
HAL Id: hal-01361992
https://inria.hal.science/hal-01361992v1
Submitted on 7 Sep 2016 (v1), last revised 23 Sep 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling of Linear Algebra Kernels on Multiple
Heterogeneous Resources

Olivier Beaumont, Terry Cojean, Lionel Eyraud-Dubois, Abdou Guermouche,
Suraj Kumar

To cite this version:
Olivier Beaumont, Terry Cojean, Lionel Eyraud-Dubois, Abdou Guermouche, Suraj Kumar. Schedul-
ing of Linear Algebra Kernels on Multiple Heterogeneous Resources. International Conference on
High Performance Computing, Data, and Analytics (HiPC 2016), Dec 2016, Hyderabad, India. �hal-
01361992v1�

https://inria.hal.science/hal-01361992v1
https://hal.archives-ouvertes.fr


Scheduling of Linear Algebra Kernels on Multiple
Heterogeneous Resources

Olivier Beaumont, Terry Cojean, Lionel Eyraud-Dubois, Abdou Guermouche and Suraj Kumar
Inria Bordeaux Sud-Ouest

LaBRI, UMR 5800
University of Bordeaux

{Olivier.Beaumont, Terry.Cojean, Lionel.Eyraud-Dubois, Abdou.Guermouche, Suraj.Kumar}@inria.fr

Abstract—In this paper, we consider task-based dense linear
algebra applications on a single heterogeneous node which
contains regular CPU cores and a set of GPU devices. Efficient
scheduling strategies are crucial in this context in order to achieve
good and portable performance. HeteroPrio, a resource-centric
dynamic scheduling strategy has been introduced in a previous
work and evaluated for the special case of nodes with exactly
two types of resources. However, this restriction can be limiting,
for example on nodes with several types of accelerators, but not
only this. Indeed, an interesting approach to increase resource
usage is to group several CPU cores together, which allows to use
intra-task parallelism. We propose a generalization of HeteroPrio
to the case with several classes of heterogeneous workers. We
provide extensive evaluation of this algorithm with Cholesky
factorization, both through simulation and actual execution,
compared with HEFT-based scheduling strategy, the state of
the art dynamic scheduling strategy for heterogeneous systems.
Experimental evaluation shows that our approach is efficient
even for highly heterogeneous configurations and significantly
outperforms HEFT-based strategy.

Index Terms—Linear Algebra; Heterogeneous Platforms;
Task-based Scheduling; Cholesky Factorization

I. INTRODUCTION

Due to massive computational power of accelerators (e.g.
GPU) at limited cost, the gap between the processing power
of individual CPU cores and accelerators is increasing. The
main issue encountered when trying to exploit both CPUs
and accelerators lies in the fact that these devices have
very different characteristics and requirements. Scheduling
even regular applications such as dense linear algebra kernels
becomes notoriously difficult when using nodes consisting
of resources such as both CPUs and accelerators. Indeed,
several phenomena are added to the inherent complexity
of the underlying NP-hard optimization problem. First, the
performance of the resources is strongly heterogeneous. For
instance, it is common to have in the same application a
mixture of tasks that benefit a lot from the use of accelerators
and tasks that perform poorly on accelerators. In the literature,
this context is denoted as unrelated resources and is known to
make scheduling problems harder (see [1] for a survey on
the complexity of scheduling problems, [2] for the specific
simpler case of independent tasks scheduling and [3] for a
recent survey in the case of CPU and GPU nodes).

Besides the complexity of the underlying scheduling prob-
lem, several other related issues come into the picture. First,

the number of different architectures dramatically increased in
recent years and developing optimized hand tuned kernels be-
comes an impossible task. Second, internal node parallelism as
well as shared caches and buses makes it difficult to accurately
predict the execution time of a kernel on a resource, due to co-
scheduling effects. These two observations make performance
portability a crucial issue. This context led to the development
of several runtime systems relying on dynamic schedulers, that
make allocation and scheduling decisions at runtime, such
as StarPU [4], StarSs [5], QUARK [6] or PaRSEC [7]. All
these runtime schedulers see the application as a Directed
Acyclic Graph (DAG) of tasks where vertices represent tasks
to be executed and edges represent dependencies between
those tasks. Task priorities on this DAG can be computed
offline, for instance based on HEFT heuristic [8]. Then, at
runtime, the scheduler takes the scheduling and allocation
decisions based on the set of ready tasks (tasks whose data and
control dependencies have all been solved), on the availability
of the resources (estimated using expected processing and
communication times), on the respective priorities of the ready
tasks and on any policy optionally implemented by the user.

Many such runtime schedulers rely on a greedy HEFT-based
strategy, where typically the highest priority ready task is
allocated to the resource that is expected to complete it first,
based on the estimation of the transfer time of input data
and on the estimation of the execution time on the different
resources. However, in presence of strongly heterogeneous
resources, it has been observed in [9] that such a scheduling
policy tends to make poor use of slow resources. Indeed, when
the acceleration ratio on the accelerators is high, all ready tasks
tend to be allocated to accelerators, even though they are far
from the critical path and could have been processed on a slow
resource without hurting the overall execution time. Another
dynamic strategy named HETEROPRIO has been proposed [10]
to cope with this problem, that relies on the affinities between
tasks and resources. When properly tuned, this strategy has
been proven to be more efficient than greedy strategies in
presence of GPUs and CPUs for Cholesky factorization. Its
main drawback is that it is limited to two types of resources,
i.e. one sort of CPU and one sort of GPU. The main goal of this
paper is to extend such affinity based scheduling algorithms
to any number of heterogeneous resources.

Such a generalization is obviously desirable to be able to



handle platforms with more than one type of accelerator (with
both GPU and Xeon Phi, for example). But it can also be very
useful for more regular platforms, for the following reason.
Many applications are parallelized using a uniform granularity:
homogeneous block or tile decomposition where the choice of
the tile size is a crucial parameter for performance. Indeed,
a small granularity leads to poor performance on the GPU
side, whereas large tiles decrease the parallelism available
in the task graph, and dramatically increase the cost of bad
load balancing decisions. Thus, the solution adopted by dense
linear algebra libraries [11], [12], [13] is to compute a unique
common size that represents the best trade-off. A more recent
proposition is to relax this constraint either by splitting at
runtime coarse grain tasks [14] or to aggregate CPU cores
to process larger tasks [15]. Both approaches are equivalent to
cluster CPUs together so as to build more powerful resources
and to use parallel kernels on such CPU groups. This helps
the scheduling algorithm since the composite platform is
less heterogeneous: for instance, in the context of Cholesky
factorization, the maximal heterogeneity ratio between a GPU
and a large CPU group is less than 4 (and some kernels even
execute faster on clustered CPU groups), what makes greedy
scheduling algorithms more efficient, as advocated in [15]. For
now, the clustering is determined statically for the duration of
the whole execution, and there is a trade-off between lowering
the critical path using groups of cores and increasing parallel
efficiency by using many individual cores. In any case, the
resulting platform appears to the runtime system as containing
many different types of resources: individual CPUs, CPU
groups of different sizes, and (possibly heterogeneous) GPUs.

In this paper, we propose extensions of the affinity based
scheduler that are suited to more than one type of resources
and we demonstrate their efficiency on platforms consisting
simultaneously of accelerators, several types of CPU groups
and individual CPUs. However, the question of how to op-
timally build the groups, given the kernel, the size of the
problem and the performance of individual resources, is out
of the scope of this paper. More specifically, the paper is
organized as follows. Additional context and Related Works
are presented in Section II, the presentation of HETEROPRIO
and its adaptation to more than two types of resources is
presented in Section III. At last, the comparison between
affinity based schedulers and HEFT based scheduler on both
Cholesky and QR factorizations is presented in Section IV,
before concluding remarks in Section V.

II. BACKGROUND AND RELATED WORK

When considering a task based application running on a
heterogeneous system, a major challenge is related to the
affinity between tasks and resources. This issue is particularly
critical when designing dynamic schedulers for such systems.
To illustrate this claim, let us consider two dense factorization
applications, namely Cholesky and QR. We report in Table Ia
(resp. Ib) the performance for the different types of tasks
composing the Cholesky (resp. QR) factorization. We can
see that the GPU device is more suited for certain types of

DPOTRF DTRSM DSYRK DGEMM

1 core (Gflop/s) 27.78 34.42 31.52 36.46

GPU / 1 core 1.72 8.72 26.96 28.80
10 cores / 1 core 5.55 6.75 6.90 7.77
5 cores / 1 core 4.20 4.50 4.66 4.49
2 cores / 1 core 1.88 1.95 1.93 1.94

(a) Cholesky factorization.

DGEQRT DORMQR DTSQRT DTSMQR

1 core (Gflop/s) 22.08 33.78 17.63 32.93

GPU / 1 core 1.91 15.90 1.87 14.64
10 cores / 1 core 1.65 4.10 0.73 6.94

5 cores / 1 core 1.67 3.30 1.25 4.05
2 cores / 1 core 1.33 1.77 1.16 1.91

(b) QR factorization (IB=128).

TABLE I: Acceleration factors of Cholesky and QR factoriza-
tion kernels normalized to the performance of one core with
a tile of size 960.

kernels (e.g. DGEMM, DTSMQR, etc.) than others. We can
see also that for these kernels, the acceleration factors are
large, what makes the platform strongly heterogeneous from
the point of view of the scheduling algorithm. However, as
mentioned in the introduction, it is possible to reduce the
heterogeneity of the platform by assigning a single task to a
group of resources; this was introduced in [14] and [15]. We
can observe in Table I that some kernels are very scalable (e.g.
DGEMM, DSYRK, DTSMQR, etc.), some others have moderate
scalability (e.g. DPOTRF, DORMQR) and finally some kernels
exhibit poor scalability (e.g. DGEQRT and DTSQRT). We can
also notice that when relying on medium to large CPU groups,
the heterogeneity of the platform is strongly reduced: some
kernels are even faster on the CPU group than on a GPU.
Finally, since the scalability of the kernels is sublinear, it is
better to rely on small groups of CPUs when the number of
ready tasks is large enough. On the other hand, when the
parallelism arising from the DAG is small, one may want to
rely on large CPU groups. From the scheduling point of view,
an adaptation of the HEFT algorithm to tackle the problem of
dynamically scheduling parallel tasks was presented in [15].

On a more theoretical side, the work presented in this paper
is related to the problem of scheduling tasks with dependen-
cies, which has been highly studied in the literature, starting
from complexity and approximation analysis from Graham et
al. [16]. Many dynamic algorithms have been proposed to
solve this problem, in particular for the homogeneous case.
In the specific setting of Cholesky factorization, reversing the
task graph allows to identify provably optimal schedules in the
case of homogeneous resources, and the problem is now well
understood [17], [18]. Concerning the heterogeneous unrelated
case, the literature is more limited. Most dynamic strategies are
variants of the well-known HEFT heuristic [8] which combines
a prioritization of tasks by their distance to the exit node with
a greedy strategy that allocates a highest priority task so as
to finish as early as possible. Other noteworthy approaches



are based on work stealing [19], where idle resources steal
ready tasks from other resources, or on successively applying
an algorithm for independent tasks scheduling on the set
of ready tasks [3]. This work is also related to the theory
of parallel tasks scheduling [20], in which each task can
be assigned to a group of processors. However there has
been no study of parallel tasks for heterogeneous platforms,
except very recently for independent tasks [21]; furthermore
we are interested here in the case where the partition of
processors into groups cannot change during the execution of
the application.

III. AFFINITY BASED SCHEDULING

As mentioned in the introduction, a dynamic scheduling
strategy named HETEROPRIO, based on the affinities between
tasks and resources, has been proposed in [10] and improved
in [9] in the case of GPUs and CPUs. In this section, after a
brief presentation of the underlying principle of HETEROPRIO,
we propose a generalization to platforms with more than two
types of resources.

A. Affinity Based Scheduling for Two Classes of Resources

We present the main ideas of HETEROPRIO, and we refer
the interested reader to [9] for a complete description of the
algorithm. HETEROPRIO relies on the acceleration ratios on
GPUs of each type of task to establish an affinity between the
resources and the different types of tasks. In order to make
the most out of the heterogeneous resources, GPUs should
preferably execute tasks with higher acceleration factors, and
CPUs should execute tasks with lower acceleration factors. To
this end, HETEROPRIO creates several queues, one for each
type of tasks, which are ordered by acceleration factor and
contain the list of ready tasks. When a CPU (resp. a GPU)
becomes idle, it receives a task from the non empty queue with
the lowest (resp. highest) acceleration factor. This algorithm
was improved in several ways in [9]. First, in order to avoid
delaying tasks on (or close to) the critical path of the task
graph, it is important to ensure that more critical tasks are
executed on the GPUs. This is done by sorting each ready
queue by priority, computed as the distance to the exit node
of the graph. GPUs are given the highest priority task from
their queue, and CPUs are given the lowest priority task to
ensure that urgent tasks are not delayed. This trade-off between
affinity and priority is strengthened by another improvement:
GPU queues with similar acceleration factors are merged, so
that the algorithm focuses more on high priority tasks. As an
example, let us consider the case of Cholesky factorization,
with the task performance described in Table I. In that case,
HETEROPRIO creates three queues for the GPUs, the first one
regrouping DSYRK and DGEMM ready tasks, the second one
containing DTRSM ready tasks, and the last one containing
DPOTRF ready tasks. For the CPUs, HETEROPRIO creates 4
ready queues containing ready DPOTRF, DTRSM, DSYRK and
DGEMM tasks respectively, in that order.

Finally, a spoliation mechanism was added: whenever a
GPU is idle while a DSYRK or DGEMM task is being executed

on a CPU (for which it is badly suited), then the GPU
restarts the execution of this task if it allows to finish it
earlier. In practice, stopping the execution of the kernels might
be technically difficult, especially to enforce data coherency.
However, the same behavior can be obtained by speculatively
simulating the behavior of the algorithm before deciding to
execute a task on a CPU, and if the task needs to be spoliated
later, HETEROPRIO decides to delay the execution of this task
until a GPU becomes available. Alternatively, it is also possible
to pre-compute (using simulation) a complete schedule with
spoliation and to apply it on the real platform afterward.

B. Generalization to more than Two Classes of Resources

a) Generalizing acceleration factor: Adapting this al-
gorithm to the case of more than two types of resources is
not straightforward, in particular because the central notion
of acceleration factor does not make sense anymore in that
case. It is thus necessary to identify a new way of deciding
which tasks should be favored for execution on each of the
given resources. In this Section, we present two possible ways
of computing scores which generalize the acceleration factor,
and thus provide two different ways for the resources to
favor different task types. The main principle of HETEROPRIO
remains unchanged, though: whenever a resource is free, it
picks a ready task among the task type with highest score.

The first scoring system is called Area because it relies
on a generalization of the so-called area bound in the ho-
mogeneous case. The idea is to compute the allocation of
tasks that minimizes the overall execution time when ignoring
dependencies and assuming that all processors work without
idle time. This allocation can be obtained by solving a small
scale linear program [22], and it provides a generic way of
detecting which tasks are more suited to which resources.
In the Area system, the score of task type t for resource
r is simply the proportion of tasks t that resource r would
perform in this idealized setting. In the case of two resources,
the optimal proportions are assigned following the ordering
by acceleration factors. Hence this scoring system generalizes
the behavior of the original HETEROPRIO.

The second scoring system is called the Heterogeneity
Index (Het.Index), and is computed in the following way.
Let us denote by T the set of task types, by R the set
of resources, and by E(t, r) the execution time of task t
on resource r. Let us consider for every task type t the
maximum execution time Emax = maxi∈RE(t, i) and the
minimum execution time Emin = mini∈RE(t, i). We define
Het.Index(t, r) = Emax×Emin

E(t,r)2 = Emax

E(t,r) ×
Emin

E(t,r) , and we
use Het.Index(t, r) as a score to decide which task type to
favor for resource r. The idea behind this definition is that
the first term ( Emax

E(t,r) ) represents how “good” this resource
is compared to the worst possible one, and the second term
represents how “bad” it is compared to the best one. This score
is also a generalization of the acceleration factor: with GPUs
and CPUs only, the heterogeneity index of GPUs is equal to
the acceleration factor, and for CPUs, it is equal to the inverse
of the acceleration factor.



T1 T2
R1 100 200
R2 120 60
R3 200 75

(a) Execution Timings

T1 T2
R1 60 0
R2 40 20
R3 0 80
(b) Area score

T1 T2
R1 2.0 0.3
R2 1.4 3.3
R3 0.5 2.1

(c) Het.Index score

TABLE II: Execution timings, Area and Het.Index scores on
different resources for different types of tasks.

b) Other considerations: As mentioned above, it is im-
portant to take task priorities into account, by making sure that
“fast” resources are given high priority tasks. Characterizing
“fast” resources is straightforward in the case with only two
resources, because GPUs are always faster than a single core.
To generalize this to the multi-resource case, we propose the
following approach.

For each resource r, we compute the geometric mean
µr of the execution timings of all tasks on that resource
(µr =

(∏
t∈T E(t, r)

) 1
|T | ). This geometric mean measures

the overall aggregated speed of resource r. We then compute
the average (arithmetic mean) of these µr, and we classify a
resource as “fast” if its value µr is below the average, and as
a “slow” resource otherwise. “Fast” resources are given high
priority tasks, and are allowed to perform spoliation of “slow”
resources. Furthermore, as mentioned above, in HETEROPRIO
an emphasis is made on high priority tasks by merging queues
with similar acceleration factor on GPUs. We generalize this
on fast resources, by merging queues with similar scores. In
practice, we have found that the best trade-off value for this
parameter is to merge queues when the difference in score is
below 25 %.

C. An Example with both scoring systems

To understand the working principle of both scoring systems
(Area and Het.Index), and to exhibit their difference,
let us consider multiple instances of two types of tasks
(T1 and T2) on three types of resources (R1, R2 and R3).
Table II shows execution timings of both types of tasks on all
resources. It also shows Area (Table IIb) and Het.Index
(Table IIc) scores for both tasks on all resources.

On resource R1, for both scoring systems, the score of task
T1 is higher than the score of task T2, therefore R1 will prefer
tasks of type T1 in both scoring systems. Similarly, task T2 has
higher score than T1 on resource R3, and therefore resource
R3 will prefer tasks of type T2 in both scoring systems. On
the other hand, in the Area scoring system, resource R2 will
prefer task type T1 but Het.Index will pick in reverse order
(prefer task type T2) due to higher Het.Index value for task
type T2.

IV. EXPERIMENTS AND RESULTS

To evaluate the behavior of proposed scheduling heuristic,
we present a set of experiments to assess the interest of our
approach. First of all, we consider a platform composed of two
Haswell Intel Xeon E5-2680 processors having 12 cores each

and four Nvidia K40-M GPUs. As most runtime systems, 1
CPU core is dedicated to efficiently exploit each GPU. As
a consequence, we can view our node as being composed
of 20 CPU workers and 4 GPU workers. Throughout this
paper, all results are obtained with Intel icc and MKL version
2015.5.223 in addition with CUDA 7.0.28. We also ensure
MKL DYNAMIC flag is turned off to strictly control the
number of used threads. Moreover, we consider a task-based
implementation of two very common linear algebra operations
(namely Cholesky and QR factorizations), which are decom-
posed in a number of basic kernels (see Figures 2a and 2b).
These operations are implemented in the Chameleon [23]
library running on top of the StarPU runtime system to assign
tasks onto CPU cores or GPU devices. The experimental study
is done in two steps: we first evaluate the different scheduling
heuristics using simulation, and then we assess the perfor-
mance of the best configurations in real-life executions. Note
that we will consider both Cholesky and QR factorizations for
the simulation case while we will only focus on the Cholesky
kernel for the real-life case for the sake of simplicity.

A. Tuning of tile size parameter

A crucial issue encountered when trying to exploit both
CPUs and accelerators lies in the fact that these devices have
very different characteristics and requirements. Compared to
regular CPUs, a GPU for instance is composed of many
lightweight cores and requires massive parallelism to hide
memory latencies and thus to fully exploit its potential perfor-
mance. As a result, GPUs typically exhibit better performance
when executing kernels featuring numerous threads, which we
call coarse grain kernels in the remainder of the paper. On the
other hand, regular CPU cores typically reach their peak per-
formance with fine grain tasks working on a reduced memory
footprint. To illustrate this claim, we provide in Figure 1 a
performance profile of the matrix product kernel (DGEMM)
on the two devices composing our experimental platform. We
can observe that the sequential MKL implementation of the
DGEMM kernel (for a regular CPU core) reaches its peak
performance for matrix sizes greater than 200 while in the
case of the cuBLAS kernel (for the GPU device), the GPU
reaches its peak performance for sizes above 2000.

Unfortunately, runtime systems often consider accelerators
as single devices, and treat individual cores equally. Because
many applications are parallelized using homogeneous block
or tile decomposition, runtime systems’ schedulers have to
cope with very different durations when executing tasks over
single cores or over accelerators, resulting in situations where
only a few tasks are assigned to CPUs because of bad
scores computed by the performance prediction-based heuris-
tics. As a consequence, task-based applications running on
such heterogeneous platforms typically adopt an intermediate
granularity, chosen as a trade-off between coarse-grain and
fine-grain tasks. A small granularity would indeed lead to
poor performance on the GPU side, whereas large kernel sizes
would dramatically increase the cost of wrong load-balancing
decisions. This basic solution is used by state-of-the-art dense



● ● ● ● ● ● ● ● ● ● ●●● ●● ●● ●● ●
●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●
● ● ● ● ● ● ● ●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
● ● ●

●
●

●

●

●
●

●

●

●

●
●

●

●0
100
200
300
400
500
600
700
800
900

1000
1100
1200

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
Matrix Size (N)

G
F

lo
p/

s

Type ●●●● ●●●● ●●●● ●●●●CPU 1x10 CPU 1x5 CPU seq GPU (cuBLAS)

Fig. 1: GEMM performance.

linear algebra libraries [11], [12], [24]. In the remainder of
the paper, we will use the same approach and consider a tile
size of 960 that represents a good compromise in our context.
Throughout the text, all matrix sizes are thus expressed in
terms of number of tiles per row (or column).

B. Experimental Framework

In this section, we present an analysis of the greedy HEFT-
based strategy and of the two proposed variants of HETERO-
PRIO (namely Area and Het.Index). Let us first describe
the analysis and experimental methodology.

We rely on an adaptation of CHAMELEON which is able to
process parallel tasks. This implementation does not change
algorithms and subsequent DAGs. When a parallel kernel
needs to be called (relying on Intel PARALLEL MKL), we
invoke a specific prologue function to ensure that it will
use the right set of resources [15]. Thanks to the hwloc
framework [25], we take into account the machine topology to
cluster resources together so as to ensure a proximity between
resources of the same group. We measured the execution time
of each of the underlying kernels on the GPUs as well as
on various number of CPUs (part of these measurements are
depicted in Table I).

We use these timings to perform simulations of the behavior
of each considered scheduling algorithm on each task graph.
To simplify the simulations, we assume that it is possible
to overlap communications with computations, and we thus
neglect communication costs. In order to explore a wide range
of cases, we analyze all possible ways to group the 20 CPU
cores in clusters of size at most 10 (on our platform, it
is not efficient to use groups larger than 10 cores due to
NUMA effects). This yields to 530 different configurations,
and for each configuration, we compare the performance of
each considered scheduling algorithm. The HEFT algorithm
is implemented as described in the introduction, combining
a prioritization of tasks by their distance to the exit node
with a greedy strategy which allocates tasks so as to finish
them as early as possible. For each configuration, we also
compute an upper bound on the achievable performance (the
Iterative Bound as proposed in [9]), which is obtained by

solving a preemptive relaxation of the problem, expressed as
a (rational) linear program. This upper bound is stronger than
the commonly used GEMM peak bound, and provides a good
hint on how well the task graph is suited to each particular
platform.

In addition, we also compare the Cholesky factorization
performance with actual executions. For the HEFT based
algorithm, we use the implementation available in StarPU
which is based on the minimum completion time heuristic to
schedule tasks on computational unit – thus a representative of
state of the art HEFT heuristic. For HETEROPRIO, in order to
ease the implementation of the spoliation feature, we compute
an offline HETEROPRIO schedule in simulation mode and run
this schedule with StarPU runtime system in real execution,
with dynamic adaptations discussed in Section IV-D.

C. Simulation Results & Analysis

The obtained results are shown in Figure 3 for Cholesky
factorization, and in Figure 4 for QR factorization. Each
column represents a given scheduling algorithm, and each
row corresponds to a matrix size, expressed as the number
N of tiles of size 960 in each row or column. Each dot
corresponds to one given configuration, with the y axis show-
ing the obtained performance, expressed in GFlop/s. The x
axis represents the number of clusters in each configuration:
this goes from 2 for the configuration with 2 groups of
10 cores, to 20 for the configuration with 20 single-core
clusters. Configurations with small number of clusters thus
have larger clusters, and correspond to configurations where
the heterogeneity of the whole platform is lower (since CPU
clusters achieve performance close to the one of a GPU). On
the other hand, configurations with a larger number of clusters
are more heterogeneous. For each scheduling algorithm, a
horizontal line shows the performance with individual CPUs
and GPUs (without CPUs clustering, i.e. 20 clusters) and acts
as a reference line for performance comparison.

For Cholesky factorization (Figure 3), we can make the
following observations. HETEROPRIO variants performance is
better than heft performance for all considered matrix sizes
as expected. The heft algorithm requires a relatively small
number of clusters to achieve good performance, showing
that this algorithm does not cope well with strong platform
heterogeneity, even for large matrix sizes. On the other hand,
the HETEROPRIO variants are able to make good use of
heterogeneous configurations, except for very small matrix
sizes. In the case of very small matrix sizes, it is however
worth noting that the upper bound on performance does also
drop for a large number of clusters, which hints that this per-
formance drop is intrinsic to the task graph: the performance
in that case is limited by the critical path of the graph, and
clustering CPUs is necessary to obtain good performance. In
general however, the upper bound is not enough to predict
which configuration will provide the best performance for the
algorithms. We can also notice that the performance of the
Het.Index is more stable than Area for all matrix sizes,
and there is a large number of configurations for which Area



SYRK

POTRF

POTRF

GEMM

TRSM

GEMM

TRSM

GEMM

GEMM

TRSM

TRSM

SYRK

TRSM

SYRK

POTRF

SYRK

TRSM

SYRK

SYRK

POTRF

(a) Cholesky Factorization DAG

GEQRT

TSQRT ORMQR

TSMQR

TSQRT

TSQRT

TSMQR TSMQR

TSMQR TSMQR

TSMQR

TSQRT

TSMQRTSMQR

TSQRT

TSMQR TSMQRTSMQR

ORMQR

TSMQR

ORMQR

TSMQR

ORMQR

TSMQR

ORMQRORMQR

GEQRT

GEQRT

TSQRT

GEQRT

(b) QR Factorization DAG

Fig. 2: Application task graphs for 4 ×4 tile matrix.

achieves significantly lower performance than Het.Index;
however, their best-case performance is comparable. We can
explain this better performance for the Het.Index variant
by the following reason. The Area score is based on a
global view of the task graph without dependencies and
provides an overall repartition of the tasks. This repartition
would be perfect if all tasks were independent, but the ideal
repartition actually changes over time as dependencies unfold.
Additionally, for each resource, the optimal repartition often
involves ties between types of tasks. For example, two types of
tasks which are not well suited to a resource would be assigned
a score 0 since 0% of these types of tasks should be executed
on this resource. The scheduler thus treats both types of tasks
indifferently, whereas one may be much more inefficient than
the other, and this results in slightly lower performance than
Het.Index variant in some cases. It can also be observed
that clustering CPU cores is not always beneficial and some
configurations achieve lower performance than the reference
performance, which indicates that performance is dependent
on critical tasks as well as on task efficiency.

Similar observations can be made for QR factorization (Fig-
ure 4). A notable difference is the behavior of all scheduling
algorithms (even the upper bound) when the number of groups
is too low, where the performance drops strongly. This is due
to the fact that the basic kernels used in QR factorization
cannot be parallelized as efficiently as those used in Cholesky.
Obtaining good performance in heft thus requires precise
tuning on the group size to obtain configurations which have
both low heterogeneity and small enough clusters. On the other
hand, the good behavior of both variants of HETEROPRIO
with a large number of clusters enables to achieve good

performance even in this case.
In Figure 5, we present another view of the same results:

this graph has been obtained by identifying the 10% best
configurations for each matrix size and each algorithm. The
graph shows the performance obtained on these configurations
with a ribbon for each algorithm, where the highest point rep-
resent the best configuration, and the lowest point represent the
worst among the 10% best configurations. This graph is meant
to highlight the performance that can be obtained by each
algorithm if the configuration can be adapted to the algorithm.
This shows clearly that, for Cholesky, the gap between heft
and HETEROPRIO is wider for medium-size matrices, whereas
for QR, the gap is still present even for larger matrices. The
Area and Het.Index variants have very similar best-case
performance, except for Cholesky factorization of medium-
size matrices, where Het.Index achieves best performance.
Finally, the results obtained by HETEROPRIO are reasonably
close to the upper bound, in all considered cases.

In summary, HETEROPRIO variants significantly outper-
form standard HEFT in all cases, and Het.Index variant
is preferable due to a better overall stability. These results
also highlight the benefits of CPU clustering: except for QR
factorization of very large matrices, where the kernels have
lower scalability and the best performance is always achieved
with configurations that contain groups of CPUs.

D. Analysis of Actual Execution Traces

We now present results obtained in actual execution with the
StarPU runtime, for the Cholesky factorization. As candidates
for actual executions, we consider the configurations for which
HETEROPRIO achieve the best performance in simulation. For



heft HP with Area HP with Het.Index Upper bound

● ●●
●●● ●
●
●

● ●●●●

●●
●

●●●
●
● ●●●
●

● ●
●●
●
●

●●
●●

●●

●
●●

●●
●●

●●

●

●

●
●
●●

● ●
● ●●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●●

●
●●

●
● ●●

●●
● ●●

●

●● ●●
●●

●

●
●●●

●
●

●
●●

●
●

●

● ●●●

●

●
●
● ●●●

●

●● ●

●

●● ●
●●

●

●

●
●

●
●

●●
●

●
●
●
●
●

●●●●
●

●
●●●
● ●

●●
●

● ●●

●

●
●

●
●●
●●

●

●

●
● ●
● ●

●●

●

●

●
●

●
●

● ●●

●
●

●
●

●

●●
●●●●
●

●

●

●●

●●●
●

●
●●●
● ●●

●●

●
●

●●
●
●●●

●
●
●●

●●
●
●

●
●

●
●
●
● ●

●

●

●●
●
●

●●●
●●
●●

●

● ●●●
●●
●●●

●●

●

●

●

●

●●●●
●

●
●●
● ●●

●
●
● ●●●

●● ●
●●
●●●

●● ●
●

●

●

●
● ●●

●

●

●
●

●
●
● ●●
●

●●

●

● ●
●

●

●●
● ●●●

● ●

●
●●

●
●

●
●
●

●

●●●●
●●●

●
● ●●

●●
●

●

●
●●

●

● ●

●
●

●● ●
●
●

●●

●

●
●
● ●●

●

●

●●
●

●
●●

●

●
●●

●
●

●
●
● ●

●
●

● ●
●

●

●
●

●
●

●●

●

●●●
●

●
●

●

●

●
●●

●

●●
●

● ●●

●

●
●
●
● ●

●
●
●●

●
●

●

●
●●

●
●

●●
● ●

●
●

● ●

●

● ●

●

●

● ●●

●

●
●
●

●●

●
●

●

● ●

●

●
●

● ●
●
●

●●

●

●
●● ●●●

●
●

●

● ●●

●

● ●●
●

●● ●
●
●

●●

●

●
●●

●

●
●
●

●

●
●
●●

●
●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●●●
● ●

●
●

●
●●

●●

●

●●●●

●
●●
●

●

●

●

●
●

●
●●●
●
●
●

●

●

●

●●

●
●●
●
●●

●

●

●●

●

●

●
●

●
●
●

●

●
●
●●

●

●

●●●
●

●●●●

●●

●
●
●

●●
●

●
●

●

●

●●
●

●

●
●

●

●●

●

●

● ●

●

●

●

●●●●
●

●

●

●●

●

●

●
●

●●

●
●

●
●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●●
●
●●
●●

●
●

●
●
●

●●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●●● ●
●●

●

●
●

●
●
● ●

●

●

●

●

●
●

●

●●●
●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●●

●
●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●● ●

●
●

●
●

●

●
●●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●
●●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●●
● ●

●●

●

●

●

●
●
●
●

●
●

●●●

●

●

●

● ●
●

●
●
●

●

●

●●
●

●

●
●

●

●
●

●

●
●●●

●

●

●

●● ●

●●
●

●

●

●

●
●

●●

●●
●●

●

●
● ●
●

●

● ●

●
●●●

●
●
●
●●

●
●

●●

●

●

●

●

● ●

●

●●● ●

●

●
●●

●
●

●
●
●
●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●●

●

●

●

●
●● ●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●●
● ●

●

●
●

●
● ●●

●

●
●

●

●
●
● ●

●
●

● ●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●
●

●

●
●●●

●
●●
●

●

●●

●●

●
●●

●●
●

●

●●

●

●
●

●
●●
●
●

●

●

●

●● ●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●●●●

●●●

●
●

●

●●

●●

●

●

●
●

●

●

●●

● ●

●

●

●●
●●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●
●
●

●

●●●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●
●

●

●

●●

●
●●

●●

●

●

●

●
● ●
●

●●
●

●
●

●●●●●
●
●

●
●

●
●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●●
● ●

●
●●
●

●●●
●●

●●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●● ●●

●

●

●

●●

●
●●

●

●
●
●

●

●

●●

●●

●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●
●
●

●
●

● ●

●
●

●

●

●

●
●

●

●
●●

●

●●●
●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●
●

●●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●

●●
●

●

●

●
●

●

●
●
●

●
●

●

● ●●

●

●
●●

●

●

●

●

●●
● ●

●
●
●
●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

● ●●●

●
● ●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●● ●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●●
●

●
●

●

●
●

●●
●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●
●● ●●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●● ●
●

●● ●

●

●●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●

●●

●

●

●

●

●

● ●
●●●●

●

●●
●

●

●

●

●

●

●●
●
●●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●●
● ●

●

●
●
●

●
●●●

●
●

●

●
●

●
● ●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●
●
●

●

●
●●

●●
●●

●

● ●●●

●

● ●●

● ●●

●

●●

● ●
●●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●

●
●

●

●
●
●

●

●

●●
●

● ●
●●

●

●

●

● ●
●

●

● ●●

●

●
●●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●●

●●
●

●
●

●

●

●

●
●

●
●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●
●●

●

●

● ●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●
● ●

●●

●●

●●

●

●

●
●●

●
●●

●

●●
●
●

●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●

●

●
●
●●

●
●

●
●
●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●

●

●

●

●●● ●

●

●●
●

●●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●●

●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●●●

●
●

●

●

●

●
●●
●
●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●

●●

●
●

●
●

●

●
●
●

●

●

●●●
●

●
●●

●

●
●

●
●●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●
●
●●

●●

●

●

●● ●

●

●

●

●

●

●●● ●
●

●●

●●

● ●
● ●
● ●

● ●

●●
●

●

●
●

●
●
●

●●●

●
●

●

●

●

●
●

●

●
●● ●

●

●
●●

●

●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

● ●
●● ●

●

●

●

●● ●

●
●●

●

●
●●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●●

●●
●

●

●●

●
●
●

●
●

●●
●

●
●●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●

●

●

●

●● ●

●

●●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●●
●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●
●
●

●

●
●

●●●

●
●●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●
●
●

●

●
●●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●

●●●

●
●

●●

●●

●

●●●●
●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●
●

●
●

●

●●

●
●
●●

●

●
●●

●

●

●
●

●

●

●

●●

●

●●
●
●●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●●

●

●

●●
●

●
●●

●

●

●●
●

●

●
●
●

●
●

●

●● ●

●

●
●

●

●
●●

●

●
●
●
●●

●
●

●●
●

●

● ●

●
●

●

●
●
●

●

●

●●●
●●

●

●

●
●

●

●

●●

●

●

●
●
●

●
●

●

●● ●

●

●● ●

●
●
●

●

●

●● ●

●

●
●
●

●

●
●
●
●

●
●

●

●

●
●

●●

●

●● ●

●
●● ●

●

●●
●

●

●

●●● ●●

●

●

●●
●

●
●
●

●

●

●

●
●

●●

●

●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●●
●

●●●●

●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●

●

●

●
●

●

●
●
●
●

●●●●

●

●
●
●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●
●

●
●●

●
●

●

●
●
●●
●

●

●

●

●●
●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●
●●
●

●

●
●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●● ●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●●●

●

●
●●

●

● ●
●
●

●●

●●

●

●

●

●

●●●
●
●
●

●
●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●
●

●

●
● ●

●
●●

●
●●
●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●● ●
●

●
●
●

●

●

●
● ●

●

●
●

●

●

● ●
●
●

●

●

●

● ●●

●

●
●● ●

●
●
●●

●●

●

●
●●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●●
●
●

●

●
●

●

●
●
●

●

●●●

●●●●
●

●

●
●
●●

●
●●

●
●

●●

●
●

●
●●
●
●●●

●●

●
●●

●●●
●

●●
●

●

●●
●

●

●●

●●
●●

●

●●●

●

●

●

●●
●

●

●●
●

●
●
●
●
●

●●●

●
●

●

●

●● ●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●
●●

●
●
●

●
●
●●

●
●
●●

●

●

●●

●

●

●
●

●●
●

●
●

●

●

●
●
●

●●●●

●

●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●●
●

●
●

●●
●

●

●●●

●
●

●

●
●

●●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●
●
●
●
●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●●
● ●

●
●

●
●

●●
●●

●

●

●

●●●

●●●

●

●

●
●

●
●

●

●
●
●●
●●

●

●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●
●

●● ●

●
●

●

●

●
●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●
●●

●●

●

●

●●

●

●

●●

●

●

●

●●● ●
●

●

●

●●

●●

●●●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●
●

●●

●

●●

●
●

●
● ●

●
●

●●

●
●
●

●
●

●●●

●●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●●
●●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●●
●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●●
●

●
●

●

●
●

●

●●

●
●

●●
●

●

●●

●

●

●

●●●

●
●

●

●

●●

●●
●●

●
●

●●
●

●●

●●

●●
●

●

●
●

●

●

●●
●
●

●

●

●

●●
●
●●

●

●

●

●

●●

●●

●

●

●

●
●
●●●

●

●●
●
●

●●●

●

●

●
●

●●

●

●
●

●

●●
●

●●

●

●

●

●●
●

●
●

●

●

●

●
● ●

●●

●

●●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●
●

●●●

●

●

●●

●●●

●

●

●
● ●

●

●

●
●

●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●●●

●

●

●
●

●

●

●
●

●●●
●●

●

●

●
●●

●●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●●
●

●
●

●

●
●

●

●●●

●
●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●

●

●

●●

●

●

●●

●
●

●●●

●

●

●●
●
●●

●

●

●●

●

●

●
●

●

●

●

●●

●
●
●

●

●●

●
●●●
●

●

●

●●
●

●●●

●

●

●

●

●

●
●

●●
●●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●
●

●

●
●

●

●●
●

●

●●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●
● ●

●

●

●

●●

●●
●●

●●

●

●

●

● ●
●
●
●

●

●

●
●

●

●●

●

●

●
●

●

●●

●
●

●
●

●

●

●●

●

●●●

●

●

●●

●
●●

●

●

●
●

●

●

●●

●

●

●

●●●
●
●

●

●●
●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●●
●●

●

●

●

●

●● ●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●● ●

●

●
● ●

●

●●

●

●

●

●●
●

●
●

●

●

●
● ●

●

●
●

●

●

●●● ●●
●

●

●● ●● ●●
●

●
●
●

●● ●
●

●

●●
●
●
●

●

●
●

●

●●●● ●

●

●

●●●●●
●

●●●●
●●●●● ●

●

●
●

●●●●●●●
●●

●
●●

●●●●●● ●●
●●

●
●

●

●
●●●● ●●●●

●
●

●●●
●●●●●

●●●●● ●
●●●● ●●
●●

●

● ●
●
●

●● ●
●●

●
●

●

●

●●●●
●
●●

●●●

●
●

●
●●●● ●●●●

●
●

●●●
●

●

●

●●●●●
●

●●●●
●●●●● ●

●

●
●●

●●●●●● ●●
●●

●

●●●
●

●
●●●

●
●●
● ●

●
●

●●

●

●
●●

●●
●

●●●●●●●
●●

●
●●

●●●●●● ●●
●●

●
●
●

●
●●●● ●●●●

●
●

●●●
●●●●●

●●●●
● ●

●●●● ●●
●●

●

●
●
●

●
●● ●
●●

●
●

●

●

●

●●●●●
●

●●●●
●●●●
● ●

●

●
●●

●●●●●● ●●
●●

●

●●●
●

●
●●●

●
●
●
● ●

●
●

●●

●

●
●●

●
●
●

●
●●●● ●●●●

●
●

●●● ●
●●●
●

●●●●
● ●

●●
●
● ●
●

●●

●

●
●
●
● ●
●

●
●●

●
●

●

●
●
●

●●●
●
●
● ●
●

●●

●

●
●●

●
●

●
●
● ●
●
●
●

●
●

●

●●

●

● ●●

●

●●●
●

●
●●
●
●

●
●●

●
●

●
●

●●

●
●

●●
● ●
●

●●
●

●
●

●

●
●●

●
●

●●
● ●

●
●
●

●●

●

●●

●

● ●●

●

●
●
●

●
●

●●

●
●

●●
● ●
●

●●
●

●
●

●

●
●
●

●●

●

●●

●

● ●●

●

●

●●
● ●
●

●●
●

●
●

●

●

●●

●
● ●●

●
●

●●
●

●
●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●●

●●●●

●

●
●

●●●●●

●

●●
●

●

●●●
●
●

●●

●
●

●●●
●●
●

●

●●

●
●
●

●●●●●●

●

●

●● ●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●●
●

●

●●●
●
●

●●●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●

●
●●
●
●
●
●

●●●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●
●

●●●●●

●

●●
●

●

●●●
●
●

●●

●
●
●

●●●●●●

●

●

●● ●
●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●

●
●

●●●
●●
●

●

●●

●
●
●

●●●●●●

●

●

●● ●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●●
●

●

●●●
●
●

●●
●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●

●●●●●

●

●●
●

●

●●●
●
●

●●

●
●
●

●●●●●●

●

●

●● ●
●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●●
●

●

●●●
●
●

●●
●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●
●

●●●●●●

●

●

●● ●
●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●

●●
●

●

●●●
●
●

●●
●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●
●

●●

●

●● ●●
●● ●

●

●●
●

●

●

●●● ●●
●

●

●● ●●
●● ●

●

●●● ●●
●●

●● ●● ●●
●

● ●●
●
●

● ●

●

●
●
●

●

●

●

●

●●

●●
●●

●

●
●

●
●●●●

●

●
●●

●

●●●
●●

●●

●
●

●●●
●

●●

●

●●

●
●

●

●●
●●●●

●

●

●● ●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●

●
●
●●

●
●

●

●●
●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●

●
●●●●

●

●
●●

●

●●●
●●

●●

●
●

●

●●
●●●●

●

●

●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●●

●●●
●
●●

●

●●

●
●

●

●●
●●●●

●

●

●● ●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●

●
●●●●

●

●
●●

●

●●●
●●

●●

●
●

●

●●
●●●●

●

●

●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●

●

●●
●●●●

●

●

●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●● ●
●
●●

●●

●

●● ●

●

●● ●

●

●●
●

●

●

●●● ●● ●

●

●● ●

●

●● ●

●

●●● ●● ●
●

●● ●● ●● ●
● ●● ●

● ● ●

3000

3500

4000

4200

4400

4600

4800

4500

4600

4700

4800

N
: 12

N
: 24

N
: 32

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Number of clusters in configuration

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

All configurations for Cholesky

Fig. 3: Performance results for all configurations for Cholesky factorization.

heft HP with Area HP with Het.Index Upper bound

●

●
●●●
● ●
●
●

●
●

●
●● ●●

● ●●●
●
●

●●
●●●

●
●●●

●

●
●

●

●
●
●

●●●●
●

●

●

●

●
● ●

●●
●

●

●
●

●

●

● ●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●●

●
●

●

●

●

●●
●●

●

●

●
● ●●

● ●
●

●

●

●

●● ●

● ●
●●●

●
●● ●

●

●
●
●
● ●

●
●

●
●●

●

●

●
●

●●

● ●

●● ●
●

●

●

●

●

●●
●

● ●

●

●●
●

●
●

●

●

●

●●

●
●

●●
●

●

●
●

●
●
●●

●

●

●
●●

●
●

●
●

●●
●

●
●

●

●

●

●

●●

●

●
●●●
●●
● ●

●

●

●

● ●●

●●●●
●

●
●

● ●

●

●
● ●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●●

●

● ●

●

●

●

●

● ●
●
● ●

●

●

●
●

●● ●

●● ●
●
●
●
● ●
●

●

●●
●

●

●

●●
●
●

●

●
●

●

●
●●●●

●

●
●●

●

●

●●
●

●

●●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●
●

●
● ●

●
●●

●
●●●

●●

●●●
●

●

●
●
● ●●

●
●● ●

●

●

●

●
●

●
●

● ●●

●

●

● ●●
●

●

●

●

●

●●●●

●

●●

●

●●
●

●
●●

●

●

●●

●● ●

●
● ●

●
●● ●

●
● ●● ●

●

●

●

●

●

●
●

●
●●

●

●

●

●●
●
●●

●●
●●

●●
●

●
●

●

●

●

●●

●

●

●●

●
● ●
●

●
●
● ●●

●●
●

●

●
●

●

●
●

●

●

●

●
●
●

●●
●

●

●

●
●
●

●
●

●

●●●
●

●

●
●
●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

● ●●

●
●

●
●

●

●

●●

● ●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●
●●●

●●●●
●

●●
●●●●●

●
●●●●

●●
●●
●

●
●

●●
●●●
●●●●

●●●●●

●
●●
●
●
●

●●
●●

●

●
●●

●●●
● ●●●●

●

●

●
●● ●

●●●● ●

●●
●
●

●
●

●●● ●●
●●

●

● ●●

●
●

●
●●
●

●
● ●

●

●●
●
●●●
●

●●
●●●●

●●●
●

●●●●

●●

●●●
●

●●
●●●
●●

●
●
●●●

●●●●
● ●

●

●●●

●●●
●●●

●●
●●

●
●●●

●
●

●●●
●●●●
●●

●

●
●

●●
●●

●

●●

●●●
●●
●●

●●
●●
●

●●
●

●●●

●

●

●●
●

●●
●

●
●●
● ●
●
●
● ●
●

●●● ●●
●
●
●

●●●●
● ●

●
●●●

●
●

●●
●

●

●●●
●●

●
●
● ●●

●

●
●

●●
●●

●

●
●

●

●
●

●

●

●
●
●

●●●●● ●●●
●●●

●●
●
●

●
●●● ●●

●
●
●

●
●
●●

●
●●
●●

●
●

●
● ●

●●
●

●
●

●

●

●●

●

●

●
●

●

●●
●●●●●

●●●
●● ●●●
●

● ●● ●
●

●
●

●
●
●

●
●

●●●
●● ●

●●

●
●●

●

●●

● ●●

●

●

●●
●●

●
●

●
●●

●

●
●
●

●●●
●● ●

●

●●

●

●
●

●
●

●

●

●

●● ●

●
●
●

●
●●

●
●

●

●
●●
●

●
● ●●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●
●●● ●

●
●●

●

●

●

●

●

●
●●

●
●

●
●

●
●
● ●●

●
●●

●● ●
●

●●
●

●
●

●● ●
●

●
●

●

●

●

●
● ●

●

●
●● ●

●

●

●

●

● ●

●

●● ●

●

●

●●
●

●
●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●●●

●●●●

●

●●

●●●●●
●●●●●
●●
●●●

●

●

●
●

●●●●●●●
●●●●●

●●●
●
●●

●●

●

●

●

●●●

●●●●
●●

●●

●
●

●●
●

●

●●
●
●

●●
●●●

●●

●
●

●

●
●

●●

●

●

●●
●

●

●
●
●●

●●

●

●

●●●●●●●
●
●●●

●●

●●●●

●
●●●

●
●

●●●

●

●
●

●
●●●●

●●●●●
●●
●
●●

●
●

●●●

●●●

●
●●

●
●

●
●

●

●●●

●

●

●
●●

●

●●●

●●

●
●

●

●

●

●●

●

●
●

●
●●●●●●

●
●

●●●

●
●●
●●●

●●
●
●

●

●●
● ●●●●

●
●
●●

●
●

●●●

●

●●●●
●
●
●●●

●●
●●●

●
●

●●

●

●
●●

●
●●
●●●

●●

●

●●
●●●●●

●
●

●
●●

●●
●
●
●

●●

●●●

●
●●
●●●

●

●

●
●

●

●
●●

●
●

●●●
●●●●
●
●

●
●●

●

●

●●
●

●
●●

●●●●
●

●●●
●

●

●
●●

●

●●●●

●●●●
● ●

●

●●●

●

●

●
●

●

●

●
●
●

●
●

●●●
●●

●

●●●

●●●●●
●

●
●

●●
●

●●●

●
●

●
●●

●
●●●

●●
●

●
● ●●

●●
●

●●●●

●●●●●
●●

●●
●

●
●

●●
●

●

●●●
●

●
●●● ●

●
●

●
●●

●
●

●●●

●
●●●

●●

●

●●
●

●
●●

●

●●●

●
●

●
●

●

●

●●●
●

●
●●●

●
●

●

●●●

●●

●

●●
●

●

●● ●

●

●●
●

●● ●●
●

●●
●

● ●●

●

●

●
●

●

●
●●●

●● ●

●
●●

●

●
●● ●

● ●
● ●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●

●
●

●
●●

●

●
●● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●●● ●
●

●

●
●

●●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

● ●
●

●

●
●

●
●

●

●
●
● ●

●●
●

●●

● ●

● ●
● ●●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●●

●●

●

●
●●

●

●●

●

●●

●

●
●●

●

●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●
●●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●
●●●●

●

●

●

●
●

●

●
●
● ●

●
●
●● ●
●

●●
●

●
● ●

●

●●
●

●
●

●

●

●
●●●

●●

●
●

●
●

● ●●

●

●
●●

●

● ●
●

●

●

●

●
●

●

●
●●
● ●● ●

●

●

●
●
●

●

●● ●

●

●

● ●

●

●
●●

●

●

●
●
●

●
● ●

● ●

●
●● ●
●

●
●

●
●

●

●●
●● ●●
●●
●●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●
●
●

●

●
●
●

●

●●

●

●
●

●
●

●

●●

●● ●

●●●●
●●

●

●

●

●●
●●
●●

●

●

●

●

●

●
●●

●

●●

●

●
●● ●

●●
●

●

●

●●
●

●

●●
●

●

●●●
●

●

●

●●
●●
●
●●

●●

●
●●

●● ●
●

●

●
●
●●

●
●

●●● ●
● ●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●● ●

●

●●
●

●
●
●●

●

●
●

●

●

●

●●
●

●●

●
●

●
●

●●

●
●●

●
●

●

●●

●
●●●

●
●

●● ●

●

●●
●

● ●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●●●
●

●
●● ●

●
●

●

●●●
●

●

●
●●

●

●

●●
● ●

●

●●

●

●●
●

●

●
●●

●●●
●

●

●

● ●
●

●●● ●
●

●●●

●● ●

●

●

●●●●
● ●

●
●●
●

●
●

●●●
●●

●●● ●
●
●●●●

●

●

●●
●

●
●

●

●

●

●
●●

●●
●●

●
●

●

●● ●
●

●● ●

●

●
●

●

●●
●

●

●●● ●●

●

●

●

●

●●
●●

●

●

●

●
●

●
●

●●●
●

●

●● ●

●

●
●●

●

●

●
●● ●● ●

●●●
●●●●
●●

●● ●●
●

●●●
●

●
●

●
●

●
●●
●

●●● ●● ●● ●
● ●●●●●

●
●●●●

●●
●

●●
●

● ●●
●

●
●●●

●●
●●
●

●
● ●

●●● ●
●

●●●

●
●●●

●
●

●
●● ●● ●●

●

●●
● ●

●

●● ●
● ●

●
●

●
● ●

●● ●● ●
●●● ●●

● ●
● ●
●

●● ●

●
●●
● ●

●
●●
●

●● ●
● ●● ●

●
●● ●● ●●
●

●
●

●● ●● ●
● ●● ●

●
●●

●
●

● ●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●
●●●

●●

●●

●

●

●

●

●

●
●

●
●

●
●

● ●

●
●

●●●
●

●

●●
●

●

●

●

●

●●
● ●

●●●
●

●

●●●
●

●●●●
●●
●●●

●●
●●●

●

●

●●
●

●

●●●

●

●
●●●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●
● ●

●●●

●

●

●●●
●

●

●

●

●

●●
●

●
●●●●

●●
●●●

●●

●●
●

●●
●
●
●
● ●
●

●
●

●
●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●

●

●

●
●
●
●●
●

●
●●●●

●
●●

●●●
●

●

●● ●

●●●
●●●●

●
●●●

●

●
●●●

●
●●●●

●●●●●

●●

●●●
●

●

●●
●

●

●●●
●

●

●●●
●● ●

●
●

●
●

●●
●

●

●●●●

●●
●●

●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●● ●

●●●

●●●●
●

●●●

●

●

●●●

●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●

●●●
●●

●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●● ●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●

●

●●●
●

●●●

●●

●

●● ●
●

●●
●

●●●
●

●

●●
●

●

●●●
●

●
●●● ●●

●

●
●●

●●

●

●●
●

●

●●
●

●
●●●

●

●
●●●

●● ●

●

●●
●

●
●●

●

●
●●●

●●
●

●
●●

●
●

●●
●

● ●●
●●

● ●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●
●
●

●
●

●
●●

●
●

●
●

●●●

●

●

●

●

● ●

●●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●●

●
●

●

●
●
●● ●

●

●
●

●
●●

●

●

●

●

●●●

●●
●
●
●

●

●
●

● ●

●
●
●

●●●

●●

●●

●

●
●●
●

●

●
●
●

●

●● ●

●

●

●

●●
●●

●

●●

●

●
●
●
●

●

●

●●●

●●

●

●

● ●

●
●
●

●
● ●

●
●●

●

●
●● ●
●

●

●

●
●●

●
●

●
●● ●●

●

●

●
● ●

●●

●
●●
●

●
●●

●

●

●●

● ●
●
●●
●●

●

●

●●
●

●
●●

●

●

●

● ●

●
●

●
●

●
●
●●

●

●
●●

●
●
●●●
●

●

●
●
●
● ●

●

●
●

●

●
●

●

● ●

●
●
●
●

●●

●

●

●

●

●

●●
●

●

●

●●●

●●
●●●

●

●
●

●
● ●

●

●
●●●

●● ●● ●

●●●
●●
●

●

● ●

●
●●

●●

● ●
●

●

● ●
● ●

●

●
●

●●●

● ●

●

●●
●●
●
●●

●

●

●

●
● ●

●

●●

●

●

●

●●●

●

●
●
●

●

●
●
●

●

●

●

●
●●

●
●

●

●●

● ●
●●●
●
●

●

●
●

●

●

●●●
●

●

●●

●

●

●●
●

●●

●
●
●

●

●
●

●

●

●

●

●
● ●

●●●
●

●
●

●●
●

●●
●●

●

● ●●●
●

●

●
●● ●

● ●

●●
● ●● ●

●
●

●

●●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●● ●

●

●●●
●

● ●
●●

●
●

●

●●
●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●

●

●●●

●●
●

●

●

●
●

●

●● ●
●

●●●
●
● ●●
●
●

●
● ●

● ●
●

●●
●● ●

●

●

●

●●●

●

●

●●
●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●●

●
●●●●

●●

●●

●

●

●

●●

●●

●
●

●●

●

●
●●

●

●●
●● ●
●

●

●●●

●

●

●
● ●

●

●● ●
●

●

●●
●

●●

●
●

●
●●●● ●●●●● ●●

●
● ●● ●

●
●

●● ●●● ●● ●

●

●
●●●

●●

●

●

●

●

●
●●

●

●●

● ●

●
●

●
●

●
●●●

●

●
●

●
●

●●

●
●

●●
●

●
●
●●●● ●

●

●
●

●

●

●●

●

●● ●●
●● ●

●
●● ●●

●
●● ●●●● ●

●
●

●●
●● ●
●

●

●●
●

●

●

●
●

●
●

●●

●
●

●

●

●●
●

●● ●● ●●
●

●●●

●●●
● ●

●

●●
●●

●
●● ●

●●

●
●

●●●●● ●
●●

●● ●● ●●
●●

●●
●

●● ●●
● ●●

●

●●

●●●

●● ●

●●

●●

●
●●●●

●●

●
●

●

●

●
●●●
● ●
● ●●

●

●
●● ●●

●
●
●

●●
●● ●●●

●● ●●
●
● ●

●
●●

●

●
●● ●

●
●● ●●

●
●
● ●

●
●
●●

●

●
●●● ●●
●
●
● ●
● ●

●
●●

●
●●

●
● ●●

●
●
● ●

●
●

●
●

●●
●●
●

●●
●●

●
●
●
● ●● ●●●

●
●●● ●●●

●● ●● ●
●

●
●
●

●
●

●
●●
●● ●

●●
●● ●
● ●● ●

●
●
●● ●●

●
●● ●●

●
●●●

●

●

●●●
●

●●●
●●

●
●

●
●

●

●
●

●
●●● ●●

●
● ●● ●●● ●
●

●●
●

●
●

●
●

●
● ●●● ●

●

●

● ●●
●

● ●●● ●● ●●
● ●● ●●
●
● ●● ●

● ●

● ●
●● ●●

●●
●● ●●

●

● ●
●

●●
●● ● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●
● ●

●●●
●

●●

●●

●

●

●

●●

●
● ●

●

●
●

● ●
●●

●

●
● ●● ●

●
●

●●●

●

●

●
● ●
●

●● ●
●

●

●●
●

●●

●
●

●
●●●
● ●

●
●

●
● ●● ●

● ●
● ●●●

●● ●
●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●●
●

●

●●
● ●

●●
●

●●

●
●●

●

●●

●●

●
●

●
●

●●
●

●

●
●●●
● ●

●

●
●●

●●●

●
●● ●● ●

●
●●

●●
●●
●
●●

●●●● ●●
●

●● ●● ●
● ●

●●

●

●
●●●●

●
●
●

●
●
● ●●●

●

●●
●

●
●●

●

●●
●

●

●
●
●

●●
●●

●
●

●
●●

●●●

●●

●
●●●● ●●
●
●●

●
●

●●
●

●

●
●● ●● ●●● ●

● ●

●●

●
●

●

●●

●●●

●●

●●●●●
●●●●

●

●

●●
●

●●
●

●
●● ●

●
●
●

●
●

●
●● ●●●● ●●●

●● ●● ●
● ●

●
●●

●
●
●
●

●●
●
●

●
●

●
●● ●●●

●●

●
●●●●

●●
●

●●
●

●
●● ●●

●
●
● ●● ●●

● ●
● ●

●●
●

●

●●
●
●●

●
●

●● ●
●
●
●

●
●

●
●● ●
●●● ●●●

●● ●● ●
● ●

●●
●●

●
●●●● ●●
●

●●
●

●
●● ●●

●
●● ●● ●●● ●

● ●

●
●
●

●
●

●●
● ●●●● ●●●

●● ●● ●
● ●●

●
●

●
●

●●
●●

●●
● ●
● ●●● ●

●
●

●●● ●
●

●
●●

●
● ●● ●

●
●●
● ●
●

●●
●

●●
●

●

●● ●● ●
●

●●
●●● ●●

●
● ●

● ●● ●● ●●
●
● ●●

●
●

●

●
●

●
●

●
●

●●
●

●●●●
●

●
●

●●●●●
●

●●●●
●●●●● ●●

●
●

●
●●●●●●

●●
●●●

●●●●●● ●
●

●● ●

●●●
●●●●

●●●●
●

●
●●● ●

●●●●
●●●●● ●●
●●●

●
●

●● ●
●

●●● ●
●

●●● ●● ●

●

●

●●●●●●
●●●

●●●
●●●●

●●●●
●

●
●●● ●

●●
●●●●●

●
●●●●

●●●●● ●●
●●●

●●●●●●
●

●
●● ●

●●●
●

●
●●● ●
●●●

●●
●

●● ●
●

●● ●

●●
●●
●●●●●

●●
●●●

●●●●●●
●

●
●● ●

●●●
●●●●

●●●●
●

●
●●● ●

●●●●
●●●●●

●●
●●●

●
●

●● ●
●

●●● ●
●

●●● ●● ●

●●

●●●●●
●

●●●●
●●●●● ●●

●●●
●●●●●●

●
●

●● ●
●●●

●
●

●●● ●
●●●

●●
●

●● ●
●

●● ●

●●●

●●●●
●●●●
●

●
●●● ●

●●●●
●●●●●

●●
●●●

●
●

●● ●
●

●●● ●
●

●●● ●● ●

●●
●

●●●●●●
●

●
●● ●

●●●
●

●
●●● ●
●●●

●●
●

●● ●
●

●● ●

●●●
●

●●●●●
●●

●●●
●

●
●● ●

●
●●● ●
●

●●● ●● ●

●
●●

●
●

●●● ●
●●●

●●
●

●● ●
●

●● ●

●●
●

●
●

●● ●

●
●●● ●

●
●●● ●● ●

●●●
●●

●
●● ●

●
●● ●

●

●●●
●

●
●●● ●● ●

●

●●
●

●
●● ●

●

●●● ●● ●

●

●● ●

●

●● ●
●

●● ●● ●
●

●

●●

●
●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●●

●●
●●●

●●

●
●

●

●

●

●
●

●●

●●

●
●

●

●
●●●
●●

●
●

●●
●

●
●
●

●●
●●

●

●
●●

●
●

●●●
●

●
●
●●

●●●●●
●●●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●

●

●●

●

●
●

●

●
●●

●
●
●

●
●
●●

●

●

●●

●
●

●●●
●

●
●

●
●
●

●●

●

●
●
●
●

●●
●●●

●●

●
●

●

●●●
●●●

●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●
●●
●●●

●

●

●●
●

●
●
●

●
●●●

●●●●

●

●

●●●
●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●
●

●●
●●●

●
●●●●

●●●●●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●

●●●●
●

●●●

●

●

●●●
●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●●
●●

●

●●
●

●
●●

●

●

●●●
●

●
●●●

●●
●

●

●●
●

●
●●

●

●
●●●

●●
●

●
●●

●
●

●●
●

●
●●

●● ● ●

●

●●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●
●
●

●●

●

●
●
●
●

●●
●●●

●●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●●●
●●●

●

●

●●
●

●
●

●

●
●●●

●
●●●

●

●

●●●
●

●●●●

●●●●●
●●

●●●

●

●

●●
●

●

●●●
●

●
●●●

●●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●
●●●

●
●●●

●

●

●●●
●

●

●

●●
●●●

●
●●●●

●●●●●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●

●●

●

●●
●

●
●●

●

●
●

●

●●
●●●●

●●
●●●

●●●●●●
●

●

●●
●

●●●

●●●●
●

●●●

●

●

●●●
●

●●●●

●●●●●
●●

●●●

●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●

●●●●●

●
●●●●

●●●●●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●

●●●●

●

●●●

●

●

●●●

●

●●●●

●●●●●

●●

●●●

●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●●●●●●

●

●

●●
●

●●●

●

●

●●●

●
●●●

●●

●

●●
●

●

●●
●

●●●●

●●●●●

●●

●●●

●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●

●

●●●

●
●●●

●●

●

●●
●

●

●●
●

●●●

●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●●

●

●●
●

●

●●
●

●

●●●

●

●

●●●
●●

●

●

●●
●

●

●●
●

●

●●●
●●

●

●

●●
●

●
●●

●
●

●●
●● ● ●

1000

1100

1200

1300

1400

1750

2000

2250

1700

1900

2100

2300

N
: 12

N
: 24

N
: 32

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Number of clusters in configuration

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

All configurations for QR

Fig. 4: Performance results for all configurations for QR factorization.



Fig. 5: Performance of the 10% best configurations for both kernels.

a given configuration, we build clusters based on locality infor-
mation, thanks to hwloc [25], making sure that clusters do not
cross the NUMA boundaries of the physical machine. From
the HETEROPRIO schedule, we obtain an allocation of tasks on
resources, and an ordering of tasks for each resource, that we
use for actual execution. However, since the communication
costs are neglected in simulation, we implement the following
two features to dynamically adapt the resulting static schedule
to a different environment. First, whenever a CPU cluster lacks
work (because no task assigned to it is ready yet), it can steal
a task from another CPU cluster, preferably of similar size.
Second, all tasks allocated to GPU are considered in a merged
queue, from which tasks are assigned, in order, to the GPU
which can finish it first. This allows to mitigate the number
of data transfer operations among GPUs.

Figure 6 shows the actual execution trace for a 24 × 24
matrix with both above features implemented. It shows that
most of the GEMM tasks are running on GPUs (last 4 re-
sources in the trace) and communication is almost overlapped
with computation for these tasks. However, before the tasks
that run on CPU clusters (especially POTRF and TRSM tasks),
a small idle time is introduced, due to data transfers, which
cumulatively become significant and keep GPUs significantly
idle in the end. To cope with this behavior, we propose to
inflate the execution times considered in simulation for the
CPUs, so as to take into account this communication overhead.
We have tried different values, and observed that a 15 %
increase in task execution times on CPU achieves the best
load balancing among all workers in actual executions, for all
matrix sizes. Figure 7 shows a real execution trace obtained

POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Fig. 6: Execution trace for 24 × 24 with HETEROPRIO
schedule. Time is on the horizontal axis, resources are on the
vertical axis, with GPUs at the bottom.

with the HETEROPRIO schedule with 15 % increment in CPU
execution time of tasks. We can see that the load balancing
is strongly improved: GPU devices and CPU cores are used
until the very end of the execution. In the remainder of the
paper, we will use a 15 % increment for the performance of
the kernels on CPUs.

E. Actual Execution Performance Comparison

We compare the performance on Cholesky factorization,
in actual execution and for different matrix sizes, of the
different strategies considered in this paper, together with
MAGMA [11], a state of the art dense linear algebra library.
We remind that HETEROPRIO real execution (hp-best in



POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Fig. 7: Load balanced execution trace for 24 × 24 with
HETEROPRIO schedule.

12 24 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Matrix Size

G
F

lo
p/

s

Case MAGMA heft−wc heft−best hp−best heft (hp−best config.)

Fig. 8: Performance results for the HEFT and HETEROPRIO
policies with selected configurations.

Figure 8) comes from the execution of the best schedules
obtained in simulation mode, with the two relaxations and the
15% correction as described in IV-D. For HEFT (heft-best in
Figure 8), we use the cluster configuration that achieves the
best performance in simulation with this strategy. We also run
the HEFT scheduler with the configuration obtained for best
HETEROPRIO schedule, denoted with heft (hp-best config.) in
Figure 8. In addition, we also provide the baseline performance
achieved by HEFT when not considering clusters of CPUs
(hence each CPU core is used as a single worker), denoted
as heft-wc, and the performance achieved by the MAGMA
library. For each performance bar, we plot mean values and
performance variation obtained from 10 runs.

For 12 × 12 matrix size, we observe that heft-wc and
MAGMA achieve similar performance. When using clusters,
with heft-best, the performance increases by 58% compared
to heft-wc. This is expected since the amount of parallelism
with such a matrix size is not enough to fill all 20 CPUs in
heft-wc and results in bad performance. hp-best obtains 6%
performance improvement over heft (hp-best config.), with the
same cluster configuration. heft-best is showing slightly lower
performance compared to heft (hp-best config.), which can
be explained by the communications. For a low amount of

tasks such as in this case, there are not enough tasks to fully
overlap communications with computations and therefore the
best cluster configuration identified through simulations may
experience significant overhead due to non overlapped data
transfers.

For large matrix sizes, we can observe that the gap between
heft-wc and hp-best is reduced from 31% (for 24× 24) to 8%
(for 32×32). In addition, heft-best is more accurate and outper-
forms the other HEFT schedulers such as heft (hp-best config.).
hp-best achieves a performance improvement of 4.5% over
heft-best for 24× 24. But hp-best does not achieve significant
performance improvement over heft-best for 32×32, which is
due to how the task allocation evolves with increasing matrix
size. Indeed, for larger matrices, the execution is mainly dom-
inated by (almost independent) GEMM tasks, which makes
the scheduling problem relatively easy and both hp-best and
heft-best achieve almost the same performance. These results
are consistent with Figure 5, which shows that the difference
between HETEROPRIO and HEFT is much smaller for 32×32
compared to the lower matrix sizes (and both are actually very
close to the upper bound).

V. CONCLUSIONS

In this paper, we present several extensions of the HET-
EROPRIO scheduling strategy to the case with more than two
types of resources. Besides the obvious case of platforms with
different accelerator types, this capability is also crucial when
CPU cores are clustered together to make use of intra-task
parallelism, as it has been recently advocated in order to make
a better use of all available resources and to build a more
homogeneous platform. In order to assess the efficiency of our
approach, we concentrate on Cholesky and QR factorization
although proposed techniques can easily adapt to other kernels
or applications, provided that they are expressed as Directed
Acyclic Graphs.

We perform extensive simulations and actual experiments
on a heterogeneous platform composed of two Haswell Intel
Xeon E5-2680 processors having 12 cores each and four
Nvidia K40-M GPUs, using StarPU, a modern task-based
runtime system. We show that HETEROPRIO variants are
able to make a very efficient use of almost all possible
configurations of heterogeneous platforms. Together with the
capability of clustering CPU cores, the heuristics that we
propose allow to significantly improve the performance of task
based applications.

In future works, we are planning to provide a complete
dynamic implementation of HETEROPRIO, so that such good
performance can be obtained without relying on static sched-
ules. In the longer term, this work opens many interesting
perspectives, in particular about how to select the optimal
configuration of CPU clusters, when the platform is too large
for exhaustive search. It would also be interesting to study
whether the performance can be improved by changing the
clustering of CPUs during the execution instead of using the
same configuration from the beginning to the end.



ACKNOWLEDGMENT

This work is partially supported by ANR, under grant ANR-
13-MONU-0007.

REFERENCES

[1] P. Brucker and S. Knust, “Complexity results for scheduling problems,”
Web document, URL: http://www2.informatik.uni-osnabrueck.de/knust/
class/.

[2] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation
algorithms for scheduling unrelated parallel machines,” Math. Program.,
vol. 46, no. 3, pp. 259–271, Feb. 1990. [Online]. Available:
http://dx.doi.org/10.1007/BF01585745

[3] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram,
“Scheduling independent tasks on multi-cores with GPU accelerators,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 6,
pp. 1625–1638, Apr. 2015.

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures,” Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb.
2011. [Online]. Available: http://hal.inria.fr/inria-00550877

[5] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical
task-based programming with StarSs,” International Journal of High
Performance Computing Applications, vol. 23, no. 3, pp. 284–299, 2009.

[6] A. YarKhan, J. Kurzak, and J. Dongarra, QUARK Users’ Guide: QUeue-
ing And Runtime for Kernels, UTK ICL, 2011.

[7] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. Don-
garra, “PaRSEC: A programming paradigm exploiting heterogeneity for
enhancing scalability,” Computing in Science and Engineering, vol. 15,
no. 6, pp. 36–45, Nov. 2013.

[8] H. Topcuouglu, S. Hariri, and M.-y. Wu, “Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous Computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar.
2002. [Online]. Available: http://dx.doi.org/10.1109/71.993206

[9] E. Agullo, O. Beaumont, L. Eyraud-Dubois, and S. Kumar, “Are Static
Schedules so Bad ? A Case Study on Cholesky Factorization,” in
Proceedings of the 30th IEEE International Parallel & Distributed
Processing Symposium, IPDPS’16, 2016.

[10] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and
T. Takahashi, “Task-Based FMM for Multicore Architectures,” SIAM
J. Scientific Computing, vol. 36, no. 1, 2014.

[11] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” Journal
of Physics: Conference Series, vol. 180, no. 1, pp. 012 037+, Aug. 2009.
[Online]. Available: http://dx.doi.org/10.1088/1742-6596/180/1/012037

[12] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek, and
J. Dongarra, “Dense Linear Algebra on Distributed Heterogeneous
Hardware with a Symbolic DAG Approach,” Scalable Computing and
Communications: Theory and Practice, 2013.

[13] G. Quintana-Ortı́, F. D. Igual, E. S. Quintana-Ortı́, and R. A. van de
Geijn, “Solving dense linear systems on platforms with multiple hard-
ware accelerators,” in PPOPP’09, 2009, pp. 121–130.

[14] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra, “Hierar-
chical DAG scheduling for Hybrid Distributed Systems,” in 29th IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
Hyderabad, India, May 2015.

[15] T. Cojean, A. Guermouche, A. Hugo, R. Namyst, and P.-A.
Wacrenier, “Exploiting two-level parallelism by aggregating computing
resources in task-based applications over accelerator-based machines,”
Inria, Inria Technical Report, Oct. 2015. [Online]. Available: https:
//hal.inria.fr/hal-01181135

[16] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies,” SIAM
JOURNAL ON APPLIED MATHEMATICS, vol. 17, no. 2, pp. 416–429,
1969.

[17] H. Bouwmeester and J. Langou, “A Critical Path Approach to Analyzing
Parallelism of Algorithmic Variants. Application to Cholesky Inversion,”
CoRR, vol. abs/1010.2000, 2010.

[18] H. M. Bouwmeester, “Tiled algorithms for matrix computations on
multicore architectures,” Ph.D. dissertation, University of Colorado,
Denver, 2012.

[19] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[20] P.-F. Dutot, G. Mounié, and D. Trystram, “Scheduling Parallel Tasks:
Approximation Algorithms,” in Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, ser. chapter 26, J. T. Leung,
Ed. CRC Press, 2004, pp. 26–1 – 26–24. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00003126

[21] R. Bleuse, S. Hunold, S. Kedad-Sidhoum, F. Monna, G. Mounié,
and D. Trystram, “Scheduling Independent Moldable Tasks on
Multi-Cores with GPUs,” Inria Grenoble Rhône-Alpes, Université de
Grenoble, Research Report RR-8850, Jan. 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01263100

[22] E. Agullo, O. Beaumont, L. Eyraud-Dubois, J. Herrmann, S. Kumar,
L. Marchal, and S. Thibault, “Bridging the Gap between Performance
and Bounds of Cholesky Factorization on Heterogeneous Platforms,” in
Heterogeneity in Computing Workshop 2015, Hyderabad, India, May
2015. [Online]. Available: https://hal.inria.fr/hal-01120507

[23] “Chameleon, a dense linear algebra software for heterogeneous archi-
tectures,” 2014. [Online]. Available: https://project.inria.fr/chameleon

[24] G. Quintana-Ortı́, E. S. Quintana-Ortı́, R. A. van de Geijn, F. G. V. Zee,
and E. Chan, “Programming matrix algorithms-by-blocks for thread-
level parallelism,” ACM Trans. Math. Softw., vol. 36, no. 3, 2009.

[25] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: a Generic Framework
for Managing Hardware Affinities in HPC Applications,” in PDP 2010
- The 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing, IEEE, Ed., Pisa, Italy, Feb. 2010.
[Online]. Available: https://hal.inria.fr/inria-00429889

http://www2.informatik.uni-osnabrueck.de/knust/class/
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://dx.doi.org/10.1007/BF01585745
http://hal.inria.fr/inria-00550877
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1088/1742-6596/180/1/012037
https://hal.inria.fr/hal-01181135
https://hal.inria.fr/hal-01181135
https://hal.archives-ouvertes.fr/hal-00003126
https://hal.archives-ouvertes.fr/hal-01263100
https://hal.inria.fr/hal-01120507
https://project.inria.fr/chameleon
https://hal.inria.fr/inria-00429889

	Introduction
	Background and Related Work
	Affinity Based Scheduling
	Affinity Based Scheduling for Two Classes of Resources
	Generalization to more than Two Classes of Resources
	An Example with both scoring systems

	Experiments and Results
	Tuning of tile size parameter
	Experimental Framework
	Simulation Results & Analysis
	Analysis of Actual Execution Traces
	Actual Execution Performance Comparison

	Conclusions
	References

