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ABSTRACT
Choreography supports the specification, with a global per-
spective, of the interactions between the roles played by
partners in a collaboration. These roles are the basis for the
implementation of the collaboration, by developers and/or
software architects, as a set of distributed communicating
peers. An issue is to check for the conformance of the imple-
mentation with reference to the choreography specification.
We address this issue with a passive testing approach. It tack-
les the peculiarities of choreography implementations through
non-intrusiveness, support for black-box peers without source
code being available, and both local and global conformance.
Several languages have been proposed for choreography. We
chose Chor since it is both expressive and abstract enough
to suit the requirements of a specification language. Further,
it can be seen as an abstraction of the standard Web service
choreography language, WS-CDL. In this paper we present
both the formal framework of our approach and our tool
support for one possible implementation model, Web service
choreographies.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Testing tools; D.2.11 [Software Engineering]:
Software Architectures—Languages, Service-oriented archi-
tecture (SOA)

General Terms
Design, Verification

Keywords
Choreography, Web services, conformance checking, passive
testing, tool.

1. INTRODUCTION
Business processes and applications are no longer mono-

lithic but are built from the reuse and composition of other
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processes or software entities. This trend has increased with
the emergence of component and service architectures such
as Web services. A centralized point of view may be taken
on collaboration, which nicely suits service orchestration.
However, modern processes and applications are much more
collaborative in nature. Hence, they should be specified
and implemented in a collaborative way too. This is where
choreography may help.

A choreography is the description from a global perspective
of the interactions between roles played by peers (compo-
nents, services, organizations, humans) in some collaboration.
Several languages and notations do support choreography
specification: BPMN, MSC, UML, WS-CDL to give some.
Following [9], they can be classified using two dimensions.
They can be abstract (e.g., BPMN, MSC, UML) or concrete
(e.g., WS-CDL). Specification languages are used to describe
what peers should (or should not) do in a collaboration, rather
than how they should do it. Therefore, abstract choreography
languages are better candidates for choreography specifica-
tion. The second dimension [9] is related to the underlying
model. In interconnected interface models (e.g., BPMN col-
laboration diagrams, MSC, UML sequence diagrams, Reo),
conversations are defined at (each) peer level and interactions
are defined by roughly connecting conversations.

To the contrary, in interaction models (e.g., BPMN 2.0
new choreography diagrams, UML collaboration diagrams),
interactions between peers are the basic building blocks.
From a designer perspective, interaction models better suit
the needs of choreography specification due to their global
perspective. In this paper, we chose the Chor [17] language
for the specification of choreographies. While being simpler
than more general purpose languages such as BPMN or
UML, it is expressive and abstract enough to enable one
to specify collaborations. Chor is based on an interaction
model and can also be seen as an abstraction of the WS-
CDL standard. Further, Chor defines both a choreography
language, a role language, and projections between global
and local (role) descriptions supporting the formal treatment
of collaborations at both viewpoints.

An issue with choreography is the relation with implemen-
tation. Peers may be written from scratch or be reused, and
are then coordinated to fulfil the choreography. This relates
to automatic service composition and orchestration [13]. An
alternative is the generation of peer skeletons from chore-
ographies, e.g., [17, 12]. Skeletons are then completed by
developers to build a running system. In any case, an im-
portant issue, so-called conformance, is to check whether
the implementation exhibits or not the behaviours specified



in the choreography. When peer code is available, or when
behavioural interfaces of the peers are provided, verification
using model-checking or behavioural equivalences is an al-
ternative. In such a case, formal testing is of great help. It
enables one to check whether an implementation conforms or
not to a specification without requiring an access to its code.

In this paper we propose a formal framework for testing
whether an implementation conforms or not to a choreog-
raphy specification. Conformance is checked both at the
local and at the global level. Local conformance represents
whether some peer implementation plays or not correctly its
role. Global conformance ensures that interactions between
peers follow the prescription of the choreography or if they
diverge from the envisioned collaboration. Our approach is
totally tool supported and demonstrated on a medium-size
case study.

The rest of this paper is organized as follows. We give
preliminaries on the Chor language in Section 2. Confor-
mance is discussed and formalized in Section 3. Our testing
architecture is introduced in Section 4 and Section 5 presents
its implementation and our tools. Section 6 discusses related
work. We end with conclusions and perspectives in Section 7.

2. THE CHOR LANGUAGE
Chor includes basic and structuring activities. skip denotes

a do-nothing action, while c[i,j] represents a basic interaction
on some medium c between two roles of the choreography,
namely i and j, called performers of the interaction. Since
Chor is concerned about the abstract specification of the
collaboration, the instantiation of some interaction medium,
and details associated to it (e.g., exchanged data) is part of
the developer duties. This is can be, e.g., using message and
message parts in a Web service framework. We restrict to the
observable fragment of Chor, i.e., we do not take into account
the specification at the global level of local non-observable
actions. Structuring in Chor is achieved using sequencing
(;), exclusive choice (u) and parallel flows (‖).

Role requirements are described in a dialect of Chor called
role languages (Role for short) with the only difference that

a global interaction c[i,j] corresponds in role i (resp. j) to an

emission denoted c[i,j]! (resp. reception denoted c[i,j]?). The
semantics of a Chor (local or global) specification C is given
in terms of its set of all specification traces, trace set for
short, that represent all possible run of the specification [17].
In the sequel, a denotes trace concatenation and ./ denotes
trace interleaving. Further in a trace, � denotes a deadlock
(i.e., a blocking termination).

The requirements for each role of a choreography can be
obtained using projection (nproj) hiding the interactions
that do not concern the role of interest and orienting the
other ones; i.e., for a role k, the projection of c[i,j] gives c[i,j]!
if k = i, c[i,j]? if k = j, and skip otherwise.

Example 1. Let us take the example of a collaboration
involving two roles, a client (R1) and a travel agency (R2).
The client first issues a request to the agency (c1) which
then gives back train information (c2) and plane informa-
tion (c3). This is modelled in Chor as the specification
C1 = c1

[1,2]; (c2
[2,1] ‖ c3[2,1]), whose semantics, [[C1]], is:

[[C1]] = [[c1
[1,2]]]a([[c2

[2,1]]] ./ [[c3
[2,1]]])

= {〈c1[1,2]〉}a{〈c2[2,1], c3[2,1]〉, 〈c3[2,1], c2[2,1]〉}
= {〈c1[1,2], c2[2,1], c3[2,1]〉, 〈c1[1,2], c3[2,1], c2[2,1]〉}

Using nproj, we may obtain a process for each role in C1:
R1 = nproj(C1, 1) = c1

[1,2]!; (c2
[2,1]? ‖ c3[2,1]?), R2 = nproj(C1, 2)

= c1
[1,2]?; (c2

[2,1]! ‖ c3[2,1]!) . The trace sets of R1, R2, and
R = R1 ‖ R2, that represent respectively all possible execu-
tions of R1, R2, and their collaboration:

[[R1]] = {〈c1[1,2]!, c2[2,1]?, c3[2,1]?〉, 〈c1[1,2]!, c3[2,1]?, c2[2,1]?〉}
[[R2]] = {〈c1[1,2]?, c2[2,1]!, c3[2,1]!〉, 〈c1[1,2]?, c3[2,1]!, c2[2,1]!〉}
[[R1 ‖ R2]] = {〈c1[1,2], c2[2,1], c3[2,1]〉, 〈c1[1,2], c3[2,1], c2[2,1]〉}

3. CONFORMANCE RELATION
Formal methods provide many techniques to verify confor-

mance between a specification and an implementation, e.g,
using behavioural equivalences and preorders [6]. This has
been applied recently to component and service based archi-
tectures [21]. However, in our context, we have an important
constraint: the implementation source code is un-available
since it is made up of distributed black-box peers. Some ap-
proaches suppose that such peers have behavioural interfaces,
but in practice this is seldom the case. A recent proposal
enables to retrieve such interfaces from black-box services
using testing [7]. Still, this can be an intrusive technique, i.e.,
that cause change on the service due to the active nature of
the test being used. In our context we base on non intrusive
passive testing techniques. Implementations may only be
observed and checked for conformance using their logs, which
are (linear) sequences of observations. This advocates for
the use of a trace equivalence or a trace preorder.

Further, the relation between a choreography specification
C and an implementation I can be seen with two mirror
perspectives. In the former perspective, it is the coordination
middleware that is tested. We are interested in the fact that
I strictly enforces (over connected peers) what is described
in C. I should then exhibit at least (or exactly) the behavior
described in C. This may be supported using active testing
of service orchestrations [8]. In the second perspective, it is
the cooperation of the peers that is tested. We are interested
in the fact that the peers do not interact in some other ways
than what is specified in C. This corresponds to a passive
testing using logs at the peers’ locations. In such a case, we
impose that the traces of I are included in the C ones. In
this paper, we focus on this second perspective. We may
now give our formal definition of the conformance of an
implementation with reference to a specification. For this we
base on trace preorder.

Definition 1. The preorder relation, denoted with � ,
between two traces is defined recursively as follows: (i) 〈〉 �
〈σ2〉; and (ii) 〈α, σ1〉 � 〈α, σ2〉 iff 〈σ1〉 � 〈σ2〉.

Given two trace sets T1 and T2, we write T1 � T2 iff
∀t1 ∈ T1,∃t2 ∈ T2 | t1 � t2.

Indeed, while implementing a choreography, the devel-
oper may have to add important additional exchanges or
synchronizing activities in the peers. This is especially the
case with non-realizable choreographies. Take for example
the specification C = c1

[1,2]; c2
[3,4]. Projecting it on its roles

we get R1 = c1
[1,2]!, R2 = c1

[1,2]?, R3 = c2
[3,4]!, and R4 = c2

[3,4]?.
Implementing the specification using these four peers as-is,
i.e., I = R1 ‖ R2 ‖ R3 ‖ R4, the developer cannot prevent that
R3 and R4 interact on c2 before R1 has sent c1 to R2: trace
〈c2[3,4], c1[1,2]〉 is in [[I]] while it is not in [[C]] = {〈c1[1,2], c2[3,4]〉}.
Therefore, the developer may decide to add a synchronizing
message between R2 and R3, csync, to enforce the chore-
ography, i.e., replacing R2 and R3 above respectively by



c1
[1,2]?; csync

[2,3]! and csync
[2,3]?; c2

[3,4]!. However, in such a case,
we would not have conformance, i.e., [[I]] 6� [[C]]. To support
this, we formally define conformance as follows.

Definition 2. Given a specification S and an implementa-
tion I. We have I conf S iff [[I]] �acts(S) � [[S]], where
acts(S) is the set of all activities of S and � is the filter
operator, i.e., t �X (or T �X) retains only the elements of X
in t (or T ) while preserving their order.

Before going on, let us stress a basic assumption that we
make on the relation between a choreography, C, and an
implementation of it, I. We suppose a one-to-one function
between the roles in C and the peers in I: each role Ri is
implemented by exactly one peer Pi, and each peer Pi im-
plements exactly one role Ri. This enables us to relate peer
communications in log files to role activities in specifications.
Based on the formal definition of conformance we proposed
above, we may now define conformance between a choreogra-
phy implementation and a choreography specification.

Definition 3. Given a choreography C with n roles, Ri =
nproj(C, i), and an implementation I with n peers, Pi, I
conforms to C, denoted I conf C, iff the following two
conditions hold:
(i) local conformance: Pi conf Ri, for every i = 1..n, and
(ii) global conformance: (P1 ‖ P2 ‖ . . . ‖ Pn) conf C.

Example 2. Let us take again the C1 choreography specifi-
cations from Example 1, and examine the conformance of an
implementation I1 made up of two peers, P1 and P2, whose
logs are t1 = 〈c1[1,2]!; c2[2,1]?〉 and t2 = 〈c1[1,2]?; c2

[2,1]!; c2
[2,1]!〉 re-

spectively. P2 obviously does not conform to R2 since in
the later only one c2

[2,1]! may happen, while two ones ap-
pear in the log. P1 has realized c1

[1,2]!; c2
[2,1]?, i.e., an unique

reception of c2[2,1]?. The second message c2
[2,1]! sent by P2

may have been lost or cancelled. Hence P1 conforms to R1.
In the model composition P = P1 ‖ P2, only the c1

[1,2] and
c2

[2,1] interactions have been done. While P conforms to C1

(Def 2), I1 does not conform to C1 since P2 does not conform
to R2 (Def. 3).

4. IMPLEMENTATION

4.1 Testing Approach and Tool Support
In active testing, the tester interacts with the Implemen-

tation Under Test (IUT) by sending inputs (messages) and
observing outputs (messages too). This method assumes a
kind of controllability of the implementation through Points
of Control and Observations (PCOs). Observing the outputs
and comparing them to the expected ones, i.e., those de-
scribed by the specification, a verdict can be emitted. A pass
verdict establishes the conformance of the implementation
to its specification and a fail the contrary. Passive testing is
a software testing method that relies only on observations
on the running IUT. In passive testing the tester does not
send messages to the IUT. It only observes the exchange
(sending and reception) of messages between the IUT and
its partners, through Points of Observation (POs). These
observations will be compared to the specification in order
to emit a verdict.

In both cases, active and passive testing, the implemen-
tation is considered as a black box, which means that the
internal structure of the implementation is not known and
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Figure 1: Testing Choreography Implementations

no source code is available. The term “passive” relates to the
fact that the tests do not disturb the natural operation of
the IUT, to the contrary of “active” testing. Passive testing
is also of particular interest since we do not always have the
ability to control an IUT. Using passive testing in our work,
testing can be done continuously and the peers in a collabo-
ration can evolve dynamically. Such a seamless monitoring
activity is a less costly activity as it does not require to make
the IUT unavailable during the testing process.

Our testing approach is represented by Figure 1. In this
figure, repeated activities are denoted with the “{” and
“}” symbols, e.g., {Project on each Role i} means that the
projection will be repeated on each role Ri of C. At the
specification level, from a choreography specification C, we
can obtain directly its trace set ([[C]]). Afterwards, the set
of local requirements Ri of its roles is obtained by using
the natural projection function. From Ri we have also its
trace set ([[Ri]]). At the implementation level, we can obtain
local implementation traces, called logs and denoted as li,
from each PO. From n collected logs, we synthesize a global
log, denoted as L. Global log, L, and local logs, li, will be
checked against [[C]] and [[Ri]] to establish global conformance
and local conformance, respectively. By Definition 3, the
IUT conforms with C if and only if both global and local
conformance are achieved.

Our approach is fully supported by a tool that supports
Chor specification parsing, trace semantics retrieval, global
log synthesis, and conformance checking. We have also im-
plemented a monitoring module for the Apache ODE BPEL
engine in order to retrieve local logs.

4.2 Observation of SOAP Messages
The approaches to capture SOAP messages in the context

of Web services (WSs) can be classified into three groups. The
first approach injects some modules into the WS engine in
order to extract the expected information, e.g., [23, 15, 20, 16].
The second approach intends to implement a software which
is functions as a SOAP “proxy” and which is independent
and external to the WS engine, e.g., SoapUI1 or Membrane
SOAP/HTTP Monitor2. All incoming and outgoing SOAP
messages of the WS must be directed to this SOAP proxy,
which then forwards the messages to their destination while

1http://www.soapui.org/
2http://www.membrane-soa.org/soap-monitor/



conserving a copy of them. The last approach sniffs passively
the SOAP messages which are transferred in the network by
means of sniffers such as tcpdump3 or wireshark4. The two
last approaches capture the SOAP messages when they are
outside of a WS engine, and are as a consequence independent
from it. This means that they can be used for different types
of WS engines. However these two approaches, and also
more generally all approaches which only capture the SOAP
messages outside WS engines, miss some important features
which are necessary for testing. They cannot guarantee that
the captured SOAP messages will be sent to the destination
and that these messages are accepted by the WS partner.
Another problem is that they cannot know which instance
of a WS sends (or receives) the captured messages. Let
us consider the following example. Web service R1 can
send its requests either to R2 or R3. This is described as
R1 = c1

[1,2]! u c2[1,3]!. This example raises the problem a
“false negative” verdict in case we capture two consecutive
messages c1 and c2 at the PO of R1. The verdict has to be
a fail if these messages are sent by the same instance of the
WS R1, but if they are sent by two different instances the
verdict has to be pass.

With its advantages we chose the first approach to imple-
ment our tool to collect the SOAP messages. The architecture
of our monitor consists of a module integrated into Apache
ODE, a WS-BPEL compliant WS orchestration engine. It
allows to capture all messages which are sent or received by a
monitored service and to record it into a log file. However as
this module is integrated into the ODE engine, it may cause
a limitation by considering only the monitoring of services
which are implemented in WS-BPEL. To overcome this issue,
we have also implemented a kind of wrapper which adds a
WS-BPEL layer for services which are not WS-BPEL Web
services. Hence, we are able to capture and to log all the
SOAP messages that are transmitted between the monitored
peer and its partners.

Each peer is observed by a monitor that captures all the
input and output messages of the peer. The captured mes-
sages that do not concern the testing choreography will be
discarded by the tester. When a message is sent or received
by a peer of the IUT, an observation is recorded immediately
in the log file. A Chor interaction c[i,j] means that a message
c is transferred from Ri to Rj . As a consequence, an obser-
vation contains the sender, the receiver, and the type of the
message. Moreover, at the specification (role) level, an inter-
action is equipped with “!” or “?” to indicate if it is a sending
or a reception. Hence, we annotate observations accordingly
in logs. To ease the reconstruction of the order between
observations of different logs li, an observation also contains
the time of the observation. Furthermore, to correlate the
observations of a sending message and of the corresponding
reception one, we inject, at the sending moment, an identity
in the header of SOAP messages. Formally, the observa-
tion is defined as follows. Given an IUT which consists
of n peers P = {P1, . . . , Pi, . . . , Pn}, an observation is a tuple
ob = (act, id, t, s, r,m) where act ∈ {SEND,RECEIV E}
indicates a sending or a reception, id is a message identity,
t is the reception or sending time, s, r ∈ P with s 6= r are
the sender and the receiver, and m is the message. A log
li = 〈ob1, ob2, . . . , obm〉 for a peer Pi is a sequence of all

3http://www.tcpdump.org/
4http://www.wireshark.org/

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(a)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(b)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(c)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(d)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(e)

Figure 2: Sendings and Receptions Correlation

the observations of messages which are sent/received by Pi

to/from others peers of the IUT.

4.3 Global Log Synthesis
We have a set of local logs li and we need to synthesize

a global log in order to perform global conformance test-
ing, i.e. compare this global log with the trace set of the
choreography. As proposed in [24], we assume that clocks of
peers are synchronous to support the construction of an order
between two observations that have happened in two differ-
ent local logs. This assumption typically holds, e.g., when
collaborations are deployed over clouds. Communication is
synchronous in Chor. This means that the sending and the
reception events for an interaction happen at the same time.
In an implementation there is usually a delay between a
sending and the corresponding reception. A choreography
C = c1

[1,2]; c2
[3,4] means that the passing of message c1 from

R1 to R2 should happen before the passing of message c2
from R3 to R4. Figure 2 represents all possible correlations
between the sending and the reception time of messages c1
and c2, where the order of execution is denoted with an
arrow “→”. For example, in Figure 2(a), the sending of c2
only happens after the reception of c1. One can note that
the case represented in Figure 2(a) is the strongest one, i.e.,

it implies the other cases. For example, if c1
[1,2]? happens

before c2
[3,4]! as in Figure 2(a), we can infer that c1

[1,2]!

happens before c2
[3,4]! as in Figure 2(c) because of execution

order transitivity (i.e., a→ b ∧ b→ c ⇒ a→ c). Hence case
(a) is the default in our tool. However one may select any
other case in the tool.

Algorithm 1 represents the synthesis of global log based
on the first case. This algorithm is divided into two parts.
The first part (lines 1–17) creates a new list of observations
by merging n local logs. The observations in this list are
sorted by the order of execution time. In fact, each local
log has partial ordered, so that this part is basically to
sort n arrays which are already sorted. The second part
(lines 18–27) is to synthesize the global observations from
the sorted list of local observations corresponding to the case
represented in Figure 2(a), which imposes that, in logs, the
reception of a message has to be adjacent to the sending
of this message. This means that there is nothing (neither
sending nor reception of other messages) which can happen
in this interval.

4.4 Testing Algorithm
Before presenting the algorithms for global and local con-

formance verification, we present Algorithm 2 which verifies
the preorder relation between a log and a trace. It is the
implementation of Definition 1.

The algorithm for global conformance verification is pre-
sented in Algorithm 3. The implementation to realize the
choreography may need additional interactions. In this case,
we only keep the interactions which are present in the speci-
fication by using the filtering function. As soon as we find



a trace of the choreography such that the global log is its
preorder then this log passes the conformance check and the
algorithm is stopped. If we visit the whole trace set without
finding any trace of the specification such that the global log
is its preorder, this means that the implementation is not
exhibiting a behavior represented by the specification, which
entails to return a fail. The algorithm for local conformance
verification is similar. The only difference is that we do not
have to synthesize the global log from n local logs, i.e., line 2
in Algorithm 3.

Algorithm 1: Synthesis of observations (synthesisObservations(L))

Input: A set of n logs L = 〈l1, l2, . . . , ln〉
Output: A log l = {ob1, ob2, . . . , obm}
/* Get global order of observations */1

t = 〈〉 ;2

index1 = index2 = . . . = indexn = 1 ;3

while true do4

j = −1 ;5

for i = 1 to n do6

if indexi ≤ length(li) then7

o = getElementAt(li, indexi) ;8

if j = −1 then9

min = o ;10

j = i ;11

if o.t < min.t then12

min = o ;13

j = i ;14

if j = −1 then break;15

t = t ∪ {min} ;16

indexj = indexj + 1 ;17

/* Synthesis of global log */18

l = 〈〉 ;19

for i = 1 to length(t) do20

o1 = getElementAt(t, i) ;21

o2 = getElementAt(t, i+ 1) ;22

if o1.act = SEND and o2.act = RECEIV E and o1.id = o2.id then23

o = new Observation(null, o1.id, null, o1.s, o1.r, o1.m) ;24

l = l ∪ {o} ;25

i = i+ 1 ;26

return l ;27

Algorithm 2: Preorder verification (isPreorder(l, t))

Input: A trace t = 〈α1, α2, . . . , αn〉
Input: A log l = 〈ob1, ob2, . . . , obm〉
Output: true if l � t else false
if m > n then return false;1

for i = 1 to m do2

if obi.s 6= αi.s or obi.r 6= αi.r or obi.m 6= αi.m then return false;3

return true ;4

Algorithm 3: Global conformance verification

Input: A Chor specification C
Input: A set of n logs L = {l1, l2, . . . , ln}
Output: Verdict (pass or fail)
T = [[C]] ;1

l =synthesisObservations(L) ;2

l = l �act(C) ;3

foreach trace t of the T do4

if isPreorder(l, t) then return pass;5

return fail ;6

5. EXPERIMENTS

5.1 Test Case Experiment
We have experimented our approach and our tools on sev-

eral medium-size case studies. For each of them, we have

defined several correct implementations of its Chor choreog-
raphy, and then we have performed mutations at the level
of the implementation peers representative of errors in the
development/implementation process. These mutations can
be categorized as follows: adding (a), removal (r), replace-
ment (x), and reordering (o) of interactions, and change (c)
of structuring operators.

We present in Table 1 results on one of our case studies,
related to the online buying and delivery of goods (see be-
low). The rows of the table correspond to different correct
implementations (marked with –) and to different mutants.
Its columns corresponds to the inputs which are a Chor
specification defined by the number of: peers (# Peers), the
number of interactions (# Int.) and the number of the traces
(# Traces); and a set of logs represented by the number of
observations before (#1) and after (# 2) the filtering on the
set of interactions defined in the roles of the Chor specifica-
tion (see Def. 2). The remaining columns are devoted to the
kind of mutations being performed (Mutations), the testing
verdicts (local, Pi, and global, P ) and the duration of the
testing process. As far as the verdicts are concerned, an im-
plementation or a peer may be conform while not achieving
completely the envisioned behaviour. This may correspond
to a potential deadlock situation. It is detected by our tool
and denoted by (�).

Our case study is described in Chor as follows: Order[1,2];(
Reject[2,1] u Confirm[2,1];Payment[1,2];(Invoice[2,1] ‖ Shipment[2,3];
Postage[2,3];Distribution[3,1])

)
. The implementation of this

specification has been done with three Web services, Cus-
tomer (P1), Supplier (P2), and Shipper (P3), running on
three ODE engines.

The first three rows correspond to correct implementation
logs. Row 1 corresponds to a case where the supplier rejects
the order. It is hence much shorter, in observations, than
rows 2 and 3. These correspond to the supplier accepting
the order. The only difference between them is the order in
which Invoice is done w.r.t. the rest of the choreography
(Shipment, etc.), i.e., the order in which parallel actions (‖
in the Chor specification) are done.

In row 4, a new message is sent in P3 to inform P2 about
the goods being delivered to the client (Inform[3,2]!). Since
this is a new message w.r.t. the choreography, it is filtered
out, and peer P3 is still conform to its role. The same yields
for the whole implementation. In row 5, the corresponding
message is also added in P2 (Inform[3,2]?). Again, it is
filtered out and the implementation is correct. In row 6, P2

is mutated in order not to send Postage[2,3] to P3 anymore.
Since it is at the end of the P2 role, this one is still conform to
its role. Further, P3 blocks waiting for it (hence it does not

send Distribution[3,1]), but also conforms to its role. Then,

in row 7, both P2 and P3 have agreed not to use Postage[2,3]

(it is removed in both peers). While P2 stays conform, P3 is

not conform anymore, since it sends Distribution[3,1] before
having received Postage[2,3], which is forbidden by its role.

Finally, we have a last mutation in row 8. We replace
Shipment[2,3]!;Postage[2,3]! by Postage[2,3]!;Shipment[2,3]! in P2.
We also replace Shipment[2,3]?;Postage[2,3]? by Shipment[2,3]?‖
Postage[2,3]? in P3. Now P2 and P3 may interact doing
Shipment[2,3] before Postage[2,3]. This is detected in the
log of P2, the one of P3, and in the global log, hence all of
these are not conform since this contradicts the specification.

We have experimented our approach on bigger case stud-
ies. The biggest one is a mutant with 7 peers, 11 distinct



Table 1: Online buying case study

Mutation
Chor specification Obs Verdict Duration

# Peers # Int. # Traces # 1 # 2 P1 P2 P3 P (seconds)
1 – 3 8 5 5 4 X X X X 0.013
2 – 3 8 5 16 14 X X X X 0.017
3 – 3 8 5 16 14 X X X X 0.018
4 (a) in P3 3 8 5 17 14 X X X X 0.016
5 (a) in P2 & P3 3 8 5 18 14 X X X X 0.015
6 (r) in P3 3 8 5 11 10 X(�) X(�) X(�) X(�) 0.014
7 (r) in P2 & P3 3 8 5 14 12 X X(�) × ×(�) 0.014
8 (o) in P2 & (c) in P3 3 8 5 16 14 X × × × 0.018

interaction channels, and 116,640 traces in the choreography
trace set. We have 52 observations (40 after filtering), and
the testing time is 2.92 seconds. We have observed that the
testing time is greater for fail mutants since in the worst
case we have to check all of the choreography traces to give
a verdict (see Alg. 3).

5.2 Generic Experiments
We have evaluated our testing approach by conducting

practical experiments. Our aim was to assess the scalability
(computation time) with reference to the number of messages,
and this both for correct and incorrect logs. Our experiments
can be explained as follows. We produce automatically a
Chor specification by choosing the number of roles, the num-
ber of messages, and the operator types. Consequently, logs
are produced automatically from this specification by apply-
ing the projection for each role. We then inject faults inside
the logs in order to analyse the impact of the presence of
faults on the time of the testing process. Different kinds of
faulty logs (mutants) have been produced. In the experi-
ments presented in Figure 3, we inject faults corresponding
to the reordering of messages. The positions of faults are
selected randomly. For sake of simplicity, we present here
the experiments only for two peers.

Figure 3 shows the time (in milliseconds) of verifications
with 1, 000, 2, 000, 5, 000, 10, 000, and 20, 000 messages, and
for correct or incorrect logs. Each measure is computed from
the average of 50 runs. Experiments are relative to the local
verifications (for respectively peer 1 and peer 2), the global
conformance verification (including global log synthesis),
and the whole conformance testing process (sum of the 3).
These experiments have been performed on a 2GHz Intel
Core 2 Duo MacBook laptop with 4GB of RAM. The times
shown in Figure 3 do not take into account the time for the
computation of the traces of the Chor specification since it
depends only on this specification. For 1, 000, 2, 000, 5, 000,
10, 000, and 20, 000 consecutive messages, this would be 43,
172, 1, 099, 3, 292, and 14, 305 milliseconds respectively.

In Figure 3, we can observe that the local testing time
is very small for any % of faults. In the worst case (upper
bound), i.e., for a correct log, we have to check the whole
of it. The computation time for different % of faults in
the global conformance testing is close to the case without
faults. This is due to the important part of it used for the
global log synthesis that grows with the number of messages.
This directly impacts the overall testing time. Still, with a
maximum time of 139 milliseconds for 20, 000 messages, we
believe that our approach is scalable.

6. RELATED WORK
Checking the conformance of service choreographies has

mainly been addressed from a verification point of view, using
model-checking or behavioural equivalence techniques [12,
17, 19, 18, 4]. Among them, some authors promote the
use of Chor as a specification language [17, 19]. The main
issue addressed in these works is to check whether a set of
collaborating peers exhibit the same behaviours than a global
choreography specification, or to give techniques to retrieve
peer skeletons satisfying this property.

Formal verification and testing are complementary. The
former enables one to be sure that design artifacts (chore-
ography specification, role requirements, etc.) are correct.
However, when it comes to check the correctness of a chore-
ography implementation, with black box peers for which no
source code or model (behavioural interface) is available, test-
ing is required. Numerous works have addressed the testing
of services, including composite ones [8]. These works apply
if one wants to check the conformance of a coordination
media, implemented as a single orchestration, with reference
to a choreography specification. In fact, choreographies are
more collaborative and distributed in nature. Few works ad-
dress the testing of full-fledged choreographies. Reo is a very
expressive language for the implementation of coordinating
component connectors [1]. In [1], the authors propose a fault-
based technique to generate test cases from a specification
given in terms of pre- and post-conditions. Passing tests on
an implementation is not addressed. In [11], an approach for
the input-output testing of a coordinator specified using Reo
is presented. This is an active testing approach, while we use
passive testing not to interfere with the running IUT. Fur-
ther, Reo is dedicated at the implementation of coordinators,
hence it is rather an interconnected model of choreography
and can be used to test a centralized coordinator choreog-
raphy implementation (e.g., an orchestrator - coordinator).
To the contrary, in this work, we use a simpler language,
Chor, with an interaction model, and we test the coordinated
distributed peers. An approach for WS-CDL testing in which
dynamic symbolic execution is used to generate test inputs
and assertions is presented in [25]. However, this is an active
testing approach that considers the IUT as a white box.

The passive testing of choreographies is an alternative when
control over the choreography is not possible (only observing
is possible). Passive testing has been intensively used in
the area of protocol testing [5, 3] based on the definition of
invariants that represent the set of properties to be checked
on the log. The testing process is performed off-line on a log.
Recently, passive testing approaches have been proposed to
test Web service orchestrations [14], still with an invariant-
based approach, but where timing constraints have been
added. Testing is performed by using a pattern-matching
analysis without defining an explicit conformance relation.
As far as choreography is concerned, a black box choreography



Figure 3: Tester Scalability

testing approach that extends [3] is presented in [2] and is
based on the checking of invariants too. Local invariants are
used to check peer (local) logs, while global invariants are
used to express global-level properties. In [10], the authors
propose a runtime monitoring and verification technique for
choreography constraints expressed in LTL. With reference
to [2, 10], we want to check the conformance of an IUT w.r.t.
a specification expressed in a choreography language rather
than in an abstract logic. Further, the global invariants
used in [2] cannot detect a violation of the execution order
among peers, and the approach in [10] focuses on the subset
of choreographies which constrain the sequence of message
exchanged by one specific partner with its peers. Moreover,
compared to [2], we explicit our conformance relations.

7. CONCLUSIONS AND FUTURE WORK
Choreography plays an important role in the specification

of collaborations. An issue, known as choreography confor-
mance checking, is to check whether a set of distributed
communicating peers implements correctly or not some col-
laboration specification. To support this activity, we have
introduced a formal passive testing approach that enables
one to check for choreography conformance both at the local
(peer) and at the global (collaboration) level, without inter-
fering with the implementation being tested. Our approach
also supports the use of black-box peers, for which no source
code or behavioural interface is available, which is often the
case with peers developed by different third-parties.

We have implemented a comprehensive tool support for
our approach and, as a proof of concept, we have developed
a monitoring module for collaborations implemented with
peers encapsulated as composite WS. A first perspective is
to propose support for further implementation architectures.
We rely on Chor for choreography specification since it is

both expressive, abstract and based on an interaction model
of choreography. Another perspective is to study the applica-
tion of our approach to BPMN, since this standard has been
very recently extended into version 2.0 to support choreog-
raphy as a first-class entity. There are several monitoring
frameworks for WS, e.g., [23, 15, 20, 16]. In our work, we use
an ad–hoc monitoring module to enable global log synthesis.
A last perspective is to use instead a choreography-specific
monitoring technique [22] in order to enable global log syn-
thesis while logging only events related to the choreography
specification.

8. REFERENCES
[1] B. K. Aichernig, F. Arbab, L. Astefanoaei, F. S.

de Boer, M. Sun, and J. Rutten. Fault-Based Test Case
Generation for Component Connectors. In Proc. of
TASE’09, 2009.

[2] C. Andrés, M. Cambronero, and M. Núñez. Passive
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