Efficient Model Partitioning for Distributed Model Transformations

Abstract : As the models that need to be handled in model-driven engineering grow in scale, scalable algorithms for model transformation (MT) are becoming necessary. Programming models such as MapReduce or Pregel may simplify the development of distributed model transformations. However, because of the dense inter-connectivity of models and the complexity of transformation logics, scalability in distributed model processing is challenging. In this paper, we adapt existing formalization of uniform graph partitioning to the case of distributed MTs by means of binary linear programming. Moreover, we propose a data distribution algorithm for declarative model transformation based on static analysis of relational transformation rules. We first extract footprints from transformation rules. Then we propose a fast data distribution algorithm, driven by the extracted footprints, and based on recent results on balanced partitioning of streaming graphs. To validate our approach, we apply it to an existing distributed MT engine for the ATL language, built on top of MapReduce. We implement our heuristic as a custom split algorithm for ATL on MapReduce and we evaluate its impact on remote access to the underlying backend.
Type de document :
Communication dans un congrès
Proceedings of the 2016 International Conference of Software Language Engineering , Oct 2016, Amsterdam, Netherlands. ACM SIGPLAN, 2016
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01367572
Contributeur : Amine Benelallam <>
Soumis le : vendredi 16 septembre 2016 - 17:24:39
Dernière modification le : dimanche 7 octobre 2018 - 01:15:17
Document(s) archivé(s) le : samedi 17 décembre 2016 - 14:30:19

Fichier

sle2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01367572, version 1

Citation

Amine Benelallam, Massimo Tisi, Jesús Sánchez Cuadrado, Juan De Lara, Jordi Cabot. Efficient Model Partitioning for Distributed Model Transformations. Proceedings of the 2016 International Conference of Software Language Engineering , Oct 2016, Amsterdam, Netherlands. ACM SIGPLAN, 2016. 〈hal-01367572〉

Partager

Métriques

Consultations de la notice

285

Téléchargements de fichiers

235