Cotemporal Multi-View Video Segmentation

Abdelaziz Djelouah 1 Jean-Sébastien Franco 2 Edmond Boyer 2 Patrick Perez 3 George Drettakis 1
1 GRAPHDECO - GRAPHics and DEsign with hEterogeneous COntent
CRISAM - Inria Sophia Antipolis - Méditerranée
2 MORPHEO - Capture and Analysis of Shapes in Motion
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We address the problem of multi-view video segmentation of dynamic scenes in general and outdoor environments with possibly moving cameras. Multi-view methods for dynamic scenes usually rely on geometric calibration to impose spatial shape constraints between viewpoints. In this paper, we show that the calibration constraint can be relaxed while still getting competitive segmentation results using multi-view constraints. We introduce new multi-view cotemporality constraints through motion correlation cues, in addition to common appearance features used by co-segmentation methods to identify co-instances of objects. We also take advantage of learning based segmentation strategies by casting the problem as the selection of monocular proposals that satisfy multi-view constraints. This yields a fully automated method that can segment subjects of interest without any particular pre-processing stage. Results on several challenging outdoor datasets demonstrate the feasibility and robustness of our approach.
Type de document :
Communication dans un congrès
3DV 2016 -International Conference on 3D Vision, Oct 2016, Stanford, United States. IEEE, 2016 International Conference on 3D Vision (3DV), pp.360-369, 〈10.1109/3DV.2016.45〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01367430
Contributeur : Abdelaziz Djelouah <>
Soumis le : lundi 19 septembre 2016 - 14:14:40
Dernière modification le : lundi 9 octobre 2017 - 13:36:04

Fichier

final_umvseg_3dv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Abdelaziz Djelouah, Jean-Sébastien Franco, Edmond Boyer, Patrick Perez, George Drettakis. Cotemporal Multi-View Video Segmentation. 3DV 2016 -International Conference on 3D Vision, Oct 2016, Stanford, United States. IEEE, 2016 International Conference on 3D Vision (3DV), pp.360-369, 〈10.1109/3DV.2016.45〉. 〈hal-01367430v2〉

Partager

Métriques

Consultations de
la notice

889

Téléchargements du document

232