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two-dimensional systems possibly with parameters

Yacine Bouzidt and Fabrice Rouillieér

N (z1;z2;U)

Abstract—In [1], a new method for testing the structural G(z1;22;U) = D(z12,U)°

stability of multidimensional systems has been presented. The
key idea of this method is to reduce the problem of testing where N;D 2 R[U][z1;2] and U = fUj;::i:;Ukg is a

the structural stability to that of deciding if an algebraic  set of real parameters. Compute regions in the parameter
set has real points. Following the same idea, we consider in spaceR" in which the underlying system (after substitution

this work the specic case of two-dimensional systems and o
focus on the practical ef ciency aspect. For such systems, the of the parameters) is either stable or unstable. In other

problem of testing the stability is reduced to that of deciding Words, the goal is to compute an union of cells in

if a bivariate algebraic system with nitely many solutions has ~ R¥ such that, 8(us;:::;ux) 2 G, the system de ned by
real ones. Our rst contribution is an algorithm that answers  G(zy;zo; Uq;:::; Ux) is either stable or unstable.

this question while achieving practical ef ciency. Our second

contribution concerns the stability of two dimensional systems There exist numerous tests for solving Problem 1. One can
with parameters. More precisely, given a two-dimensional mention for instance the work in [2], [3], [4], [5], [6] and the

system depending on a set of parameters, we present a New oo rences therein, where this problem is solved using purely
algorithm that computes regions of the parameter space in

which the considered system is structurally stable. algebraic methods. Common to all these methods is that they
proceed recursively on the number of variables, reducing the
. INTRODUCTION computations with 2-D polynomial to computations with a

Two-dimensional systems have wide applications in sewset of 1-D polynomials using algebraic tools likesultants
eral areas such as signal and image processing or iterataedsub-resultant$7]. Another set of methods as for instance
algorithm design. An important question in the study othe one in [8] use the sum of square techniques for testing
such systems concerns their stability which is a necessatye stability condition. Such methods show better practical
condition for them to work properly. In this paper, we are inbehavior compared to purely algebraic method, but are in
terested in testing thstructural stabilityof two-dimensional general conservative i.e., provide only sufcient stability

discrete linear systems. condition. For a complete overview on two-dimensional
Given a two-dimensional discrete linear system describestability tests, the reader may refer to [9].
within the frequency domain by the transfer function For Problem 2, to the best of the author's knowledge,
G(21:25) = EEZ;Z;, therg dqes not exist any general implemented.meth'od for
22 solving it. In [5], the authors propose a two-dimensional

whereN andD are polynomials in the variableg; z, with  stability test and apply the latter to example of systems with
real coef cients such thaN ~ D = 1. This system is said parameters. However, due to the simplicity of these systems,
to be structurally stableif the denominator of its transfer the computation of the desired regions is performed by hand
function is devoid from zeros in the complex unit bi-diskand no indication is given on how to obtain them in an
D? := f(z1;22) 2 C?jjzyj 1andjzj 1g, or in other automatic way.

words, if: .
o o Our contribution in this paper is twofold. We rstly present
D(z1;22) 60 forjz;j 1, jzoj L (1) anon conservative and practically ef cient method for solv-
In this work, we consider the two following problems: ing Problem 1. This method starts from the following set of

. - . conditions which has been shown in [10] to be equivalent to
Problem 1 (non parametric stability): Given a two- cgndition A):

dimensional system de ned by a transfer function 8
oy o N(z1:z2) < D(z1;1)80 jjzj 1
G(2122) = b,y . D(1iz)60jnj 1 @
with N; D 2 R[z1;z,]. Check if this system is stable, that is, " D(21;22) 80 jjz1j = jzo) = 1:

if Condition (1) is satis ed. A rst remark is that the rst two conditions of (2)

Problem 2 (parametric stability): Given a two-dimensional involve only univariate polynomials, and can thus be easily
system de ned by a transfer function checked using classical one-dimensional stability tests (see

This work was supported by the project MSDOS ANR-13-BS03-0005. for instance [11], [2]). The main dif culty is then to check

1INRIA Lille Yacine.Bouzidi@inria.fr the last condition of (2), i.e.:
2INRIA  Paris and IMJ-PRG and CNRS and UPMC o
Fabrice.Rouillier@inria.fr D(z1;22) 60 jjzij = jzoj = 1: 3)
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It has been shown in [1] that testing Condition (3) for Theorem 1:Let D(z1;2z2) 2 R[z;;2z2] of degreesd;; d,
multidimensional systems is equivalent, via a particulain z;;z,. One can compute two polynomiais(xi;x,) and
Mobiustransformation, to deciding if an algebraic system ofS(xq; x,) of total degrees bounded kyy + d,, such that
equations admits real zeros. Adapted to the two-dimensiond(D (z1;22)) \ [Tnfig)* = ;( VR(R; O = ;.
fgsttﬁgt] uo'}di;g%r;z;jﬁ;agog’i\:g'ﬁsaﬂogz;%rr:guz;;?:nfrsv?lemAs pointed out in [1], the condition stated in the above
nitely many complex solutions admits real solutions Fo?theorern s not equiyallent. o Condition (3) since it exclude.s
this problem, we present a method based on the combutatithr%e pqlnts of the unit bi-circle that have at I_east one of their
of the so-caliedse arating formfor the solutions which is a 8bordinates equals to one. However, checking D z)

i 1e;sep ng . does not vanish at these points, iB(1;2,) 60 jjzpj =1
classical notion in solving systems algorithms.

Our second contribution is a new method for solving[andD(zl;l) § 0 jjz =1 is included in the test of the
Problem 2. Similarly as above, this method starts fro wo rst conditions of @). ConsequentlyD (2:;2;) satis es

the set of conditions (2) which now depends on a set 0 ondition (1) if and gnly it
D(z1;1) 60 for jz;j 1.
D(1;z;) 6 0 for jzoj 1.
The polynomial systenfR (x1;x2) = C(x1;%2) =0g
does not have real solutions.

extend a classical univariate stability test so that it can handle
parameters, which allows to derive a stability condition as
a sign condition on some polynomials depending only on
the parameters. For the last condition of (2), we perform the I11. NON PARAMETRIC STABILITY

sameMbbius transformation as above and then make Use aq shown in the previous section, testing the stability

of the the concept obiscriminant varietyof a polynomial of a two-dimensional system is equivalent to testing the

system which is a generalization of the classical notion qfipjjity of two one-dimensional systems and deciding if an
discriminant of a univariate polynomial. Suctbécriminant algebraic systeniR (x1:x2) = C(X1:X») = 0g admits real

variety a.IIows. to partitioning the parameter spaRé into solutions. Testing the stability of one-dimensional systems
regions 'anh'Th ellg[ven system of equations has a constati, pe ef ciently achieved using existing implementations
number of real solutions. (see for instance [2]). Therefore, in the following, we focus

This paper is organized as follows. In Section I, some &5, attention on the second problem, that is, deciding if the
sults obtained in [1] are stated in the case of tWO'd'menS'onﬁblynomial systemfR (x1:

. . . -~ 1X2) = C(Xq1;%2) = 0g has real
systems. In Section l1l, we describe an algorithm for deciding g tions.

if a bivariate algebraic system with real coef cients has or |, e following, we assume without loss of generality that

not real solutions. In Section IV, we address the problem %(X1;Xz) and O(x1: x») are weakly coprime ifQ[x1; X2],
testing the stability of two-dimensional systems depending, ged(R:; ©) = 1, which implies that the ided! := hR; Ci
on parameters. Finally, in Section V, we illustrate our algojs ,aro-dimensional V()= f( 1 2) 2 C3HR( 1; 2)=
rithm through a set of examples, both in the parametric ar@(

) 1; 2) = 0g denotes the set of its complex solutions.
the non-parametric case.

Our idea is to reduce the problem of deciding the existence
Il. ALGEBRAIC TRANSEORMATION of real solutions of to that of deciding the existence of real

Notation: Th h hi F . froots of a well chosen univariate polynomial. To do so, let
otation: roughout this paper. For a given sgt Olstart with the following result which stems from the fact that

polynomialsfq;::iifs in QXg;::iixa], 1 1= Hyjiiiifs ; — Qlxixs] ; i ; i}
denotes the ideal generated by;:::;fs, V() := f 2 :/heit?)l:c;t:gear::teélgebm = =572 is a nite dimensionalQ
Chjfi( )= = fs( ) = 0gthe complex variety (the set
of complex zeros) of andVg(l):=f 2 R"jfy( )= Theorem 2:Let P 2 Q[x3;x2] and letMp be the endo-
= fs( ) =0gits real variety (the set of real zeros). ~ morphism of the multiplication by in A
In the following, we recall and adapt the approach pre- Mp: A I A
sented in [1] to the speci ¢ case of two-dimensional system. f 7! Pf:

As mentioned in the introduction, the main step in
checking conditions (2) is the test of Conditi¢B), i.e.,
D(z1;22) 6 0;jz1) = jzoj = 1, which resumes to decide
the existence of complex zeros Bf(z;; z,) on the bi-circle

The eigenvalues oMp are P( 1; 2),with ( 1; 2) 2
V (1). The multiplicity of P( 1; 2) as an eigenvalue dofl p
is equals to the multiplicity of 1; ») as a zero of [13].

) _ P o _ Hence, if Cp dengtes the characteristic polynomial of
To=1( 1 2)2C7jj 1=1andj 2j=1g Mp, thenCp (t) = (t P( 1 2) (2 where

The rst step in [1] consists in applying thobius (17 2)2V

substitutionz 7! 2 to each variable oD (z¢;2,) (such (' 1; 2) denotes the multiplicity of the zero 1; 2) in I.

X+ | - . . . .
a transformation maps the real life:= R[1 to the unit Moreover, a bijection exists between the solutionsvdf )

circle T deprived from the point, i.e., toTnf 1g). This yields 1f R and C are not coprime, it is sufcient to compute their gcd
a rational fraction inC(x1;X») whose numerator writes as in Q[x1:x2], G(x1;x2), and to consider the two systerig-; g and

R(Xxq1;X2) + 1 C(X1;X2). Accordingly, it follows: fG; @@Xng which are known to be zero-dimensional and whose the union
of real solutions are the real solutionsf&¥ ; Cg[12].
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and the roots oCp (t) providing that the polynomiaP is a On the other hand, given a linear form+ ax,, it is well
separating elemenfor V(I). known that the latter is separating @il ) if and only if for

. . _ each root of Res,, (R%C%) (whereR?andC® are de ned
De nition 1: P 2 Q[x1;Xz] is a separating element for as in Theorem 4), the gcd &% ;x ,) and CY ;X ») has

.V(.I). if a_md onlyifthe map( 1; 2)2 V() 7! P( 1; 2) exactly one root.
Is Injective. In order to check this separation condition for a given

The fact thatP is a separating element faf(l) yields X1 * @xz, we rst perform a triangular decomposition
an important property regarding to the existence of redlf fR At x2); C{t;x2)g (see Section (A) of Appendix for
solutions ofV (1). The following result can straightforwardly details). This yields a set of triangular systems of the form
be proved considering a parameterization of the solutions, fbFk(t); Sreg(t;x2)g, k = 1::: min(deg,, (R);deg, (C),
example using [14]. such that Sreg ; x ») is the ged ofRY(;x ) andCY(;x »)

for any root of r¢(t). Then, we use the following result
Theorem 3:Let P 2 Q[x1;X2] be a separating element (which proof can be found in [15]).

for V(1). Then, the polynomiaCp (t) has real roots if and
Theorem 5:Let R(x1;X2); C(X1;X2) 2 Q[X1;X2]. De ne

only if V(I') has real solutions. : )
the polynomialsRt; x,), CYt;x») as in Theorem 4, and

Consequently, computing a separating element @f) as let fry(t); Sres(t;x2)g, kK = 1:::m be the triangular
well as the corresponding polynomi@p (t) allows to reduce decomposition ofR ©, C%. Thenx; + ax, is a separating
the problem of searching for real solutionsV{l) to that element forV(l) if and only if 8k 2 f1;:::;mg and
of searching for real roots d@p (t). 8i2f0;:::;k 1g,

For the computation of a separating element\&fi ), : .
an important remark is that the number of non separatinlf;(k DStiici g(OST g (t) - (1+1) Stk 19(8) Strici +1,6(1)
elements is bounded HJ,/(”Z—D wheren denotes the cardinal is zero modulary(t).

of V(1) [13]. Thus, @ separating element can glways be

n(n 1) Finally, our algorithm for checking ifV(l) has real
2

solutions consists in computing for arbitrary linear forms
the other hand, we know by Bezout that, for any polyx,+ax, the above triangular decomposition and stop as soon
nomials R and C of total degreed, the cardinal ofV(l)  as the condition of Theorem 5 is satis ed, which implies that
is bounded byd®. Hence one strategy for computing athe formx; + ax, is separating. Then, it remains to check
separating element fov (1) is to loop overl + M if the resultant oR ° and C° with respect tax, has real roots
different integersa, compute for eacha the number of which can be done using for example Sturm sequence [7].

distinct roots ofCy;+ax,(t) (the degree of its squarefree gemark:  In practice, several strategies are used in order to
partCy, +ax, (t) == gcd(Cxla,xal;:;E:ZSﬁ ) ), and nally select  reduce the running time of the above algorithm. For instance,
an a for which this number is maximal. This ensures thathe computation is stopped as soon as a resultant, computed
the degree oy, +ax,(t) is equals to the cardinal of (1), for an arbitrary formx, + ax,, is square free, which implies
and thus that the roots @y, + ax,(t) are in bijection with that the formx, + ax, is separating according to Theorem 4.
the points ofV (I). However from the computation point of The computation is also stopped when the computed resultant
view this strategy2 is2 not recommended since it requires thdoes not have real zeros, since it implies that the system
computations ofw characteristic polynomials along does not have real zeros as well. Another example is the
with their squarefree parts. The latter calculation requires way we choose the candidate forms + ax,. Indeed, in
addition the computation of a @bner basis of (to get the order to increase the probability of the form to be separating,
description ofw) which can be costly in practice. a rst computation is performed modulo a prime number
Alternatively, we propose below a method that avoids the (coef cients are considered ir%). Such a computation
computation of a Gibner basis of , and searches adaptively turns out to be very fast since it avoids coef cient swell
for a separating element. More precisely, this method makés the algorithm. Providing that a linear form is separating
use of a separation test which allows to stop the algorithmodulo the prime , the latter has then a high probability to
as soon as a separating element is found. be separating iiZ and one can choose it as a candidate for
The following rst result shows that for a givexy + ax,, the algorithm inZ.
the polynomialCy, + ax,(t) is equals, up to a factor i,
to the resultant of two polynomials resulting frof and C

IV. PARAMETRIC STABILITY

after a change of variable. In this section, we con;ider a two-dimensional sys-
tem dened by a polynomialD (z;;2,;U) where U =

Theorem 4:[12] Let R(X1;X2); C(X1;X2) 2 Q[X1;X2].  fUq;:::;Ukg is a set of parameters. As mentioned in the

De ne Rt;x,) := R(t axy;xp) andCYt;x,) := C(t introduction, our goal is to study the stability of this system

axo; Xz) wherea 2 Z is such that the leading coef cient of (the truth of Condition (1)) depending on the values of the
R%andC® with respect tox, are coprime. Then, the resultantparameters. Starting from the poynomi(z;; z,; U), our

of R%and&® with respect tox,, denotedRes,,(R%C%, is approach consists roughly in computing a set of polyno-
equal toc = . oy (t 1oa 2) (12 withc2 Q. mialsfpy;:::;psgin Q[Ui;:::; U] satisfying the property
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that the stability of the system de ned bR (z;;z2;U) The discriminant varietyVp itself, and

does not change, provided that the sign of the sequence Disjoint open connected subset$; ;U of the

fpL(U);:::;ps(U)g does not change. TheR¥ is decom- parameter space which do not insect the discriminant

posed into cells in which the signs 6p;;:::;psg remain variety and such that any solution of (5) with parameters

invariants, and cells for which the system is stable are kept. lying in someU;, belongs to the image of an analytic
ConsideringD (z1; z2; U) as a polynomial in the variables function of U, into the solutions of (5).

z1; 2, with coef cients are polynomials iQ[Uy;:::; U], we  Remark. An important property of discriminant varieties is

still have an equivalence between Condition (1) and the s@iat, if u andv are two vectors of parameters which belong

of conditions (2) and we can apply to the last condition ofo the sameJ;, the specialized systenS -, andSy-, have
(2) the transformation given in Section Il which yields theexactly the same number of real roots.

following set of conditions depending on the parametérs S
It should be stressed that the concept di$criminant

< D(z;LU) 60 jjzj 1L variety (as well as its computation) is de ned for general
D(1;2;U) 60 jjzoj 1, (4)  systems of equations (with variables). However, in the
V (hR(x1;X2; U); Cx1; X2; U)i)\ R? = ;: sequel, for the sake of simplicity, we restrict our description

We shall start with the study of the rst two conditions 0 the case of systems of two equations in two variables. For
involving univariate polynomials with parameters. Our rst& complete description, one may refer to the work in [16].
step consists in transforming these conditions so that contin-SinceWp belongs to the parameter space, we introduce

uous stability tests can be used. More precisely, we appige projection mapping y : ( 1; 2;u) 2 C# R 71 yu2

. k . . - .
the change of variables; = L 2L (resp.s; = 1 z2) . We also introduce the inverse projection on the parameter

to the polynomialD(z;;1;U) (resp. D(1;zz;V)). These Space (*:u7! (Ui 1 2) V(S).
conditions then write aD1(s;;1;U) 6 0;Re(s;) 0 It has been shown that if one considers the set of all
and D»(1;s;;U) 6 0;Re(s1) 0, where Dq(s;;1;U) U 2 C¥ such that there exists no neighborhoodof u
(resp.D»(1; s; U)) is the numerator oID(L—zi; 1;U) (resp. such that Ul(U)_\ V(S) is an analytic covering ob, this
D(L; %; U)). In a second step, we use a classical result get de nes a varlety. namehinimal d|scr|m|nant.var|et}of _
Linard and Chipart [7] that expresses the stability conditiorf (S) @ssociated with y, and a key remark is that this
of a continuous polynomidd (s) as a positivity condition of Minimal variety is de ned independently of any algorithm.
its coef cients as well as somsigned principal subresultant N Our setting, the ideaS = hR;Ci is equidimensional
sequence of two polynomial§ (s) and G(s) satisfying apd the rmmmal d!scrlmlnantvarleWD of V(S) associated
D(s) = F(s?) + sG(s?) (see [7, Thm. 9.30]). Using the with y is the union of two subsets:
specialization property of subresultants (see Section (A)), O :the setof 2 C* such that ,'(U)\ V(S) is not
we can generalize this result to the case of univariate —compact for any compact neighborhobidof in C*
polynomials depending on parameters. In particular, applying Oc: the set of the critical values of y union the
this test to the polynomial®(s;; U) andD(s,;U) yields projection of the singular points of (S)
a set of polynomials depending only on parametérsand Intuitively, O; represents parameter's values such that there
the stability ofD1(s1; U) andD2(sz; U) (resp.D(z1;1;U)  exist either vertical leafs of solutions or leafs that are going
and D (1; z; U)) is then satis ed providing that these poly-to in nity above some of their neighborhood, whil®,
nomials are positive. In the sequel, we shall denote thesepresents parameter's values such that above some of their
polynomials by ;(U). neighborhood, the number of leafs varies. Roughly speaking,
The next question of interest is to decide if the system Wp represents parameter's values over which the number of
solutions changes.

S = R(Xl_;xz_; U)_: 0 (5) In our caseO; = u(V(hR;C Jag, «,(R;Q)i)) where
Ax1:%2:U) =0 Jag, x,(R; C) denotes the determinant of the Jacobian ma-
whereU =[U;:::; U], admits real solutions. trix with respect to the variables; andx;.

In the following, we shall assume that the syst&mis L Co .
. . . . B. Discriminant varieties: computations
generically zero-dimensionahat is, for almost any values of . _ S
the parameters 2 CK, the underlying system, after substi- An important remark for the computation of the discrimi-
tuting the parametersR (x1;X2;u) = 0;C(x1;X2;u) =0g hantvarietyWp of S is that bothO, andO. are algebraic

admits a nite number of complex solutions. sets (for general systems, this is not always the cas@fpr
S o N ) Wop can thus be described as the union of two algebraic sets
A. Discriminant varieties: de nition and properties that can be computed independently.

Our approach for answering the above question makesO; and O, are projections of some algebraic varieties
use of the concept ddiscriminant varietyof a polynomial and computing them remains to eliminating variables in the
system depending on parameters [16]. Loosely speakingsgstems of equations corresponding to these varieties, that

discriminant variety, denoted By/p , is an algebraic variety is, for a givenl = hq;:::;fji  K[x1;X2; U], computing
in the parameter space de ning a partition of the latter that 4 (V (1)) = V(ly) wherely K[U] is dened byly =
consists of: I \ K[U]. Algorithmically, Iy can be computed by means
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of Grobner basis for any elimination ordering such that if ;(U) > 0. On the other hand, according to above,
suf ces to compute a Gibner basis for such an orderingthat de nes a partition of the parameter space in which the
and to keep the polynomials that belongk@U]. number of real solutions db is constant. Now, considering

Hence, computing an idedl. such thatO. = V(I.) the global set of polynomial& = f ;(U);f;(U)g, we
remains to computing the determinant Jac (R;C) and can compute &ylindrical Algebraic Decompositio(CAD)

a Grobner basis of the idedlR; C Jag, x,(R; Qi for any adapted toF [17]. This yields a disjoint union of cells in
elimination ordering< such thatU < x; X». RX in which the signs of the polynomials i are constant.

In [16], it has been also remarked that such eliminatiom particular, by de nition, inside each of these cells, both
orderings allow to compute an ideld Q[U] such that the sign of the polynomial j(U) and the number of real
O; = V(l1). Precisely, Suppose tha is a reduced solutions ofS are constant. This implies that the system is
Grobner basis ofhR; Ci for a monomial ordering< yx,x,, €ither stable or unstable. To determine the cells for which the
that is, the product of two degree reverse lexicographisystem is stable, it suf ces to select a simple point (vector
orderings< y for the parameters andy, ., for the variables. of parameter values) in each cell and to test the Conditions
We de ne the seE! = fLM<, ,,(@ | 92 G; 9m (4) after substitution of the parameters.

0 LM<, ,,(9) = x{"g, whereLM < denotes the leading In practice, we compute a partial CAD since we are only
monomial of a polynomial for an admissible monomialinterested in computing cells of maximal dimension.

dering<, then: . : .
ordering en Partial CAD: Given a set of polynomials

1 . . . 1
E .|s the GBbner basis of some ided) K[U] for fP1;: 1 Peg 2 Q[X1::%n 1]lXa],  consider
o =Sn 1 Proj(f P1;:::; Pag; Xn) Qlx1;:5%n 1] =
1= iz V) fLeadingCoeff (P;);Discriminang, (Pi);i = 1:dg [
C. Discussing the number of real solutions fRes, (Pi;Pj);i & j;i;j = 1ludg. Then[i=1:4V(Pi)

L . is an analytic covering of each open connected set
Once a discriminant varietWp of S computed, we get 0{ R" 1 that do not meetV(ProjPs:::::Pq:Xn)).

a partition of the parameter space made of the discrimina&Oughly speaking[ i1 .aV(P,) decomposes the cylinder
variety and of the connected components of its complemen- =1 :d ! n o1

. . over any connected open sét R that do not
tary with the property that over any neighborhobdthat meet V (ProPy::::: Py:x,)) into the union of leafs
does not meetVp , Ul(U) is an analytic covering of). In Lreeen Tdo 70

) . . (of dimension n 1) of [iz1:qV(P;) and bands (of
particular, the number of solutions 8fis constant over any dimensionn) between two of these leafs with the property
connected set that do not intersect the discriminant Variet¥hat [Sign(Py): sign(Py)] de nes a constant sequence in
Also, for computing the (constant) number of solutionseach bandl Now ivendPl(cﬂ _____ Py:X,) one can then
over each connected component that do not meet the dis- X 9 Lo Td

S . . compute recursively Pr@j:: Proj(P1;::; Pg;Xn); i Xn 1)
criminant variety, it suf ces to take one vectarof parameter until getting points and then obtain recursively a partition of

values in each of these components and to solve the Z€9 into some algebraic proper sbt (of dimension at most

dimensional systen$y- . : P FN DL
Remark: Note that the structure of the solutions is non 1) and some ceII; of dimensiam in which Py;:::; Pq
ave all a constant sign.

known above the discriminant variety itself. As it is a set 0 This process is a partial CAD adaptedRg; :: : ; Py. The

null measure, it is useless here to study_whgt IS going on fc()1’rifference with the classical CAD is th&;;:::; Py have
such parameter values. However, the discriminant variety IS

: not necessarily a constant sign on the algebrai®se\¥lote
de ned by a polynomial system that can be merged to th : .
. . atD can be decomposed itself using the same process.
original system to follow the study recursively.

The discriminant variety has been de ned with respect to V. EXPERIMENTATION
complex solutions. For real solutions, two cases occur : eith

u(V(S)\ R**2) Wy and one needs to studg(hSi)\
Ul(WD) instead ofV (S) or ¢ (V(S)\ R¥*2)* Wy and As mentioned in Section Ill, the algorithm described in

thenWp \ RK is a discriminant variety folv (S) \ Rk*2,  the present article is a set of optimizations for the two-
which is the usual situation. Note that in the second case, dimensional case of a general algorithm we proposed in [1].
Wy is minimal forV(S) , thenWg\ RX it not necessarily Roughly speaking, we mainly propose a dedicated method

r .
%\. Non parametric case

minimal for V(S)\ Rk*2. for deciding if a system of two equations in two variables
] ) - admits real solutions, keeping track of the shape of the
D. Computing regions of stability systems linked to the stability problem we want to study.

We now go back to our initial problem which is the In order to measure the gain we obtain, we compare
computation of regions in the parameter space, such thagainst the general methddolate partially developed
the set of Conditions (4) is satis ed (and thus the systerhy the same authors and available in the Maple software
is stable). As mentioned at the beginning of this sectiorRootFinding . This function rst computes a Rational

that, the two rst conditions of (4) are satis ed if and only puted with F, algorithm ([18]) and then makes use of
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a variant of Descartes' algorithm [19] as well as multi-
precision interval arithmetic [20] to isolate the real roots of
the system.

For the present experiments we re-use some black boxes
developed for the algorithms described in [21] or [22]
which are using exactly the same technical base as the
above function to design the algorithm's component that
computes the univariate polynomi@l . .x, and performs
the separation check. All the other components are shared
with the RootFinding[lsolate] function from Maple.

For dense polynomials with coef cients that can be en-
coded on23 bits (such as if there were coming from oating
point numbers), the results we obtained atoee i7 3.5
Ghz with 32 GB of memory are summarized in the following
table in whichDegree denotes the degree of the polynomial
D(z1;22) to be studied,]V (I) the number of complex
roots of the bivariate system to be solved to decide the
stability, RootFinding the computation time of the general
function RootFinding[lsolate] and Dedicated our
new (dedicated) algorithm.

Degree ]V (I) RootFinding Dedicated

Fig. 1. Global view - Parameter space decomposition

10 200 2.3 <1

15 450 29.8 <1

20 800 223.4 <1

25 1280 866.9 1.42

30 1800 33482 2.79

35 2450 > 1 hour 7.81

40 3200 > 1 hour 15.51 Fig. 2. Zoomuy = 4:::2;up = 7:::7 - Parameter space

decomposition
Note that on these examples, we did not report the com-

putation times required by the two other conditions (stability
of D(1;z2) andD(z3; 1)) since they are small compared tonot) roots in the unit disk lead to a list of 6 lines with 3 of
the resolution of the full bivariate system. them already in the discriminant variety.
As an interesting fact, it is worth mentioning that using Decomposing the parameter space cylindrically with re-
a naive implementation of the dbius transforms makes the spect to these 16 curves give$61 cells (see Figure 1).
latter step the most dominant part in the dedicated algorithm. Among each cell, the system is either stable or unstable. It
is then suf cient to pick up one couple of parameter values
in each cell and to count the number of real solutions of
Let now consider 2D transfer_ functipn depending on two the (non parametric) zero-dimensional systé®; Cg and
parameters and whose denominator is: perform the stability test ob (z¢; 1) andD (1;2).
D(z1;22) = (AU +2U; +3) 21 +( 2up +1) 2o + (4 Uy It should be noticed that in some regions of the parameter
A Q2122+Qur 2+4) 212 2+( U1 U2+1)212:%. gpace, some cells are very small.
We rst apply the algebraic transformation from Section Il * Finajly, it turns out thatl 18 of these regions correspond to
to D(z1;22), the resulting bivariate parametric system wgnstable systems. For example the cell containing the couple

B. Parametric case

have to study 2|ng (Xl;x22)2: CZ(X21§X2) j 092W|th (up = :4717912847u, = :5389591122)contains pa-
R(GY) =7 up X7y° 3Up XTy“+7 Xy + Up X“+7 y°Uy rameters values that all correspond to unstable systems while
Sup x?+ y2u; x* 3y?+up Uy 11, the cell containing the couplau; = :6152602220u, =
C(x;y) = 10 u; X2y  8ug Xy? + 6 Uy X2y + 4 Uy xy? + :5389591122)contains parameters values that all corre-

4x%y 6xy? 8up x+10u;y+4u; x+6yu, 6x+4y] spond to stable systems (see Figure 3).

The minimal discriminant variety of this bivariate
system with respect to the projection ontfu;;uy)
can be obtained by running the Maple function® Resultant and Subresultants

APPENDIX

RootFinding[Parametric][Discriminant Variety] A key tool, related to the study of solutions of algebraic
which gives an union of 10 lines, 2 quadrics and one curveystems, is the Subresultant sequence. We provide below its
of degree 6. de nition and some of its properties that are needed for the

Computing the conditions on the parameters that discringescription of our algorithms. For a complete overview, the
inate the situations wher@ (z;; 1) (resp.D (1;z,)) has (or reader may refer to [7].
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Fig. 3. 0:4::: 06;up =

0:4:::

Zoom around a non stable regiony =
0:6 - Parameter space decomposition

D denotes a unique factorization domain d&nids fraction
eld. Let f = ag+ :::+ a,x" andg = by + :::+ by x™
be two polynomials with coef cients iD. We shall always
assume in the following that, 6 0, 5, 6 0 andn m.

For an integek such thatO k m, we de ne the
following D-linear map

"k (upv) 7P ouf +vg

Sres(f;g) =0,
f; g have a non trivial gcd which is proportional to the
non-zero polynomial subresultant of minimal index.

In addition, the subresultant sequence bears an important
specialization property.

Proposition 2: Let D and D° be unique factorization do-
mains and D ! DO°be a morphism. Leff;g 2
D[x] and suppose that deg(eé¢f)) = degre¢f)
degre¢g) = degre¢ (g)). Then (Sres(f;q))
Sres( (f); (g9));8i =0 :::degreéqg).

Censider now two polynomials = = [, ai(x1) x5 and
g= i";O b (x1) X, in Q[xy;X2]. The two above properties
leads to the following result.

I v

Proposition 3: For any such thata,( ) andh,( ) do
not both vanish. The rst polynomial Srgsy (;x 2) (for k
increasing) that does not identically vanish is of degree k
and it is the gecd of (;x 1) andg( ;X 2)(up to a nonzero
constant in the fraction eld oD( )).

Triangular decomposition: Given two bivariate poly-
nomials f;g 2 Q[xz;X2] such thata,(x;) and by, (X1)
are coprime, one can use the above result in order to
compute a triangular description of the solutions of the
systemS := ff = g = 0g. Indeed, starting from the
resultant off and g whose roots are thex; coordinates
of the common solutions 08, one can factorize the latter
depending on the degree of the gcd ¢f; x ) andg( ;X ).

such thatu;v 2 Dix] are polynomials with degrees For each root of the resultant, the gcd df(;x ) and

respectively less or equal than k landm k 1
whose the %orresponding matrix is given as:

@ an 1 a0

anh an 1 =)
Sk:
bn b o1 o
bn bn 1 il by

g(;x ») is then given as the specialization at of the
rst non vanishing polynomial subresultant according to
Proposition 3. Consequently, the set of solutionsSSef,e.,
& )2 C%f(; )= 9(; )=0gis equal to the set

m YM(; )2 C3hi( ) = Sres(; )= 0g, where the
polynomial h;(x;) is the factor of the resultant whose any
root satis es the property that the degree of the gcd of
f(;x 2)andg(;x 2)isequalstd. See [12] for more details
about this triangular decomposition algorithm.

B. Grobner bases

A Grobner basis of an idedl
putable generator set dfwith good algorithmic properties.

The matrixSy is the classical Sylvester matrix associatedrhis generator set is de ned with respect to a monomial
to f andg. To be coherent with the degree of polynomialsordering, say a total ordering &' which is compatible with

we will attach indexi 1 to thei-th column ofSy, so that
the indexes of the columns go frolton+ m k 1

De nition 2: For j n+rm k land O k m,
let si;; be the determinant of the submatrix 8f formed
by the lasthn+ m 2k 1 columns, the column of index
and all then+ m 2k rows. The polynomial Srg¢f;g) =

Shick XX+ 111+ sk is thek-th polynomial subresultant of f

and g, and its leading termgr (or simply sk) is thek-th
principal subresultant of f and g. The polynomial Keg) =
Sty is the resultant of f and g.
Proposition 1: The following properties are equivalent:
f;g have a common root i, the alg. closure oF,
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the multiplication of monomials. The lexicographic ordering,
denoted< e, is the most well-known ordering:

Xt Xn" <jlex Xp! Xp"
i= g, fori=1;::55i0 1
<

9 0 n; ) ! ©6)
o Io
However, for ef ciency reasons, it is often preferable to
consider the so-called degree orderings such agiégeee

reverse lexicographic order (DRL)

xp! il X"
k k
X0

Xnp
k Kk

<pRL X;' ii: (7)
X, "o Xn P <iexXg Xy "ot Xp b
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Once a monomial ordering is xed it induces a natu- [2]
ral notion of leading monomialfor any polynomialp in
Q[x1;:::;Xn] which is the greatest monomial qf for >
denoted by LMp; <) in the sequel. [3]

Whatever the monomial ordering used, the key property of
a Giobner basis is to induce a canonical reduction functiorm
namednormalForm

Theorem 6:[13] Let G be a Gbbner basis of an

(5]
ideal | Q[x1;:::;%Xn] for a xed ordering <. Then,
a polynomial p 2 Q[xs;:::;X,] belongs tol if and 6]
only if NormalForm (p;G;<) = 0. In particular,

NormalForm (p; G; <) is unique.

We pay a particular attention to &sner bases with respect (7]
to elimination or block orderings (de ned below) since they
provide a way ofeliminatesome variables from the system.

8
De nition 3: Given two monomial orderingsy (w.r.t. .
the variablesU;;:::;Uy) and <x (w.rt. the variables
Xd+1 ;.13 Xn), ablock ordering<yx is de ned as follows g
. given two monomialsm and m® thenm <yx mO if
and only if eitherm;, . .. . <x ijUr v O g
(ij1: smU gel = mjoulzl T and randJr1 =1 pmx p =l u
IOXM i ). We say that such an orderirgiminates [11]
Xd+1 ;555 Xn
[12]

The lexicographical ordering suck; < < X p IS
a block ordering for anyl < i < n , which eliminates

elimination because the computation is usually much harder
than with block orderings such bothy and<x are DRL [14]
orderings.

Two important applications of elimination orderings arg
the projectionsand localizations which can be summarized
in the following two propositions. To facilitate the illustra-
tion, the following notation is needed. Given any subget
of CY (d is an arbitrary positive integer) is its Zariski
closure which is the smallest subset®@t containingV. If
V is a constructible set (i.e. it may be de ned by equationgm
and inequations), thel is also the closure for the usual

[16]

topology. This will be always the case in the following.  [18]
Proposition 4:[23] Let G be a Gbbner basisl-of an ideal
I Q[U; X]w.rt. a blockorderings u:x , thenG =~ Q[U; X]  [19]

is a Gibbner basis ofl Q[U; X] w.rt. <y. Moreover,
if y :C" ! CY denotes the canonical projection onf2o]
the coordinatedJ, thenV(l \ Q[U]) = V(G\ QJU]) =

u(V(1)).

[21]
Proposition 5:[24] Let|  Q[X] andT be afpew inde-
terminate, then/ (1) nV(f) = V(I + iTf 1)) QIX]). o
If G° Q[X;T]is a Gobner hasis of + HTf 1 w.rt

a block ordering<x;7 , thenG° Q[X] is a Gibbner basis [23]
of | :f! :=(l+hrf 1) Q[X]w.rt <x.The variety
V(I)nV(f) and the ideall : f! are usually called the [24]
localization of V(') andl by f.
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