The Key Information Technology of Soybean Disease Diagnosis

Abstract : Combining image processing and artificial neural network technology, a new diagnose method of soybean leaf diseases has been proposed, which identified the methods of division algorithm and eigenvalue computation, meanwhile, established a three-level neural network model to identify the diseased spot areas. According to the characteristics of soybean leaf disease, a new diagnose method has been formed, through extraction of geometric features, color and texture feature, which provided reference to Remote Intelligent diagnosis of soybean leaf disease.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-370 (Part III), pp.495-501, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27275-2_55〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361176
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 17:16:22
Dernière modification le : mardi 6 septembre 2016 - 17:40:15
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 14:10:22

Fichier

978-3-642-27275-2_55_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Baoshi Jin, Xiaodan Ma, Zhongwen Huang, Yuhu Zuo. The Key Information Technology of Soybean Disease Diagnosis. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-370 (Part III), pp.495-501, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27275-2_55〉. 〈hal-01361176〉

Partager

Métriques

Consultations de la notice

241

Téléchargements de fichiers

43