Based the criterion, 

the control gain and the guaranteed cost are obtained. A numerical example is 

provided to illustrate the effectiveness of the proposed design methods. 

Keywords: Distributed delay system with neutral type, Guaranteed cost control, 
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1   Introduction 

Neutral delay systems are the general form of delay system and contain delays 

on the derivatives of some system variables. There are many physical examples for 

neutral delay system in practical systems(see,e.g.,[1,2,8,11]). In recent years, the 

stability analysis and robust guaranteed cost control problems of neutral delay system 

have been considered extensively[1,2,5,8,11,12]. Different from some existing results, 

Lien
[1] 

introduces a positive constant   to obtain the corresponding LMIs using 

Lyapunov--Krasobskii theory and Leibniz--Newton formulae. An LMI optimization 

approach is proposed to find the robust non-fragile guaranteed cost control and used 

to minimize the guaranteed cost. Xu in [11] are concerned with the problem of non-

fragile positive real control for uncertain neutral system with invariant delays in state. 

For both the cases with additive and multiplicative control uncertainties, sufficient 

conditions for the existence of the controllers are given in terms of LMIs. 

On the other hand, with the increasing of the number of summands in a system 

equation and the decreasing of differences between neighboring argument values, 

systems with distributed delays will arise. Distributed delays can also be found in the 
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modeling of feeding systems and combustion chambers in a liquid monopropellant 

rocket motor with pressure feeding
[3,4]

. Therefore, many efforts have been made for 

the distributed delays systems[5,6,7]. 

To the best of the authors' knowledge, there are a few notes on the problem of 

guaranteed cost control for distributed delay systems with neutral type, which 

motivates the present study. In view of the importance of the choice of an appropriate 

Lyapunov-Krasovskii functional for deriving good stability criteria for delay system, 

a class of special forms of Lyapunov-Krasovskii functionals are constructed to lead to 

simpler and less conservative sufficient conditions. Simultaneously, some 

mathematical techniques are applied flexibly. Finally, a numerical example is 

provided to illustrate the effectiveness of the proposed design methods. 

2   Problem Statement and Preliminaries 

Consider the following uncertain distributed delay systems with neutral type 
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where ( ) nx t   and ( ) mu t   are the state and input of system, respectively. 

A , A , A , A , and B are known constant matrices of appropriate dimensions. 

( )t  is the initial condition. , , and are the time delays,  , ,l max    . 

Time-varying parametric uncertainties ( )A t , ( )A t , ( )A t ,  ( )A t  and 

( )B t  are assumed to satisfy 
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where matrices D , 1E  , E , E , E , and 2E  are constant matrices of 

appropriate dimensions, and ( )F t  is the unknown matrix function satisfying  

( ) ( ) , 0.TF t F t I t    

Construct the following control law 

( ) - ( )u t Kx t                               (3) 

where 
m nK   is the control gain to be designed, the resulting closed-loop 

uncertain neutral system is obtained， 
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Define the following quadratic cost function 

1 2
0

( ) ( ) ( ) ( )T TJ x t S x t u t S u t dt
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                     (5) 

where 1

n nS   and 2

m mS   are two given symmetric positive definite 

matrices. 

The objective of this note is to design a control (3) and determine a scalar uJ  

satisfying the following two conditions 

(a)  the closed-loop system (4) is asymptotically stable, 

(b)  uJ J . 

If the aforementioned control gain K  and constant uJ  exist, control (3) is the 

guaranteed cost control and uJ  is the guaranteed cost for the considered system. 

The following lemma is used for the proof of the main results. 

Lemma 2.1  Let Z , X , S and Y  be matrices of appropriate dimensions. 

Assume that Z is symmetric and 
TS S I , then  

0T T TZ XSY Y S X    

if and only if there exists a scalar 0  satisfying 
1 1 1( )( ) 0T T T TZ XX Y Y Z X X Y Y              

3   Main Result 

Theorem 3.1  Consider system (1) with (2) and (3). If there exist positive 

numbers  ,  , some symmetric positive definite matrices Q , 1H , 2H , and 

matrix X  such that the following LMIs hold 
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Then control (3) with 
1K XQ  is the guaranteed cost control of system (1) with 

the following guaranteed cost 
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where 
2

11 1 2 19 1 2,T T T T T TAQ QA BX X B H H QE X E          . 

Proof:  Choose
1 1 1 1 1

1 1 2 2, ,P Q H Q H Q H Q H Q       , and construct 

the following Lyapunov functional 
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Obviously, ( ( ), ) 0V x t t   for all ( ) 0x t  . The time derivative of 

( ( ), )V x t t  along the trajectories of system (1) with control (3) is given 
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By Lemma 2.1 and Schur complement formula, the condition 0   in (6) is 

equivalent to 0  in (14). According to (12), (13), and (14), 0  is 
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          (17) 

According to Lemma 2.1, inequality (17) is equivalent to the following one 

0
( ) 0 ( ) 0 0

* 0

T T

T Tn

n

I A E
F t E F t D

DI

 


     
                 

     (18) 

that is 

( )
0

*

T T T T

n

n

I A E F t D

I

 
  

 
 

                            (19) 

By Schur complement formula, inequality (19) is equivalent to the following one 

( ( ) ) ( ( ) )T

nA DF t E A DF t E I                        (20) 

that is 

   1|||| 2  AA                                   (21) 

This means that system (1) is Lipschitz in the term ( ( ))x t t  with Lipschitz 

constant less than 1. 

Hence, by conditions (9) and (15), and (21), one can conclude that system (1) 

with (2) and (3) is asymptotically stable. From (11) with 0  , one can obtain 

0

1 2
0

( ( ), ) lim ( ( ), ) ( (0),0)

[ ( ) ( ) ( ) ( )]

t

T T

V x t t dt V x t t V x

x t S x t u t S u t dt







 

  




     

Therefore, 

1 2
0

lim ( ( ), ) 0, [ ( ) ( ) ( ) ( )] ( (0),0) .T T

u
t

V x t t x t S x t u t S u t dt V x J



     

This completes the proof.   

4   Illustrative Example 

In this section, a numerical example is presented to show the validity of the 

control approach. A three-order system with two inputs is considered with the 

following parameters 



 

 

25.2 1.3 3.3 2.1 1.3 0.2 1.5 2.2

11.5 3.5 2.8 , 1.1 0.5 0.5 , 2.3 0.1

2.9 14.1 5.1 0.7 1.6 0.1 3.5 1.5

A A B

       
     

     
     
             

, 

1

0.1 0.3 0.1 2.1 0.2 0.4

0.1 0.5 0.1 , 0.1 0.2 0.2 , 0.1,

0.2 0.1 0.5 0.8 0.4 1.4

0.5 0.2 0.1 0.3 0.1 0.1

0.1 0.7 0.2 , 0.4 0.5 0.1 , 0.1,

0.1 0.3 0.1 0.1 0.2 0.1

A A

D E

  



      
   

   
   
        

    
   

      
   
       

0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.2 0.1 , 0.1 0.2 0.1 , 0.2,

0.1 0.1 0.2 0.1 0.1 0.1

E E  

     
   

     
   
         

 

2

0.2 0.2 0.3 0.6 0.3

0.3 0.2 0.1 , 0.1 0.1 .

0.1 0.4 0.4 0.4 0.2

E E

      
   

    
   
      

 

Let  

   1 20.5,0.5,0.5 , 2,2S diag S diag   

and the initial condition is given by 

 ( ) 0.1 0.15 0.2 0.05
T

t t t      

Applying Matlab toolbox
[9,10]

 to solving the LMIs (6) and (7) with above 

parameters, one can obtain 

0.0405 0.0193 0.0007

0.0193 0.0611 0.0810 ,

0.0007 0.0810 0.1461

0.1478 0.0268 0.2684
,

0.0149 0.0876 0.297

0.6067,

5.1734,
6

Q

X





  
 

  
 
   

  
 






 

 



 

 

1

2

0.3369 0.1033 0.0637

0.1033 0.1822 0.0344 ,

0.0637 0.0344 0.2582

7.8186 2.3760 1.4933

2.3760 4.0091 0.0089 ,

1.4933 0.0089 5.0074

H

H

  
 

  
 
   

  
 

  
 
   

 

60.5751 73.8035 41.2087

73.8035 151.7409 84.4717 ,

41.2087 84.4717 53.8685

18.0362 29.5139 18.2854
,

4.8911 10.7387 8.0133

P

K

 
 


 
  

   
  
 

 

3

1

4

2

1.2164 1.9843 1.1349

1.9843 3.8833 2.2436 *10 ,

1.1349 2.2436 1.3066

3.0276 5.0207 2.8767

5.0207 9.8562 5.7011 *10 ,

2.8767 5.7011 3.3162

H

H

 
 


 
  

 
 


 
  

 

10.7543uJ  . 

5  Conclusion 

The guaranteed cost control for uncertain distributed delay system with neutral 

type is complex and challenging.  In view of the importance of the choice of an 

appropriate Lyapunov-Krasovskii functional for deriving good stability criteria for 

delay system, a special form of Lyapunov-Krasovskii functional is constructed to lead 

to simpler and less conservative sufficient conditions. Simultaneously, some 

mathematical techniques are applied flexibly. Especially, the order of repeated 

integral is exchanged. Based the criterion, the control gain and the guaranteed cost are 

obtained.Finally, the numerical example has shown the validity of the present control 

approach. 
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