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As the number, complexity, and heterogeneity of connected devices in the Internet of Things (IoT) increase,
so does our need to secure these devices, the environment in which they operate, and the assets they manage
or control. Collaborative security exploits the capabilities of these connected devices and opportunistically
composes them in order to protect assets from potential harm. By dynamically composing these capabilities,
collaborative security implements the security controls through which security (and other) requirements
are satisfied. However, this dynamic composition is often hampered by the heterogeneity of the devices
available in the environment and the diversity of their behaviours. In this paper we present a systematic,
tool-supported approach for collaborative security where the analysis of requirements drives the opportunis-
tic composition of capabilities in order to realise the appropriate security control in the operating environ-
ment. This opportunistic composition is supported through a combination of feature modelling and mediator
synthesis. We use features and transition systems to represent and reason about capabilities and require-
ments. We formulate the selection of the optimal set of features to implement adequate security control as
a multi-objective constrained optimisation problem and use constraint programming to solve it efficiently.
The selected features are then used to scope the behaviours of the capabilities and thereby restrict the state
space for synthesising the appropriate mediator. The synthesised mediator coordinates the behaviours of the
capabilities to satisfy the behaviour specified by the security control. Our approach ensures that the imple-
mented security controls are the optimal ones given the capabilities available in the operating environment.
We demonstrate the validity of our approach by implementing a Feature-driven medlation for Collaborative
Security (FICS) tool and applying it to a collaborative robots case study.
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1. INTRODUCTION

Many secure systems are designed and developed with pre-determined countermea-
sures without the possibility to adapt to new resources and devices [Yuan et al. 2014].
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1:2 A. Bennaceur et al.

With the prevalence of the Internet of Things (IoT), secure systems are expected to
make the best use of the resources and devices in the environment as their availability
and capabilities change in order to meet their requirements [Asplund and Nadjm-
Tehrani 2016]. However, most existing solutions focus on the security threats associ-
ated with the IoT rather than the opportunities brought by the IoT to support secu-
rity [Sicari et al. 2015]. We believe that the IoT can play an important role in enabling
security by offering the infrastructure to connect multiple devices on the fly in order
to implement adequate countermeasures [Cerf 2015]. In the context of cyber-physical
systems, we particularly focus on physical security, that is the protection of material
assets from physical attacks (e.g., theft) [Weingart 2000]. In a previous position pa-
per [Bennaceur et al. 2014], we propose collaborative security whereby both the selec-
tion and implementation of countermeasures are performed at runtime. In this paper,
we propose and elaborate a framework for collaborative security that composes the ca-
pabilities of multiple, potentially heterogeneous, devices with variable (configurable)
behaviours, in order to satisfy their requirements. Our framework revolves around
three concepts: security controls, capabilities, and mediators.

— Security controls specify the mechanisms that need to be deployed in order to protect
assets from harm, i.e. to satisfy security requirements [Haley et al. 2008].

— Capabilities describe the features and behaviours of the devices. Features describe
what a device can do in the operating environment while the behaviour describes
how it interacts with the environment, including other devices.

— Mediators coordinate the behaviours represented by multiple capabilities in order to
reach a state where the requirements are satisfied.

Collaborative security leverages the capabilities of the connected IoT devices to im-
plement the adequate security controls. The process of enabling collaborative security
spans design time and runtime. At design time, the developer of each individual device
defines its capability. The set of requirements and the security controls are specified
as well. At runtime, the capabilities of the IoT devices are discovered and composed
in order to implement the appropriate security control. In other words, software de-
velopers have only to specify the models of the devices and security controls while the
framework is responsible for realising the collaborations of IoT devices automatically.

Fig. 1 gives an overview of our framework for collaborative security. The require-
ments are first analysed in order to determine the specification of the appropriate
security control that needs to be implemented. Determining the appropriate security
controls often requires trading off security against other requirements such as perfor-
mance or usability and considering the value of the assets, and potential threats [Sale-
hie et al. 2012]. To implement this security control, the available capabilities are then
configured and composed. This process is iterative and is performed in two steps. First,
Feature Selection computes the optimal set of features to be enabled on a subset of ca-
pabilities in order to realise a security control (see Fig. 1-@).

Feature-driven Mediator Synthesis aims to generate a mediator that coordinates the
behaviours associated with the selected subset of capabilities in order to satisfy the
behavioural specification of the chosen security control (see Fig. 1-8). Only the be-
haviour associated with the selected features are analysed during mediator synthesis.
If the mediator synthesis fails then a different set of features must be selected and
fed back to the synthesis module. When the mediator synthesis succeeds then the col-
laboration is realised by enabling the selected features and deploying the synthesised
mediator. Hence, while the requirement model can be used at design time to specify se-
curity controls and their relationships to those requirements, the realisation of those
security controls is performed at runtime by composing the capabilities available in
the operating environment.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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Fig. 1. Overview of our collaborative security framework

1:3

This paper focuses on the models and mechanisms to represent, reason about, and
mediate capabilities in order to realise security controls. It contributes to three areas:

— Modelling and reasoning about collaborative security. There is a conceptual gap be-
tween requirements (security and others) and the collaborative behaviour of capa-
bilities necessary to satisfy those requirements. We show that the combination of
features and transition systems is a useful abstraction that helps bridge the gap
between requirements and capabilities. From a modelling perspective, features give
a macro-view of capabilities and security controls as a set of functionalities while
transition systems describe how to interact with the capabilities and specify the in-
tended behaviour of security controls. From a reasoning perspective, feature analysis
drives the selection of capabilities while behavioural analysis drives the composition

of those capabilities to implement a security control.

— Feature-driven mediator synthesis. To implement security controls, we compose ca-
pabilities considering both their features and behaviours. We first select a set of fea-
tures to realise a security control. The selected features must also optimise quality
attributes such as performance or energy consumption. We formulate the selection
of features as a multi-objective constrained optimisation problem, which can be effi-
ciently solved using constraint programming [Rossi et al. 2006]. The selection of fea-
tures allows us to scope the behaviours represented by the capabilities and thereby
reduce the analysis space for mediator synthesis. The synthesis algorithm ensures
that the composition of the behaviours represented by the capabilities together with
the mediator is deadlock-free and reaches a state where the requirements are satis-
fied. Rather than focusing on a specific algorithm for mediator synthesis, which we
tackle elsewhere [Bennaceur and Issarny 2015], we show how these techniques can

be improved through feature selection.

— Tool-support for collaborative security. We demonstrate the feasibility of our ap-
proach by implementing a collaborative security framework, FICS (Feature-driven
medIation for Collaborative Security), and evaluate it using a collaborative robotics
case study. More specifically, we show using a proof-of-concept demonstrator how
two robots—a humanoid robot and a vacuum cleaner—are made to collaborate in

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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order to implement an additional security control for protecting a mobile phone
from theft. The tool and all models discussed in the paper are available at http:
//seadl.open.ac.uk/fics/.

The paper is structured as follows. Section 2 introduces the collaborative robots case
study, which we use to illustrate and then evaluate our approach. It also describes
our collaborative security framework using Jackson and Zave’s framework for require-
ments engineering [Jackson and Zave 1995]. Section 3 presents the formalism we use
to specify our inputs, that is requirements and capabilities. Section 4 details the selec-
tion of capabilities. Section 5 moves to the composition of capabilities using mediators.
Section 6 evaluates our framework both theoretically and practically. Section 7 exam-
ines related work. Finally, Section 8 concludes the paper and discusses future work.

2. OVERVIEW

In this section we introduce our research questions using a collaborative robots exam-
ple and outline our approach using Jackson and Zave’s framework for requirements
engineering [Jackson and Zave 1995].

2.1. Motivating Example: Collaborative Robots for Home Security

Traditionally, home security systems require buying and installing multiple cameras
as well as a software solution for monitoring and notifications. These systems are
rather static and cannot readily adapt to changes in user requirements or to limited
resources such as the users renting their house. On the other hand, in 2013, 2.7 mil-
lion domestic (household) robots (e.g., vacuum and floor cleaning, lawn-mowing robots)
and about 1.2 million entertainment robots (e.g., toy robots, hobby systems, and edu-
cational robots) were sold [TFR Statistical Department 2014]. Furthermore, Gartner
estimates that the typical family home could contain several hundred smart devices by
2022 [van der Meulen and Rivera 2014]. The proliferation of these devices illustrates
how the IoT creates new opportunities for protecting our home and the valuable assets
therein at a lower cost. In our example, the security requirement is to protect a phone
from theft. Note that the focus is on protecting the physical object rather than the data
within the phone. In this paper we consider the case of two robots: a programmable au-
tonomous vacuum cleaner (iRobot Create!) and a humanoid robot (NAO?). Both robots
have task-level autonomy [Brooks 2009] in the sense that they are given specific tasks
which they decompose and achieve by themselves. For example, we can command NAO
to standup, and NAO controls the different joints and motors to perform this task.

Fig. 2 sketches our collaborative robots case study. We use extracts from this case
study throughout the paper to illustrate our approach while a demonstration video can
be found at http://seadl.open.ac.uk/fics/.

Several security controls can be used to protect the phone from theft when the user
leaves it unattended: (i) calling out to the user, (ii) hiding the phone in a safe place, or
(iii) locking the door of the room in which the phone is. The choice of the appropriate
security control may depend on other requirements. In our case study, hiding the phone
is preferred to locking the door in order to maximise the accessibility of the room,
that is a usability requirement. Although, the Lock can be used to make the room
safe and thereby protect the phone, making the two robots, NAO and iRobot Create,
collaborate allows us to protect the phone from theft while ensuring that the room
remains accessible. In other words, our goal is to leverage the capabilities of NAO

Thttp://www.irobot.com/us/learn/Educators/Create.aspx
2http://www.aldebaran-robotics.com/en/
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Fig. 2. Ilustration of the collaborative robots case study

and iRobot Create to implement the appropriate security control. Therefore, we must
answer the following questions:

— Which security control should be implemented?

— Which capabilies should be selected and how should they be configured in order to
realise the chosen security control?

— How to compose the selected capabilities?

2.2. Collaborative Security a la Michael Jackson

To describe our approach more precisely, we formalise it using Jackson and Zave’s
framework for requirements engineering [Jackson and Zave 1995], which makes
explicit the relationship between requirements, specifications, and environment
properties.

The role of our collaborative security framework is to bridge the gap between the
security controls and the behaviour of multiple capabilities. The first step is to deter-
mine a specification of a security control that satisfies the requirements in the given
environment, which can be formalised as follows.

SC,EE=TR

where SC denotes a specification of a security control, £ denotes environment prop-
erties, and R denotes a set of requirements. The security control may need to satisfy
multiple requirements. Therefore, the requirements are represented as a partially or-
dered set R = {Rs, Ry, ..., R} where R; denotes security requirements. In this work
we assume that security requirements have higher priority but that might not always
be the case [Berander and Andrews 2005]. The larger the subset of requirements a se-
curity control satisfies, the more appropriate it is. The goal is then to use the available
capabilities in order to implement the most appropriate security control.

It might be the case that none of the available capabilities can realise this security
control on its own:

VCeS:CSC

where S denotes the set of capabilities available in the environment.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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Furthermore, even multiple capabilities put together in the environment may not be
enough to implement the security control:

VC C 25 :C £ SC

where 2° denotes the power set of S, i.e. any subset of available capabilities.

Yet by making multiple capabilities work together, we can implement this secu-
rity control. To this end, we automatically synthesise an intermediary software entity,
called a mediator [Wiederhold 1992], that composes multiple capabilities in order to
implement the appropriate security control, which can be formalised as follows:

Find C C 2° and synthesise M such that C, M |= SC

where C is the selected set of capabilities and M is the synthesised mediator. We con-
sider the entailment (=) from two perspectives: features and behaviours. From a fea-
ture perspective, the features of the selected capabilities must be sufficient to imple-
ment the security control. These features must also optimise specific quality attributes
of the implementation of this security control. From a behavioural perspective, the
composition of the behaviours of the selected capabilities together with the synthesised
mediator must refine the behaviour specified by the security control. This refinement
implies the inclusion of the traces (possible executions) of the security control speci-
fication into those of the system composed of the selected capabilities together with
the synthesised mediator [Clarke and Wing 1996]. Note that the mediator, if it exists,
is only responsible for coordinating the behaviours of the selected capabilities rather
than creating additional functionalities, i.e. a behaviour with a new set of actions (al-
phabet) [Bennaceur and Issarny 2015].

Hence, collaborative security aims to realise security controls by dynamically com-
posing the capabilities of the IoT devices available at runtime. After giving the neces-
sary formal definitions in Section 3, Section 4 details feature selection, that is finding
C C 2°. Section 5 details feature-driven mediator synthesis, that is synthesising M.

3. PRELIMINARIES

In this section, we give the formal definitions of the models used within our collabora-
tive security framework.

3.1. Modelling Requirements and Security Controls using KAOS

In this section we show how feature and behavioural models can be used to represent
the security controls necessary to satisfy security requirements as well as other rel-
evant requirements. We build upon KAOS goal modelling [van Lamsweerde 2009] to
represent and reason about the relationships between requirements and security con-
trols. A KAOS goal model shows how goals are refined into sub-goals and associated
domain properties. A KAOS goal is defined as a prescriptive statement that the system
should satisfy through the cooperation of agents such as humans, devices and software.
Goals may refer to services to be provided (functional goals) or quality of service (soft
goals). KAOS domain properties are descriptive statements about the environment.
Besides describing the contribution of sub-goals (and associated domain properties)
to the satisfaction of a goal, refinement links are also used for the operationalisation
of goals. In this case, refinement links map the goals to operations, which are atomic
tasks executed by the agents to satisfy those goals. Conflict links are used to represent
the case of goals that cannot be satisfied together. Keywords such as Achieve, Maintain,
and Avoid are used to characterise the intended behaviours of the goals and can guide
their formal specification. A KAOS requirement is defined as a goal under the respon-
sibility of a single software agent.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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As our starting point, we consider security (and other) requirements, all of which are
under the responsibility of the collaborative security framework, which composes mul-
tiple capabilities in order to satisfy these requirements. The goal model used to refine
requirements into features and behavioural models can be decomposed into three lev-
els. The first level specifies the requirements. The second level is dedicated to security
controls. It defines the behavioural specification and the domain properties associated
with each security control. The third level is about the features necessary to imple-
ment the security controls as well as the attributes that must be optimised by the
implementation. Note that the use of levels facilitates the representation but does not
have a formal groundings.

Fig. 3 depicts the goal model for the collaborative robots case study. Two require-
ments are specified R = { R, Rysqpility } Where R; is to protect the phone from theft and
Rusavitity 1 to keep the room accessible. Refinement links capture alternative security
controls that satisfy those requirements assuming some domain properties. Conflicts
links may interconnect security controls and other requirements and help select the
appropriate security control to implement. For example, the security control that in-
volves moving the phone to a safe place contributes to the satisfaction of both the
security and usability requirements whereas the security control for locking the room
also satisfies the security requirement but not the usability one. Each security control
is annotated using a Linear Temporal Logic (LTL) [Pnueli 1977] formula that specifies
the desired behaviour of this security control. For example, the security control that
involves moving the phone into a safe place specifies that when the user leaves the
room then the location of the phone shall eventually become the safe place, i.e. G, is
defined as UserLeft = Qlocation(phone) = location.SAFE. This security control is as-
sociated with three domain properties: phone is an object, there exists a safe place, and
the room is adequately lit. Finally, each security control is refined into a set of features
necessary to implement this security control as well as the attributes that need to be
optimised by this implementation. For example, the security control that involves mov-
ing the phone into a safe place necessitates two features Motion and ObjectRecognition
and shall maximise the Speed attribute. Note that the KAOS model specifies possible
security controls but is agnostic about existing available capabilities, which are then
selected and configured by the collaborative security framework in order to realise the
specified security control.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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3.2. Modelling Capabilities using Featured Transition Systems

Capabilities describe what an IoT device can do, i.e. its features, and how it interacts
with the environment, i.e. its behaviour. This section gives the formal definitions of the
models used to represent capabilities.

A Feature Model (FM) is a hierarchical organisation of features representing the
constraints under which features occur in valid configurations [Kang et al. 1990].

Definition 3.1. A feature model is a tuple FM = (F, DE,G, Car,r, Attr, p, 7, D)
where F is a finite set of features, DE C F x F is a set of directed child-parent edges,
G C 2PF are non-overlapping sets of edges participating in feature groups, i.e. the
edges of the same sets share the same parent, Car : G — Ny x Ny is a mapping from
a group to a pair (i..j) denoting the cardinality of the group where i is the minimum
number of children required and j the maximum, » € F is the root feature, Attr is a set
of attributes, p : Atir — F is a total function that associates an attribute with a fea-
ture, 7 : Atir — {Integer, Real, Boolean, Enumeration} assigns a type to each attribute.
This type must be finite or an interval of real numbers, ® is a set of boolean-valued
expressions over the features 7 and the attributes Atir, expressing constraints on the
selection of features.

Unlike the definition of Classen et al. [Classen et al. 2011], the root feature is optional.
The rationale behind making the root optional is that during feature selection, a ca-
pability is selected only if the corresponding root feature is selected. As we will show
in the Section 4, the root feature is selected if any of the features associated with this
capability is selected.

The behaviour of a device specifies how it interacts with its environment. Transition
Systems (T'S) are often used to specify behaviours [Keller 1976].

Definition 3.2. A Transition System (TS) is a tuple M = (S, A, Tr, so, Pred, L)
where S is a finite set of states, A is a set of observable actions, 7r C S x A x S
denotes a transition relation, sy C S is the initial state, Pred is a set of predicates, and
L : S — 2P is a valuation function that indicates for a state s € S the predicates
p € 2P that are true in this state.

However, the behaviour of an IoT devices is related to its features. Specifically, the
invocation of the actions of A is conditioned by the enabled features. Featured Tran-
sition Systems (FTS) provide a compact formalism for describing behaviours using
feature models [Classen et al. 2013]. An FTS is a TS whose actions are guarded by
features, which are specified in a feature model.

Definition 3.3. A Featured Transition System (FTS) is a tuple
B = (S,A Tr, s, Pred,L, FM,~) where S, A, Tr,so, Pred, and L are defined as
in Definition 3.2, FM is a feature model, and v : 7r — B(F) is a total function,
labelling each transition ¢ € Tr with a feature expression b € B(F) that must be true
for the action associated with ¢ to be executed. F are the features associated with the
feature model FM.

For a selected set of features (i.e. a configuration), an FTS can be projected onto
this configuration by removing all the transitions whose feature expressions are not
satisfied, which results in a TS.

Definition 3.4. A projection of an FTS B onto a set of features f C Fis a TS
By = (S, A, Tr', s, Pred, L, FM ,~) where Tr' = {t € Tr|f = v(t)}.

Definition 3.5. A capability is an FTS B describing the behaviour and the features
F of an IoT device.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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4. FEATURE SELECTION AS A MULTI-OBJECTIVE CONSTRAINED OPTIMISATION PROBLEM

The first step in achieving collaborative security is to find the subset of capabilities
that need to be composed in order to implement the appropriate security control. These
capabilities are also configured by enabling only the features required for this collabo-
ration and which optimise the implementation of this security control. The selection of
this optimal set of features is the focus of this section. Fig. 4 gives an overview of fea-
ture selection. We are provided with a set of feature models, each of which associated
with a capability, together with the specification of a security control. The specification
of the security control includes the set of features necessary for its implementation and
the quality attributes that need to be optimised by this implementation. The aim is to
select a set of features to be enabled which (i) includes all the features of the security
control, (ii) satisfies the constraints imposed by the feature model of each capability,
and (iii) optimises the quality attributes for the implementation of the security control.
We formulate feature selection as a MOCOP (see Definition 4.1). By doing so, we can
build upon the large body of work on solving optimisation problems efficiently using
constraint programming [Rossi et al. 2006].

Feature Models of the Capabilities

1858

FM, FM,  FM,

Selected Features

Feature
Features and Attributes Selection
of the Security Control fiofor i fn

Fig. 4. Feature selection

Constraint programming uses constraints to state the problem declaratively without
specifying a computational procedure to solve it. The latter task is carried out by con-
straint solvers. The constraint solver implements intelligent search algorithms such as
backtracking and branch and bound which are exponential in time in the worst case
but that have proved to be very efficient in practice. The constraint solver also exploits
the arithmetic properties of the operators used to express the constraints to quickly
check, discredit partial solutions, and prune the search space substantially.

Definition 4.1. A Multi-Objective Constrained Optimisation Problem
(MOCOP) is a tuple (X,D,T,U) where X = {x1,...,2,} is the set of variables of the
problem; D is a function that associates to each variable z; its domain D(x;), i.e. the set
of possible values that can be assigned to z;; T = {11, ..., T, } is the set of constraints. A
constraint 7} is a mathematical relation defined over a subset 7 = {«],...,27,} C X
of variables, which restricts the values that these variables can take at the same time;
and U = {Uy,...,Us} is a set of objective functions whose values we seek to optimise.
An objective function U;—; j is defined over a subset of variables Y C X and associates
a utility—usually an integer or real value—to each assignment of Y.

To formulate feature selection as a MOCOP, we must define the variables X and
their domains D(X), the associated set of constraints 7', and the objective functions U.

Variables and their Domains. Feature selection involves searching among all pos-
sible combinations of features, an optimal set of features that must be enabled on a
subset of capabilities in order to implement a security control. Therefore, we associate

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1, Publication date: July 2016.
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each capability with a variable describing whether the features of this capability are
enabled or not. More specifically, we represent each variable as a vector of boolean
values, each of which set to 1 (true) if the feature of the associated capability is to be
enabled and set to 0 (false) otherwise:

X ={x1,29,...,7,} and D(X) = 271 x 272 x ... x 27
where 27=1.» denotes the power set of the features of capability Ci—; ..

Constraints. Constraints specify the conditions for selecting features. In the follow-
ing, the first constraint ensures that all the features of the security control are selected
and the second concerns conformance to the feature models of individual capabilities.

Constraint 1: The selected features must include the features necessary to
implement the security control. This constraint ensures that each feature required
to realise the security control is selected in some capability and is formalised as follows:

Vf € Fs,3 k € [1,n] such that z;[f]

where F, denotes the set of features associated with the security control and zy—; , is
the variable associated with capability Cy—; . .

Constraint 2: The selected features must conform to the feature model of the
capabilities. The features to enable on each capability must represent a valid config-
uration considering the feature model of this capability. We describe below how this
constraint is decomposed into smaller constraints that must be respected for each ca-
pability.

— The selected features must satisfy the cardinality of every group of features. When-
ever a parent feature with a cardinality <a..b> is selected, then at least a children
must be selected, i.e. the number of child features that are true (set to 1) is at least
a, and at most b, which can be formalised as follows.

Vf; € Fi such that gr € G, gr = {(f5,, f5),---, (fj.., f5)} and < a..b >= Car;(gr),

$Z[f7]:> <a< le[fjk} <b> for 1<i<n
k=1
where f; € JF,—i., denotes the parent feature of f;,...,f;., ie gr =

{(firs fi)s---s (fin> fi)} is a group gr € G;=1., associated with the capability Ci= .
The cardinality of this group is <a..b>.

— Whenever a child feature is selected, so is the parent feature. As a result, the root
feature, and the capability, is selected if any of its features is selected.

v(fchilda fparent) € DE; : xi[fchild} = l'i[fparent} for 1<i<n

where (fcnitd, fparent) € DEi=1., is a child-parent pair associated with the feature
model of capability C;—;. .

— The selection of features must conform to any additional condition on features and
attributes specified within the feature model of the capability:

®, for 1<i<n
where ®,_; ,, is the boolean expression associated with the feature model of capabil-
ity Ci—1..n.

Objective functions. There might be multiple sets of features satisfying the afore-
mentioned constraints. Therefore, the search is driven by the quality attributes we
seek to optimise. In addition, the number of selected features must also be minimised.
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Fig. 5. Feature models for the collaborative robots case study

We assume without loss of generality that we seek to minimise all quality attributes
without a preference for any of these attributes, which can be stated as follows.
JJuin [94,(5),945(5), - ga,(s), [s]]

where g4, , , denotes the function that calculates the value of the quality attribute
A= ; for any set of features s € D(X) that satisfies the aforementioned constraints.
|s| denotes the cardinality of this set of features. For simplicity, we assume that the
attribute is associated with a single selected feature. When an attribute A;—, ; spans
multiple selected features, then g4, , , is an aggregation function (e.g., summation,
multiplication, and minimum) that depends on the structure of the feature model and
the type of attribute, in a way similar to QoS-aware service composition [Zeng et al.
2004; Jaeger et al. 2005; Tan et al. 2016].

Example

Let us consider the collaborative robots case study, Fig. 5 depicts the feature models
of NAO and iRobot Create. Note that Definition 3.1 describes the feature model in a
normal form. Therefore, AND, OR, and XOR groups are represented using the cardi-
nalities, <n..n>, <1..n>, and <1..1> respectively. The Requires links are represented
as logical implications within the set of boolean-valued expressions ®. The greyed fea-
tures represent the optimal set of features that need to be selected in order to imple-
ment the security control that involves moving the phone to a safe place. This secu-
rity control necessitates the Motion and ObjectRecognition features (see Fig. 3), both
of which are selected. The selection of features must also conform to the cardinality of
each group. For example, in the feature model of iRobot Create, Connection admits only
one child feature, which in this case is the Bluetooth feature. In addition, as we want to
maximise the speed at which the phone is moved to a safe place, the Motion feature of
iRobot Create whose associated Speed has a value of 60 m/s is selected instead of the
Motion feature of NAO whose associated Speed has only a value of 30 m/s.
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Complexity

We prove that feature selection is NP-complete using polynomial-time reductions from
the set cover problem [Karp 1972]. We recall that in the set cover problem, we are
given a set of n elements U and a finite family of its subsets C' = {S1,...,S,,} such

that S; C U and |J S; = U, we must find a minimum-cost collection of these subsets
i=1
whose union is U, i.e. the smallest (k) family of subsets C' = {Ti,...,T}} such that

TECandUT U.

Jj=

The first step is to transform an instance of the set cover problem into an instance of
capability selection. We start by building m feature models, each of which associated
with a subset S;. The feature model consists of a root feature rs, and the conjunction
of its mandatory children features, which are the elements included in S;. Hence, F; =
S; U {rs,}. In addition, each root feature rg, is associated with an attribute cost = 1.
The features associated with the security controls are the n elements of U, i.e. F; =
U. We seek then to minimise the cost attribute, i.e. A = cost. The function g, for
computing the value of the attributes for a set of feature is the sum of the values of the
cost attribute for individual features. It is trivial that this translation of the set cover
problem to an instance of feature selection can be performed in polynomial time.

Feature selection computes the optimal set of features f1, fs, ..., f,, that includes all
the features of the security control and minimises cost. In addition, if a child feature is
selected, so is the parent feature rg, since the selected set of features must satisfy the
1nd1v1dua1 feature models. Hence to get a solution to the set cover, it suffices to pick the
set S; whose associated root feature, rg, , is enabled. It is also trivial that we can check
the satisfaction of feature models and inclusion of the features of the security controls
in polynomial time. As a result, we can state that feature selection is NP-complete.

5. FEATURE-BASED MEDIATOR SYNTHESIS

Features express only the functionality associated with a capability. To ensure that
capabilities can be composed in order to implement the appropriate security control,
we need to reason about their behaviours and compose them appropriately. This com-
position is ensured through mediator synthesis. Fig. 6 gives an overview of feature-
driven mediator synthesis. We are provided with the set of selected features and the
behavioural models of the of the associated capabilities together with the behavioural
specification of a security control. The goal is to synthesise, if possible, a mediator
that coordinates the behavioural models of the capabilities in order to satisfy the be-
havioural specification of the security control.

Selected Features

g g ——

fi,fo, i f Mediator

Capabilities m
e (O
~O @) )
Feature-driven M
Cy Cy C

. . .
» | Mediator Synthesis

Behavioural Specification
of the Security Control

LG S

J

Fig. 6. Feature-driven mediator synthesis
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There are many approaches to mediator synthesis [Yellin and Strom 1997; Vaculin
et al. 2009; Mateescu et al. 2012; Cavallaro et al. 2012; Inverardi and Tivoli 2013;
D’Ippolito et al. 2013; Bennaceur and Issarny 2015]. These approaches differ in their
assumptions (e.g., deterministic behaviour or a provided partial specification of the
mediator) and the expressiveness of the goals involved (e.g., dealing with safety, live-
ness, or general LTL properties). All these approaches require the exploration of the
state space of the composition of behaviours, which can rapidly grow as the number of
capabilities increase.

To reduce the state space to be explored by the synthesis algorithm, we propose to
project the behaviours represented by each capability onto the selected features. Pro-
jection scopes the behaviours of individual capabilities by keeping only the transitions
whose feature expressions are satisfied. We recall that the projection of an FTS onto a
set of features is the T'S obtained by removing all the transitions whose feature expres-
sions are not satisfied (see Definition 3.4). In addition, this TS is well-formed in that
it does not contain any dead state, i.e. a state with no outgoing transitions. Hence, we
can project the behaviours represented by the capabilities onto the selected set of fea-
tures to obtain their actual behaviours when only these features are enabled. We then
seek to synthesise, if possible, a mediator such that the composition of the projected
behaviours together with the mediator satisfies the behaviour specified by the security
control, which can be formally specified as follows.

Ciip, | Coipy | -+ Crpg, | M G

where f1, fo,..., f, denote the selected set of features, G, an LTL property specify-
ing the desired behaviour of the security control, and M the synthesised mediator.
The algorithm for mediator synthesis (Algorithm 1) starts by checking the basic con-
figuration where G, is satisfied in the initial states (Lines 1-5). The algorithm then
systematically explores the state space of the composition of the projected capabilities
(C; for simplicity) to synthesise a mediator (Lines 6-20). This exploration is guided by
the selection of a capability whose initial state sg, will be further examined (Line 7).
The selection of a capability to explore may be random, sequential (the same index
until all states have been explored), or motivated by some heuristics related to the
likelihood of satisfying G, but, for instance, let us assume that the algorithm simply
loops from 1 to n, which results in a breadth-first exploration. To avoid cycles and loops,
S0, 1s deleted from the state set (Line 8). For each outgoing transition (s, , a, i), an
updated TS is created by removing the transition and setting s, as the initial state
(Line 10). A recursive call with the updated TS together with the remaining capabili-
ties is then made to test whether this transition can lead to a valid mediator (Line 11).
Note that we present the recursive version of the algorithm for readability while the
implementation is based on stacks. In the case where a state satisfying G, is reach-
able, the mediator is generated by prefixing the partial mediator with the selected
transition (Lines 12-17). The algorithm fails if all states have been explored without
reaching a state where G is satisfied (Line 21).

If the synthesis algorithm fails to produce a mediator that coordinates the projected
behaviours in order to satisfy the goal G, then another solution s’ = {f{, f5,..., f/} is
selected and the synthesis algorithm run again. Currently, the selection of features is
only informed that no mediator can be synthesised. In future work, we will investigate
how the synthesis algorithm can guide the selection of another set of features. If all
valid sets of features, i.e. sets of features satisfying the constraints described in Sec-
tion 4, have been explored then our collaborative security approach cannot realise the
chosen security control given the available capabilities and another security control
must be chosen. If a mediator can be synthesised for the selected set of features then
the security control is successfully implemented thereby satisfying the requirements.
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ALGORITHM 1: SynthesiseMediator

Input: Projected capabilities: Ci—1.., = (Si, As, Try, so,, Pred;, L;), Gs
Output: Mediator: M

i=

1 if A Li(so,) = falseand A Li(so,) = Gs then
i=1 i=1

2 s NewState();
n n

s e (k00,00 O Pred, 1) = A L)) );
i=1 i=1

4 return M;

5 end

¢ while (J S; # 0 do

i=1
7 k < SelectCapability();
8 Sk — Sk\{SQk};

9 fort: (5()k,ak7sk) € Try do

10 C' (Sk,Ak, Trk\{t},sk,Predk,Lk);

11 M' = (8, A", Tr' sl), Pred’, L") + SynthesiseMediator(Ci=1..n, izk,C',Gs);
12 if M’ # Nil then

13 s" < NewState();

14 M« (S"U{s"}, A" Ud{ag}, Tr' U{(s”, ak, s0)}, {s”'}, Pred” U Ly (so, ), L")
15 where L : S" U {s"} — 9Pred’ULk(s0,.) guch that L"(s") = Li(so,,) and
16 L"(s) = L'(s) A Li(so,) for s € S’;

17 return M

18 end

19 end

20 end

21 return Nil;

Example

Let us consider the collaborative robots case study. Fig. 7 and 8 depict the behaviours
of NAO and iRobot Create respectively. Once the features are selected, the behaviour
is projected and some transitions are removed. For example, the transitions say(text)
in NAO’s behaviour is removed as the guarding features, TextToSpeech and will not
enabled. The security control that involves moving the phone to a safe place is speci-
fied by the LTL formula (location(phone) = location.SAFE. A mediator must then be
synthesised which coordinates the projected behaviours of NAO and iRobot Create (see
Fig. 5) in order to reach a state where the expression location(phone) = location.SAFE
is true. This mediator is depicted in Fig. 9. The actions are prefixed with the capabil-
ity names to avoid ambiguity. The mediator starts by invoking the connect actions on
both capabilities. Note that it is also possible to start by connecting to iRobot Create
but in any case the synthesis algorithm chooses only one sequence of invocations to
ensure that the mediator is deterministic. The mediator can then invoke the actions
locate(phone) and pick(phone) based on the assumption that phone is an object. After

location(NAO)

standup/RobotPosture 4 moveTolLocation/Navigation

connect/ locateObject/ObjectRecognition
Connection LI A DarknessDetection

=

location(phone)

location(NAO)
disconnect/

Connection opObjec pickObject/
sayText/  RobotPosture - RobotPosture
TextToSpeech location(NAO) =
xtloSpeec location(phone)

Fig. 7. NAO’s behaviour - Bys0
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the execution of the move(location((NAO))) action by iRobot Create, its location be-
comes the location of NAO, and the location of the phone once the drop(phone) action
is executed. Finally, the phone is moved to a safe place once iRobot Create executes
the action move(location.SAFE)). The subsequent actions are executed to return to the
initial states.

SN connect/Connection_ playSound/Audio
( )A

" ( location(Create) ) D

disconnect/Connection moveTolLocation/Motion

Fig. 8. iRobot Create’s behaviour - B;ropot
ocation(NAD
location(Create)

¥—NAO.connec location(NAO) Create.connect/” |ocation(NAO) \ NAO.locateObject
. location(Create) location(phone
NAO.pickObject
location(Create) =
location(phone)

Create.moveTolocation Tocation(NAO) =
Create.move(location.SAFE)

location(phone)
‘/Iocation(Create) location(Create)
= location.SAFE = location.SAFE

NAO.dropObject

location(NAO) =
location(Create)

location(Create)
= location.SAFE

Fig. 9. NAO-iRobot Create Mediator

Create.disconnect NAO.disconnect

Complexity

In the general case, mediator synthesis is known to be computationally expen-
sive [Pnueli and Rosner 1989]. Let us consider the synthesis of a mediator that ensures
the goal G, assuming F, i.e. the mediator satisfies the formula ¢ = E = G,. When ¢
is expressed as an LTL formula, mediator synthesis may reach complexity of double
exponent in the size of ¢ [Pnueli and Rosner 1989]. Yet for safety formulas as well as
subclasses of liveness formulas (e.g., GR(1) [Ehlers 2011] or SGR(1) [D’Ippolito et al.
2013]), the synthesis problem can be solved in polynomial time. Our approach does not
aim to improve the synthesis algorithm per se. Instead, we rely on the extensive work
that has been developed in the area of mediator synthesis and reduce the size of the
models provided as input to the synthesis algorithm. More specifically, by projecting
the behaviour associated with the capabilities, we reduce the size of ¥ and hence the
size of ¢. Furthermore, by simplifying ¢ through projection, we may make it possible
to use polynomial-time techniques to synthesise the mediator.

Finally, most techniques for mediator synthesis do not consider the optimisation of
numerical attributes of the synthesised mediator. Indeed, controller synthesis for more
complicated models (e.g., probabilistic systems) is NP-hard [Baier et al. 2004].

6. VALIDATION

In this section we present a prototype tool, FICS (Feature-driven medIation for Collab-
orative Security), that implements our approach. We report the results of experiments
using FICS to generate mediators for the collaborative robots case study. Finally, we
discuss the limitations and possible enhancements of our framework. Our evaluation
covers the following properties of our approach:

— Feasibility. We provide tool support for composing feature-based capabilities and use
it in the context of the collaborative robots case study to configure and mediate the
capabilities of NAO and iRobot Create automatically.
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- $3->drop(phone)/[RobotPosture]->S1
- S1->standup/[RobotPosture]->54
oK OK
Fig. 10. NAO capability in FICS Fig. 11. iRobot Create capability in FICS

— Performance. We measure the time to perform the selection of features and synthesise
mediators in the collaborative robots case study to show that, although theoretically
complex, feature-based composition can be applied at runtime in practical cases.

— Scalability. We show that the use of feature selection can allow mediator synthesis
to deal with an increasing number of capabilities.

We focus on evaluating the composition of capabilities to implement security control
and its applicability at runtime rather than how to monitor domain properties or when
to trigger the composition. We refer the interested reader to related work [Manna et al.
2013] for an analysis of when to trigger the composition.

6.1. Implementation

In order to demonstrate the validity of our approach, we implemented the FICS tool
and made it available at http://seadl.open.ac.uk/fics/. FICS takes as input the
specifications of a set of capabilities, each of which provided by the developer of the
IoT device, and that of a security control, provided by a security expert. Note that
the tool is equipped with a graphical interface for illustration since the aim is to use
some discovery protocol (e.g., UPnP [Jeronimo and Weast 2003]) to detect the available
capabilities and compose them automatically (see Fig. 1). A capability is added to the
capability set by loading its feature model, described using TVL [Classen et al. 2011],
and the associated behaviour, described in a proprietary XML format. We built upon
the TVL parser provided by Classen and colleagues and available at http://projects.
info.unamur.be/tvl/ to extract the normal form of the feature model. We updated the
TVL parser to support the analysis of numerical attributes for feature models in order
to manage the quality attributes to be optimised. During the parsing of the behavioural
specification, we check that all actions are guarded by feature expressions described
in the associated feature model. Fig. 10 and 11 illustrate the NAO and iRobot Create
capabilities once they have been parsed while their TVL specifications are available on
the FICS website.

The security control is described using features and attributes, which conform to the
names of the features and attributes used to represent the capabilities as well as an
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Fig. 12. Specifying a security control in FICS
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LTL formula representing its desired behaviour. Fig. 12 illustrates how the security
control that involves moving the phone to a safe place is specified in FICS.

The capabilities available are then automatically composed in order to implement
the specified security control. Fig. 13 gives an overview of the FICS tool. The first step
is to formulate feature selection as a MOCOP as described in Section 4 (see Fig. 13-@).
We use an open-source java library for constraint solving and constraint programming,
Choco?, to solve this MOCOP problem and find the optimal set of features to select.

The next step is to project the capabilities onto the selected features (see Fig. 13-0).
We use the MICS tool* to synthesise a mediator that coordinates the projected capabil-
ities in order to refine the behaviour of the security control. Note that other mediator
synthesis tools can be used but we chose MICS because we are familiar with the lan-
guage and data structures and no conversion or translation of the inputs/outputs is
needed during the integration. MICS either generates a mediator that coordinates the
behaviours given as input in order to realise the behavioural specification of the secu-
rity control or returns that no such mediator exists. In the former case, the mediator

3http://choco.emn.fr/
4nttp://www-roc.inria.fr/arles/software/mics/
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and the selected features to be enabled are given as output. In the latter case, we se-
lect the next valid set of features. If no more valid sets of features can be found then
FICS is unable to realise the security control given the capabilities provided as in-
put. Fig. 14 illustrates the output of FICS for the collaborative robots case study when
specifying the security control that involves moving the phone to a safe place while the
capabilities of NAO and iRobot Create are available.

6.2. Experimental Results

This section presents some practical aspects of our approach by reporting on the results
of using FICS to synthesise mediators in the collaborative robots case study.

Table I. Processing time (in milliseconds) for each step

NAO alone (n = 1) NAO and iRobot Create (n = 2)

n

11 |l 28 28 X 9

i=1

Time for feature selection (ms) 5 ms 6 ms

1 |States(C;)| 6 6 %3

i=1

Time for synthesis (ms) 2 ms 5 ms

Table I reports the time to perform each composition step (feature selection and me-
diator synthesis) in the cases where only NAQ’s capability is available and where both
the capabilities of NAO and iRobot Create are available. In both cases, the security
control involves moving the phone to a safe place and its implementation should opti-
mise the speed at which the phone is moved. In this experiment we consider a setting
where the synthesised mediator is deployed on a MacBook Pro laptop with 2.8 GHz
Intel Core 17 processor and 8 GB memory. We also configured the heap memory of the
JVM to the maximum. In both cases the time for selecting the features and synthesis-
ing the mediator is quasi-instantaneous. Yet in the case where both the capabilities of
NAO and iRobot Create are available, the speed at which the phone is moved into the
safe is higher, thereby optimising the implementation of the security control.

To evaluate the benefit of using features within mediator synthesis empirically, we
proceeded with further experiments by increasing the number of capabilities To gen-
erate the capabilities, we introduced multiple NAO’s capabilities with variable values
for the Speed attribute. We also added a Distance attribute representing the distance
between NAO and the phone, which we also varied across the capabilities. We then
kept the same security control involving moving the phone to a safe place. We mea-
sured the time necessary to synthesise a mediator in both the cases where feature
selection is used and where it is not. We repeated the synthesis 30 times for each case
and computed the mean time.

In the first experiment, the security control does not specify any attribute to op-
timise. Fig. 15 shows the time for synthesising mediators in relation to the number
of capabilities where feature selection is used and where it is not. The mediation
with feature selection does not go beyond 5 capabilities as the state space reaches
28% = 17210367 possible configurations. Without any optimisation, the number of valid
sets of features is very high and the feature selection tries to compute all solutions
before invoking the mediator synthesis. One way around this is to use the constraint
solver to find one valid set of features and then invoke the synthesis. If the synthesis
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Fig. 15. Processing time according to the number of capability (without attribute optimisation)

does not succeed then the constraint solver resumes and provides another solution.
This process allows the synthesis to perform better as shown in Fig. 15. Feature-based
mediation is penalised in this case as the number of optional features is high. However,
this is the case only when no optimisation is involved.

In the second experiment, the security control specifies one attribute to optimise
(mono-objective) or two attributes (multi-objective). Fig. 16 shows the time for synthe-
sising mediators according to the number of capabilities when using feature selection
with two attributes (both Speed and Distance) or a single attribute (only Speed) as well
as without feature selection. While the processing time always increases proportion-
ally to the number of capabilities, it is much slower when considering feature selection.
The time for mediator synthesis without using feature selection or using feature se-
lection with multi-objective optimisation can be fitted to an exponential curve but the
former soars with much fewer capabilities. In the case of feature selection with single-
attribute optimisation, the curve can be fitted to a third-order polynomial curve. As
the search for the set of feature is directed by the attribute to optimise, the algorithm
quickly converges to the single set of features optimising the Speed attribute. During
mediator synthesis, only the behaviour associated with a single capability has to be
explored. Without feature selection, mediator synthesis runs out of memory with 10
capabilities. Indeed, the state space is 6'° = 60466176. Although on-the-fly reduction
(e.g., [Mateescu et al. 2012]) can be used, the mediator synthesis algorithm still needs
to explore a large state space, which rapidly increases as capabilities are added. This
evaluation provides preliminary evidence that using feature makes the composition
more scalable in common cases. Indeed, it is more likely that there needs to be some
optimisation when implementing a security control [Yuan et al. 2014].

6.3. Discussion

Collaborative security aims to realise security controls according to the capabilities
available at runtime. Therefore, it can be used to react rapidly to changes in the en-
vironment, changes in assets under protection and their values, and the discovery of
new threats and vulnerabilities using the capabilities already available. It can also be
used to achieve defence in depth [Stytz 2004] by exploiting alternative implementa-
tions of security controls. The framework described in this paper presents the core of
our collaborative security approach. We made several simplifying assumptions in or-
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der to implement and empirically evaluate this framework. In the following we discuss
how some of these assumptions can be relaxed.

Can collaboration be applied to other types of requirements besides security? Our ap-
proach for composing feature-based capabilities can be used in a broader and more
general context. It can provide a means to opportunistically compose the multiple ca-
pabilities in order to satisfy given requirements, be they security-related or not. Yet
security exacerbates and opens many issues that make collaboration more challeng-
ing. First, security involves a great degree of change, which is not only technical (e.g.,
the discovery of new attacks and vulnerabilities), but also organisational or business
related (e.g., new security policies and business strategies). Reacting to these changes
rapidly is paramount and is key to minimising the damage of discovered attacks. By
opportunistically using available resources, collaboration offers the possibility to react
to change in a timely manner. Assurance is also more challenging when it comes to se-
curity. Not only do we need to ensure that security and quality requirements are met
but also that no vulnerabilities are introduced. However, it is not easy to prove that
the collaborations realised do not create any new vulnerabilities. Our approach can
be enhanced by adding constraints to avoid combinations of features that may lead
to some vulnerability based on a repository of common vulnerabilities such as Com-
mon Vulnerabilities and Exposures (CVE)® or Common Vulnerability Scoring System
(CVSS)%. Likewise, anti-goals (attacker’ goals) whose satisfaction must be stopped by
the mediator can be integrated. Hence, the formulation of feature selection as a multi-
objective constrained optimisation problem makes it easy to extend and improve the
solution by simply adding additional constraints.

What are the limitations of the collaborative security framework? In our collaborative
security approach we are given the specification of a security control and then seek a
subset of capabilities and an associated mediator to implement this security control.
Therefore, we do not create or invent security controls based on the capabilities avail-
able but only use the capabilities available to implement specified security controls. A
possible enhancement is to discover new security controls that were not specified at
design time by exploiting security models such as attack trees.

Shttp://cve.mitre.org
Shttp://www.first.org/cvss
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We also assume a shared vocabulary of features when specifying capabilities and
security controls. This assumption can be relaxed by attaching semantic annotations
to the features and using ontologies to reason about and relate the different features.
In this case, the ontology becomes the new shared vocabulary, as demonstrated in our
previous work [Bennaceur and Issarny 2015].

In our collaborative security approach, iterations between feature selection and me-
diator synthesis are independent. We need to investigate more efficient ways to trace
back the causes of failure in the synthesis and inform the feature selection. Moreover,
we can envision learning from both success and failures of mediator synthesis to guide
feature selection. One way is to explore how the different sets of features relate to
each other and incrementally synthesise the mediator, in a way similar to the work of
Greenyer and colleagues [Greenyer et al. 2013].

Finally, we also assume that individual capabilities are trustworthy and that they

implement the capabilities advertised. However, the capabilities may deviate from
their specified behaviours either due to faults or malicious intents. We are investi-
gating argumentation as a means to ensure assess the risk and seek alternative col-
laborations to ensure the satisfaction of some requirements even in the case of misbe-
haviour [Yu et al. 2015].
What can be the role of humans in collaborative security? Human agents can play an
active role in satisfying security requirements, acting as sensors, actuators, or decision
makers [Haley et al. 2008]. Yet, human behaviour is more difficult to analyse than the
behaviours of software components. The work of Camara et al. [Camara et al. 2015]
provide a formal model to represent and reason about human behaviour in order to
develop adaptation strategies involving both human agents (acting as actuators only)
and software components. Some parameters for this model (e.g., stress levels) can be
obtained using wearable sensors. Nevertheless, a richer model may be necessary to
involve human agents as decision makers when implementing security controls.

7. RELATED WORK

With the great potential and opportunities of the IoT come a whole set of challenges
of which a complete survey is beyond the scope of this paper. We refer the interested
reader to one of the many surveys on the subject [Al-Fuqaha et al. 2015; Atzori et al.
2010]. In this paper we focus in particular on composition and security.

One of the fundamental challenges of the IoT is to compose the capabilities of the
plethora of devices available [[ERC 2015]. This challenge is exacerbated when het-
erogeneity spans the application, middleware, and network layers. At the application
layer, devices may exhibit disparate data types and operations, and may have distinct
business logics. At the middleware layer, they may rely on different communication
protocols, which define disparate data representation formats and induce different ar-
chitectural constraints. At the network layer, data may be encapsulated differently
according to the network technology in place. While standardisation efforts such as
HyperCat [HyperCat Consortium 2016], AllJoyn [Linux Foundation 2016a], and Io-
Tivity [Linux Foundation 2016b] are suggested as potential solutions at the network
and middleware layers, the diversity of IoT applications requires additional effort to
deal with semantic interoperability at the application layer [IERC 2015]. In previ-
ous work [Bennaceur and Issarny 2015], we developed an approach based on ontol-
ogy reasoning and constraint programming to synthesise application-layer mediators
automatically. We then extend the approach with automatically generated message
translators to provide a unified mediation framework [Bennaceur et al. 2015] that
deals with interoperability at both the application and middleware layers. However,
this mediation framework ensures the correct composition between already selected
components (capabilities). The collaborative security framework we present is this pa-
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per is requirement driven and therefore is able to select and configure the capabilities
automatically. Letier and Heaven [Letier and Heaven 2013] propose to use mediator
(controller) synthesis to derive a machine specification that satisfies one requirement
and then compose them to form a specification that satisfies a set of requirement.
Hence, combining requirement modelling and mediator synthesis help in dealing with
multiple requirements of the system. Rather than the synthesis of one specification
to satisfy requirements, our approach focuses on the configuration and mediation of
the existing behavioural specification. Cavallaro et al. [Cavallaro et al. 2012] propose
to extend the KAOS goal models in order to define a specifications of services, which
are then instantiated at runtime. In this case, mediators are used to compensate for
the differences between the discovered service instance and the service specification
rather than to select the services and coordinate the associated behaviours.

Existing solutions for the generation of mediators require exploring all possible com-
bination of behaviours. As a result, they can rapidly become prohibitive when dealing
with alternative selections of components, and the corresponding behaviours. By first
selecting the features to be enabled on a subset of components, then projecting the be-
haviours of the selected components onto the enabled features, our approach reduces
the analysis space for the mediator synthesis. Rodrigues et al. [Rodrigues et al. 2015]
also assemble components at the architectural level considering the components’ in-
terfaces, then analyse the composed behaviour of the selected (bounded) interfaces.
Nevertheless, the approach assumes that the components to assemble are interopera-
ble, i.e. they can be bound together and interact correctly without any mediator. Nejati
et al. [Nejati et al. 2012] combines both structural and behavioural analysis for feature
composition. Our approach also reasons about both structural and behavioural prop-
erties but the synthesis of mediators enables rather than simply checks the desirable
behavioural properties. Greenyer et al. propose to synthesise mediators incrementally
using the commonalties of different products (a.k.a. feature configuration) in a product
line [Greenyer et al. 2013]. However, they do not consider the selection, let alone the
optimisation of the selection, of features to satisfy given requirements.

Using multiple components to develop secure systems has been the subject of a great
deal of work, especially at the network level [Meng et al. 2015]. However, these compo-
nents often have similar capabilities and are designed to collaborate in order to imple-
ment security controls. In our approach, the IoT devices are not specifically designed
or intended for security purposes. Evidence of the relevance of such a process has
been given by the use of some toy robots such as Spykee for home protection [Wayner
2010]. However, as the number, complexity, and heterogeneity of connected devices
and people in the IoT increases, the attack surface is widened and uncertain [Cov-
ington and Carskadden 2013] and it also becomes more difficult to scope the security
problem by specifying the stakeholders involved, the assets and their values, and the
potential threats [Haley et al. 2008]. Existing work focuses on securing the interaction
between the IoT devices at the network, middleware, and application layers [Sicari
et al. 2015], and targeting only information security. But as technology becomes more
entwined with the physical world, safeguarding personnel, information, equipment,
IT infrastructure, facilities and other material assets become paramount [Cerf 2015].
Our collaborative security framework leverages the capabilities of IoT devices in order
to provide adaptive software solution for physical security— delivering security ‘by’ the
IoT rather than security ‘of” the IoT.

To deal with the inherent mobility of the devices and people as well as the diversity
of applications in the IoT, software systems must adapt their structure, behaviour, and
security mechanisms [Cheng et al. 2009]. Adaptive security (sometimes called self-
protection [Yuan et al. 2014]) aims to enable systems to vary their protection in the
face of changes in their operational environment. A requirements-driven approach for
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adaptive security enables the analysis and reasoning about the cost and benefit of the
security controls. Salehie et al. [Salehie et al. 2012] propose an approach in which a
runtime model that combines goals, threats, and assets models is used to evaluate
the cost and benefit of applying each security control and choosing the most appro-
priate one. The focus of adaptive security has mainly been on the effective selection
of security controls according to contextual information. Rather than what security
controls need to be implemented, our work addresses how security controls can be
implemented. Furthermore, while techniques for adaptive security assume the secu-
rity control to be implemented, we assume only a specification of the security control
while its implementation is realised at runtime by making the available IoT devices
collaborate.

8. CONCLUSIONS & FUTURE WORK

The collaborative security framework described in this paper provides a systematic,
tool-supported approach for satisfying security requirements through the composition
of multiple capabilities. Our contribution stems from the synergetic use of feature mod-
elling and mediator synthesis and its application to security. Our approach relies on
rich, multiple models so that many facets of capabilities and requirements can be cap-
tured and analysed. The main advantage of the approach is to satisfy requirements by
introducing security controls without the need to rebuild or even deploy additional de-
vices. We implemented a collaborative security framework that computes the optimal
set of features to be enabled on a subset of capabilities in order to realise a security
control, then generates a mediator that composes the selected capabilities in order to
satisfy the behavioural specification of the chosen security control. We used this frame-
work to make multiple robots collaborate in order to protect a mobile phone from theft.
We showed that the performance for realising collaboration makes it easily applicable
at runtime. Our results provide initial evidence that the IoT can play an important
role in enabling security by offering the infrastructure to connect multiple devices on
the fly in order to implement adequate security controls.

We also identified several areas for future work. We will investigate the impact of the
trustworthiness of individual capabilities on the collaboration. The goal is to ensure
the satisfaction of security requirements even when some capabilities are corrupted
or compromised. We also aim to relax some of the assumptions of our framework and
improve its performance. For example, we are investigating more efficient ways to it-
erate between the feature selection and the featured-based synthesis by tracing back
to the causes of failure in the mediator synthesis and informing the feature selection.
We are also planning to explore how to include human agents within the collaborative
behaviour. We also plan to deploy our framework in a smart home (or smart city) with
a large number of capabilities for a prolonged period of time and see how it scales and
how people react to it. We believe that the work on collaborative security is a fertile re-
search area that holds great promise for securing increasingly prevalent cyber-physical
systems.
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