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Abstract. A micro coordinate measurement machine (micro-CMM) with high precision and high accuracy is 

introduced for the measurement of part dimensions in micro scale. This design is intended to achieve 

submicron resolution for a work envelop of at least (100x100x100) mm. In this study, a mathematical 

measuring model to explicitly define the coordinate of the probe in x, y and z directions have been 

represented. An algorithm to find the workspace was implemented. The error model of the machine was 

created and the effect of structural errors on probe position was studied analytically. The significance of each 

geometric parameter was studied in order to minimize the measuring error and achieve the best machine 

design. Finally, the results of the analytical error model were confirmed through a Monte Carlo analysis. 

 

Keywords: micro-CMM, parallel manipulator, micro-measurement, covariance matrix, error model, Monte 

Carlo simulation. 

1 Introduction 

The machining, assembly inspection and quality controlling of small objects such as micro-electro-mechanical 

systems (MEMS) require high positioning accuracy. During the past two decades great attention has been given 

to micrometrology to fill the gap between the ultrahigh precision measurements of nanometrology and 

macrometrology [1]. In this regard many micro coordinate measuring machines (micro-CMM) were introduced 

and intensively studied [2-4].  

The fact that the errors are not cumulative and amplified is one of the major advantages of parallel CMMs over 

the traditional serial CMMs [5]. Nonetheless, the positioning accuracy of parallel mechanisms is usually limited 

by many other errors, some authors identified the errors affecting the precision of parallel mechanisms as follows 

[5-8]: manufacturing errors, assembly errors, errors resulting from distortion by force and heat, control system 

errors and actuators errors, calibration, and even mathematical models. However, the main disadvantage of 

parallel CMMs is the limited workspace [9-11], and the difficulty of their motion control due to singularity 

problems [5], [11]. Many researchers studied the singularity problem and workspace analysis of some planar 

parallel mechanisms [13], [14]. Previous studies showed the influence of joint manufacturing and assembly on 

the positioning error [5], [15],. Pierre [16] showed that the operation and the performance of the sensors 

significantly affect the precision of the manipulator. Hassan analysed the tolerance of the joints [17], Tian 

studied the assembly errors [9]. Tasi [18], Raghavan [19], Abderrahim and Whittaker [20] have studied the 

limitations of various modelling methods. The solution of the forward kinematic for various configurations has 

attracted the attention of many researchers [21-28]. The performance of micro-CMMs in terms of accuracy and 

precision is influenced by numerous error parameters that require effective error modelling methods [15], [29]. 

Moreover, the error models are of great importance in order to evaluate the machine and understand the effect of 

the different parameters. Forward solution for error analysis was also covered [30-32]. 

This paper presents a micro-CMM based on parallel mechanism [33], [34]. Its workspace was analysed, and 

details of the measuring model are reported. An error model of the mechanism given the covariance matrix 

theory was established, and the effect of geometrical errors on the position were analysed. 

2 Structure and theory 

2.1 Machine design & Structure 

The micro-CMM designed in this research consists of an upper equilateral triangular frame and a lower 

equilateral triangular moving platform connected to the upper frame with three extendable legs. Each leg 

contains a prismatic joint, the upper/lower ends of the legs are connected to the frame/platform (at points fi / pi) 
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with spherical joints. Moreover, laser interferometers are installed on the legs in order to acquire accurate 

measurement of the length of the legs. The lower platform can only move with respect to the upper frame. The 

movement of the platform is controlled by three linear motors attached to the upper frame. An isometric view 

and a top view of the machine are shown in Fig. 1. 

 
Fig. 1. Micro-CMM design. Isometric (left) and top view (right). 

In Oiwa’s design [33], the workspace is very small because of the rotational joints’ limitation. Our arrangement 

provides significant advantage by using spherical joints. The spherical joints represent three rotational degrees of 

freedom (3-DOF). In this arrangement the use of spherical joints ensures that a very large workspace is achieved. 

However, the movement of the platform is restricted to always be parallel to the upper frame. The sacrifice of the 

rotational movement of the moving platform around the axes is beneficial for solving the kinematics model. Fig. 

2 shows a schematic drawing of the micro-CMM machine. 
 
 

 

 

 

 

 

 

 

 

 

  

Fig. 2. Schematic drawing of the micro-CMM machine. 

2.2 Coordinate system 

The coordinate system is shown in Fig. 3. The origin Of-(0,0,0) is placed at the centre of the upper frame. The x-

axis equally divides the angle at point f1 and the z-axis is perpendicular to the frame plane. 

 

 

 

 

 

 
 

Fig. 3. The coordinate system. 

The geometrical parameters are as follows:  

• Rf : the distance between point fi and the origin Of, Rf = 288 mm 

• Rp : the distance between point fi and the origin Of, Rp = 57.5 mm 
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• i : the angle point fi makes with the x-axis, 1 = 0

, 2 = 120


, 3 = 240


 

• lmin, lmax : the maximum and minimum extensions of the legs, lmin= 300 mm, lmax= 550 mm 

3 Development of the kinematic model 

Because of using spherical joints, the movement of the legs can be expressed by the equation of a sphere. Let’s 

assume that the central point of the moving platform (x,y,z) is the point of intersection of three spheres, and thus, 

point fi must be shifted towards the point of origin Of. by (fi – pi) where: 
 

    [                  ]  (1) 

    [                  ]  (2) 

 

Then the equation of movement of the legs can be written as follows: 
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Where: 

(x,y,z): the probe location 

l1, l2 and l3: the leg lengths. 

 

The probe location can be found by solving eq’s (3), (4) and (5). This yields explicit expressions for the x, y and 

z coordinates of the centre point 
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4 Analysis of the work space 

The reachable workspace of a parallel manipulator is defined as all the positions within the region of the 

Cartesian space that can be reached by the tip of the probe which is attached to the central point of the platform.  

The workspace can be determined using the previously described model. The boundary surfaces of the 

workspace are calculated taking into account all the geometrical limitations and the movement range of the 

prismatic joints of the legs (maximum extension lmax and the minimum extension lmin). 

Fig. 4 shows a 3D plot of the reachable work space. The processes of constructing the workspace can be 

summarized as follows:  

• Set boundary conditions (ymax= (Rf - x) tan(30), ymin= -(Rf - x) tan(30), xmax= Rf, xmin = –Rf /2) 

• Set one leg li= lmin, increase the other two legs by l from lmin to lmax. 

• Solve the position components (x,y,z) for the outer surfaces Sout-li. 

• Set one leg li= lmax, increase the other two legs by l from lmin to lmax. 

• Solve the position components (x,y,z) for the inner surfaces Sin-li. 

• Repeat for each leg. 

• Solve for the side surfaces S1, S2, S3. 

• S1: y = (Rf - x) tan(30), with x in the range (xmin ≤ x ≤  xmax) 

• S2: y = – (Rf - x) tan(30), with x in the range (xmin ≤ x ≤  xmax) 

• S3: x = xmax and y in the range (ymin ≤ y ≤  ymax) 
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Fig. 4. 3D plot of the reachable workspace. 

(a)        (b)            (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. The reachable workspace of the micro-CMM. (a) top view; (b) front view; (c) side view. 

The results of workspace calculations illustrated in Fig. 4 and Fig. 5 show that: (1) The workspace is formed by 

surfaces cascaded together. (2) The workspace is symmetric about the xz plane. (3) The workspace range in xy 

plane vanishes at zmin where l1=l2=l3=lmin, and reaches its maximum range when two legs are maximum and the 

third is minimum, then the range decreases as z increases and vanishes at z > 500 mm when l1=l2=l3=lmax. The 

red cube in the workspace represent the work envelope (100x100x100) mm. 

5 Modelling of the error 

5.1 Analytical error model 

Suggesting an error model for the proposed machine is of great importance in order to evaluate the structure and 

understand the effect of the different parameters on its accuracy. The derivation of the covariance matrix is well 

known and can be found in in refs. [35], [36]. For more clarification the details of the derivation will be given 

here: 

If F(x) is a vector valued function, the form of the first order Taylor series expansion can be given by: 

  ( )   ( ̅)   ( ̅)   (   ̅)  ( ‖   ̅‖ ) (9) 

Where: J(x) is the Jacobian matrix of F(x), and  is the error term,   is the average of all x samples. 

Let’s assume that the last term is small enough to be neglected. Then the previous equation can be rewritten as: 

  ( )   ( ̅)   ( ̅)   (   ̅) (10) 

The formula for computing the covariance is: 
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Replacing the dot product by the transpose of two matrices A  B = A
T
 B, we get:     
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( ( )   ( ̅)) (12) 

Replace eq. (10) .  in eq. (11) to get: 
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Remember, the dot product is commutative A  B = B  A, and (AB)
T 

= A
T 

B
T
, then    can be rewritten as: 
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Since the covariance matrix of x is: 
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Then the covariance matrix can be written as: 

     ( ̅)       ( ̅)
  (16) 

The last equation is very useful to determine the covariance matrix using the input covariance and the Jacobian 

of the process function. 

Assuming that only mechanical errors among these errors have an influence on the positioning accuracy. The 

geometry of each stage (or leg) can be expressed by five geometrical parameters, which are the leg lengths li and 

the position of each spherical joint fi and pi in the Cartesian coordinate system. Therefore in total 15 parameters 

will be investigated. Thus, eq’s (6), (7), and (8) must be rewritten as:  
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where: 

         (   )        (   )                   (   )        (   )                  

A full size Jacobian matrix is used in carrying out error analysis, the Jacobian needed will be 3x15 matrix as 

follows: 

J = 
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The related variances matrix is given by the following 15x15 diagonal matrix: 
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In the previous matrix the variance along the diagonal is given for l1, l2, l3, Rp1, Rp2, Rp3, Rf1, Rf2, Rf3, p1, p2, p3, 

f1, f2, f3. Precision error values are mostly considered as three times the standard deviation value ( = 3σ). 

Thus, the variance can be estimated by: 

Where: p
2
 and p are the variance and the error of the parameters, respectively. 

5.2 Monte Carlo simulation  

In Monte Carlo studies, random parameter values are generated from an allowed error range. A large number of 

runs are carried out, and the model is estimated for each run.  Parameter values and standard errors are averaged 

over the samples. 

The Monte Carlo simulations have been used as uncertainty evaluation for CMM’s in Refs. [37-40]. This method 

was documented in an ISO document [41]. In this study simulations have been performed to examine the validity 

of analytical error model. Computer software developed in Python was used to overcome the amount of work 

needed for the simulation.  

Several combinations of conditions have been chosen (I) at maximum legs extensions, (II) minimum extension 

of the legs. The number of Monte Carlo iterations are n = 50000. 

The following values of the parameters are used: Rb1, Rb2, Rb3 = 288 ±0.002 mm; Rp1, Rp2, Rp3 = 57 ±0.002 mm; 

p1, b1 = 0

 ±0.0005


, p2, b2 = 120


 ±0.0005


, p3, b3 = 240


 ±0.0005


; l1, l2, l3 = l  ±0.001 mm. 

6 Results of the error model 

The geometrical parameters are given as follows: Rf1, Rf2, Rf3 = 288 mm, Rp1, Rp2, Rp3 = 57.5 mm, p1, f1 = 0

, 

p2, f2 = 120

, p3, f3 = 240


, lmin= 288 mm, lmax= 433 mm. 

The covariance matrix of measurement errors is found by the proposed analytical approach in eq. (16). The 

variance-covariance matrix consists of the variances of x, y and z along the main diagonal and the covariances 

between each pair of variables in the other matrix positions. The covariance between xy, xz and yz is very small 

and can be neglected, hence x, y and z can be assumed uncorrelated. 
 

The results of the Monte Carlo simulation are represented in the form of a typical histogram in Fig. 6. The 

histograms are useful as an aid to understanding the nature of the data distribution. 
 

(a)        (b)            (c) 

 

 

 

 

 

 

 
 
 

Fig. 6. Results of Monte Carlo simulation, (a) histogram of x, (b) histogram of y, (c) histogram of z. 

From Fig. 6, the histogram plots for x, y and z indicate that the data are approximated well by a normal 

distribution, therefore it is reasonable to use the standard deviation as the distribution estimator.  

Comparisons of simulated results with the analytical results in terms of standard deviations () are tabulated in 

Table 1. 

Table 1. Comparison of the simulation results with the analytical results: 

li= ±0.001; Rfi, Rpi = ±0.002;  fi , pi= ±0.0005o 

 x= 0; y= 0; z= 350 x= 50; y= 50; z= 350 

 Theory () Simulation () Theory () Simulation () 

x(m) 0.811 0. 702 0.760 0.658 

y(m) 0.811 0. 702 0.918 0.796 

z(m) 0.361 0. 313 0.355 0.309 
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6.1 Effect of structural errors on probe position 

The following values of the mechanical errors were used in the error model: Rfi = ±0.002 mm, Rpi = ±0.002 mm, 

li = ±0.001 mm, fi = ±0.0005

 and pi = ±0.0005


. Fig. 7 shows the x, y, and z estimated using the analytical 

model. The three continuous lines represent x, y and z with an error of li= ±1m, the dashed line represents z 

when the error in the legs is ±2 m. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Error estimation along z axis. 

From Fig. 7, z decreases dramatically as the moving platform translates away from the point of origin in the z 

direction, the z starts to decrease very slowly when z value is greater than 350 mm, in other words, the probe is 

350 mm below the upper frame. The work envelope in the z direction is in the range (350 – 450). Moreover, Fig. 

8 shows the xy plane at z = 400. 

 

 

 

 

 

 

 

 

Fig. 8. The xy plane at z = 400, with x, y magnified 104 times.  

From Fig. 8, it is clear that the maximum error values in x and y directions are in the corners of the xy plane, 

however, the error decreases as the probe moves closer to the origin, and reaches minimum value at x=y=0. The 

work envelope in both directions x and y is in the range (-50 ≤ x, y ≤ 50). 

7 Concluding remarks 

A micro-CMM offering very large workspace was proposed, the workspace was analysed, a kinematic model 

was derived, and the error was modelled. The work envelope with a submicron estimated error was (-50 

≤ x, y ≤ 50) in x and y directions, and (350 ≤ z ≤ 450) in z direction.  

It can be observed from the results that the analytical error model is effective with an input error of 0.5 to 2 m. 

This was verified using Monte Carlo simulation results. In this study the error values are chosen arbitrary, more 

accurate geometrical errors can be estimated using the finite element method. The li has the most significant 

contribution to the error is z scale, while in x and y directions angle i is responsible for the most significant 

effect on the accuracy. The positioning accuracy of the micro-CMM is also limited by many other error sources. 

However, geometrical errors can be minimized by improving the precision of manufacture and assembly. 
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