I. Naum, M. G. Ahiezer, and . Kre?-in, Some Questions in the Theory of Moments, 1962.

F. Andersson and M. Carlsson, On General Domain Truncated Correlation and Convolution Operators with Finite Rank. Integral Equations and Operator Theory, pp.339-370, 2015.

F. Andersson and M. Carlsson, On the structure of positive semi-definite finite rank general domain Hankel and Toeplitz operators in several variables. Complex Analysis and Operator Theory, 2016.

F. Andersson, M. Carlsson, and M. V. De-hoop, Nonlinear approximation of functions in two dimensions by sums of wave packets, Applied and Computational Harmonic Analysis, vol.29, issue.2, pp.198-213, 2010.
DOI : 10.1016/j.acha.2009.09.001

A. George, P. Baker, and . Graves-morris, Padé Approximants, 1996.

L. Barachart, Sur la réalisation de Nerode des systèmes multi-indiciels, C. R. Acad. Sc. Paris, vol.301, pp.715-718, 1984.

D. Batenkov and Y. Yomdin, On the Accuracy of Solving Confluent Prony Systems, SIAM Journal on Applied Mathematics, vol.73, issue.1, pp.134-154, 2013.
DOI : 10.1137/110836584

B. Beckermann, G. H. Golub, and G. Labahn, On the numerical condition of a generalized Hankel eigenvalue problem, Numerische Mathematik, vol.13, issue.3, pp.41-68, 2007.
DOI : 10.1007/978-3-662-03329-6

B. Beckermann and G. Labahn, A Uniform Approach for the Fast Computation of Matrix-Type Pad?? Approximants, SIAM Journal on Matrix Analysis and Applications, vol.15, issue.3, pp.804-823, 1994.
DOI : 10.1137/S0895479892230031

M. Ben-or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, Proceedings of the twentieth annual ACM symposium on Theory of computing , STOC '88, pp.301-309, 1988.
DOI : 10.1145/62212.62241

E. R. Berlekamp, Nonbinary BCH decoding (Abstr.), IEEE Transactions on Information Theory, vol.14, issue.2, pp.242-242, 1968.
DOI : 10.1109/TIT.1968.1054109

A. Bernardi, J. Brachat, P. Comon, and B. Mourrain, General tensor decomposition, moment matrices and applications, Journal of Symbolic Computation, vol.52, pp.51-71, 2013.
DOI : 10.1016/j.jsc.2012.05.012

URL : https://hal.archives-ouvertes.fr/inria-00590965

J. Berthomieu, B. Boyer, and J. Faugère, Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences, International Symposium on Symolic and Algebraic Compution, pp.61-68, 2015.

G. Beylkin and L. Monzón, On approximation of functions by exponential sums, Applied and Computational Harmonic Analysis, vol.19, issue.1, pp.17-48, 2005.
DOI : 10.1016/j.acha.2005.01.003

J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition . Linear Algebra and Applications, pp.1851-1872, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00435908

E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics, vol.7, issue.8, pp.1207-1223, 2006.
DOI : 10.1017/CBO9780511804441

C. Carathéodory and L. Fejér, ¨ Uber den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und¨Uberund¨ und¨Uber den Picard-Landauschen Satz, Rendiconti del Circolo Matematico di Paler mo, pp.218-239, 1884.

D. A. Cox, J. Little, and D. O. Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, 1992.

E. Raul, L. A. Curto, and . Fialkow, Solution of the Truncated Complex Moment Problem for Flat Data, 1996.

A. Cuyt, How well can the concept of Pad?? approximant be generalized to the multivariate case?, Journal of Computational and Applied Mathematics, vol.105, issue.1-2, pp.25-50, 1999.
DOI : 10.1016/S0377-0427(99)00028-X

B. Gaspard-riche-de-prony, Essai expérimental et analytique: sur les lois de la dilatabilité de fluidesélastiquefluidesélastique et sur celles de la force expansive de la vapeur de l'alcool, ` a différentes températures, J. ´ Ecole Polytechnique, vol.1, pp.24-76

D. Eisunbud, Commutative Algebra: With a View toward Algebraic Geometry, volume 150 of Graduate texts in mathematics, 1994.
DOI : 10.1007/978-1-4612-5350-1

M. Elkadi and B. Mourrain, IntroductionàIntroduction`Introductionà la résolution des systèmes polynomiaux, of Mathématiques & Applications, 2007.

J. Emsalem, Géométrie des pointsépaispointsépais, Bulletin de la S.M.F, vol.106, pp.399-416, 1978.

E. Fischer, ??ber das carath??odory???sche problem, potenzreihen mit positivem reellen teil betreffend, Rendiconti del Circolo Matematico di Palermo, vol.32, issue.1, pp.240-256, 1911.
DOI : 10.1007/BF03014797

P. Fitzpatrick and G. H. Norton, Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence, IEEE Transactions on Information Theory, vol.36, issue.6, pp.1480-1487, 1990.
DOI : 10.1109/18.59953

M. Giesbrecht, G. Labahn, and W. Lee, Symbolic???numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, vol.44, issue.8, pp.943-959, 2009.
DOI : 10.1016/j.jsc.2008.11.003

G. Golub and V. Pereyra, Separable nonlinear least squares: the variable projection method and its applications, Inverse Problems, vol.19, issue.2, pp.1-26, 2003.
DOI : 10.1088/0266-5611/19/2/201

N. E. Golyandina and K. D. Usevich, 2D-Extension of Singular Spectrum Analysis: Algorithm and Elements of Theory, Matrix Methods: Theory, Algorithms and Applications, pp.449-473, 2010.
DOI : 10.1142/9789812836021_0029

S. Graillat and P. Trébuchet, A new algorithm for computing certified numerical approximations of the roots of a zero-dimensional system, Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC '09, pp.167-174, 2009.
DOI : 10.1145/1576702.1576727

URL : https://hal.archives-ouvertes.fr/hal-01294713

W. ¨. Gröbner, Uber das Macaulaysche inverse System und dessen Bedeutung für die Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten, Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg, pp.127-132, 1937.

C. Gu, Finite rank Hankel operators on the polydisk, Linear Algebra and its Applications, vol.288, pp.269-281, 1999.
DOI : 10.1016/S0024-3795(98)10223-9

A. Hakop, M. G. Hakopian, and . Tonoyan, Partial differential analogs of ordinary differential equations and systems, New York J. Math, vol.10, pp.89-116, 2004.

L. Hormander, An Introduction to Complex Analysis in Several Variables, 1990.

A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, vol.1721, 1999.
DOI : 10.1007/BFb0093426

L. Kronecker, Zur Theorie der Elimination Einer Variabeln aus Zwei Algebraischen Gleichungen, pp.535-600, 1880.

S. Kunis, T. Peter, T. Römer, and U. Der-ohe, A multivariate generalization of Prony's method, Linear Algebra and its Applications, vol.490, pp.31-47, 2016.
DOI : 10.1016/j.laa.2015.10.023

J. Lasserre, M. Laurent, B. Mourrain, P. Rostalski, and P. Trébuchet, Moment matrices, border bases and real radical computation, Journal of Symbolic Computation, vol.51, pp.63-85, 2013.
DOI : 10.1016/j.jsc.2012.03.007

URL : https://hal.archives-ouvertes.fr/hal-01282654

M. Laurent, Sums of Squares, Moment Matrices and Optimization Over Polynomials, Emerging Applications of Algebraic Geometry, pp.157-270, 2009.
DOI : 10.1007/978-0-387-09686-5_7

M. Laurent and B. Mourrain, A generalized flat extension theorem for moment matrices, Archiv der Mathematik, vol.38, issue.1, pp.87-98, 2009.
DOI : 10.1017/S0017089501030130

L. Lim and P. Comon, Blind Multilinear Identification, IEEE Transactions on Information Theory, vol.60, issue.2, pp.1260-1280, 2014.
DOI : 10.1109/TIT.2013.2291876

URL : https://hal.archives-ouvertes.fr/hal-00763275

F. S. Macaulay, The Algebraic Theory of Modular Systems, 1916.

J. F. Macwilliams and N. J. Sloane, The Theory of Error-Correcting Codes, 1977.

B. Malgrange, Existence et approximation des solutions deséquationsdeséquations aux dérivées partielles et deséquationsdeséquations de convolution. Annales de l'institut Fourier, pp.271-355, 1956.

J. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on Information Theory, vol.15, issue.1, pp.122-127, 1969.
DOI : 10.1109/TIT.1969.1054260

B. Mourrain, Isolated points, duality and residues, Journal of Pure and Applied Algebra, vol.117, issue.118, pp.469-493, 1996.
DOI : 10.1016/S0022-4049(97)00023-6

URL : https://hal.archives-ouvertes.fr/inria-00125278

B. Mourrain, A New Criterion for Normal Form Algorithms, Proc. AAECC, pp.430-443, 1999.
DOI : 10.1007/3-540-46796-3_41

B. Mourrain and V. Y. Pan, Multivariate Polynomials, Duality, and Structured Matrices, Multivariate Polynomials, Duality, and Structured Matrices, pp.110-180, 2000.
DOI : 10.1006/jcom.1999.0530

URL : https://hal.archives-ouvertes.fr/inria-00073171

B. Mourrain and P. Trébuchet, Generalized normal forms and polynomial system solving, Proceedings of the 2005 international symposium on Symbolic and algebraic computation , ISSAC '05, pp.253-260, 2005.
DOI : 10.1145/1073884.1073920

URL : https://hal.archives-ouvertes.fr/inria-00070537

U. Oberst and F. Pauer, The Constructive Solution of Linear Systems of Partial Difference and Differential Equations with Constant Coefficients, Multidimensional Systems and Signal Processing, pp.3-4253, 2001.

S. Paul and . Pedersen, Basis for Power Series Solutions to Systems of Linear, Constant Coefficient Partial Differential Equations, Advances in Mathematics, vol.141, issue.1, pp.155-166, 1999.

V. Vladimir and . Peller, An excursion into the theory of Hankel operators Holomorphic spaces, Math. Sci. Res. Inst. Publ, vol.33, pp.65-120, 1995.

T. Peter and G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems, vol.29, issue.2, p.25001, 2013.
DOI : 10.1088/0266-5611/29/2/025001

G. Plonka and M. Tasche, Prony methods for recovery of structured functions. GAMM- Mitteilungen, pp.239-258, 2014.

D. Potts and M. Tasche, Parameter estimation for exponential sums by approximate Prony method, Signal Processing, vol.90, issue.5, pp.1631-1642, 2010.
DOI : 10.1016/j.sigpro.2009.11.012

D. Potts and M. Tasche, Parameter estimation for multivariate exponential sums, Electronic Transactions on Numerical Analysis, vol.40, pp.204-224, 2013.

S. C. Power, Finite rank multivariable Hankel forms, Linear Algebra and its Applications, vol.48, pp.237-244, 1982.
DOI : 10.1016/0024-3795(82)90110-0

C. Riquier, Les systèmes d'´ equations aux dérivées partielles, volume XXVII, 1910.

R. Rochberg, Toeplitz and Hankel operators on the Paley-Wiener space. Integral Equations and Operator Theory, pp.187-235, 1987.

R. Roy and T. Kailath, Signal processing part II. chapter ESPRIT-estimation of signal parameters via rotational invariance techniques, pp.369-411, 1990.

S. Sakata, Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array, Journal of Symbolic Computation, vol.5, issue.3, pp.321-337, 1988.
DOI : 10.1016/S0747-7171(88)80033-6

T. Sauer, Prony???s method in several variables, Numerische Mathematik, vol.30, issue.4, pp.411-438, 2017.
DOI : 10.1090/cbms/097

L. Schwartz, Théorie des distributions, Editions Hermann, 1966.

A. , L. Swindlehurst, and T. Kailath, A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors ? Part I: The MUSIC Algorithm, IEEE Trans. on Signal Processing, vol.40, pp.1758-1774, 1992.

J. Sylvester, Essay on Canonical Form. The collected mathematical papers of, p.1851, 1909.

J. Von, Z. Gathen, and J. Gerhard, Modern Computer Algebra, 2013.

Z. Yang, L. Xie, and P. Stoica, Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution, IEEE Transactions on Information Theory, vol.62, issue.6, pp.3685-3701, 2016.
DOI : 10.1109/TIT.2016.2553041

R. Zippel, Probabilistic algorithms for sparse polynomials, Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM '79, pp.216-226, 1979.
DOI : 10.1007/3-540-09519-5_73