M. Imieli?ski, C. Belta, H. Rubin, and Á. Halász, Systematic Analysis of Conservation Relations in Escherichia coli Genome-Scale Metabolic Network Reveals Novel Growth Media, Biophysical Journal, vol.90, issue.8, pp.2659-72, 2006.
DOI : 10.1529/biophysj.105.069278

S. Eker, M. Krummenacker, A. Shearer, A. Tiwari, I. Keseler et al., Computing minimal nutrient sets from metabolic networks via linear constraint solving, BMC Bioinformatics, vol.14, issue.1, pp.114-124, 2013.
DOI : 10.1006/jtbi.2000.1088

M. Watson, Metabolic maps for the Apple II, Biochemical Society Transactions, vol.12, issue.6, pp.1093-1097, 1984.
DOI : 10.1042/bst0121093

S. Lee, C. Phalakornkule, M. Domach, and I. Grossmann, Recursive MILP model for finding all the alternate optima in LP models for metabolic networks, Computers & Chemical Engineering, vol.24, issue.2-7, pp.711-717, 2000.
DOI : 10.1016/S0098-1354(00)00323-9

L. De-figueiredo, A. Podhorski, A. Rubio, C. Kaleta, J. Beasley et al., Computing the shortest elementary flux modes in genome-scale metabolic networks, Bioinformatics, vol.25, issue.23, pp.3158-65, 2009.
DOI : 10.1093/bioinformatics/btp564

A. Von-kamp and S. Klamt, Enumeration of smallest intervention strate? gies in genome?scale metabolic networks, PLoS Comput Biol, vol.10, issue.1, 2014.

G. Gallo, G. Longo, S. Nguyen, and S. Pallottino, Directed hypergraphs and applications, Discrete Applied Mathematics, vol.42, issue.2-3, pp.2-3177, 1993.
DOI : 10.1016/0166-218X(93)90045-P

G. Ausiello, P. Franciosa, and D. Frigioni, Directed Hypergraphs: Problems, Algorithmic Results, and a Novel Decremental Approach, In: ICTCS, pp.312-339, 2001.
DOI : 10.1007/3-540-45446-2_20

V. Gurvich and L. Khachiyan, On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions, Discrete Applied Mathematics, vol.96, issue.97, pp.363-73, 1999.
DOI : 10.1016/S0166-218X(99)00099-2

J. Monk, P. Charusanti, R. Aziz, J. Lerman, N. Premyodhin et al., Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments, Proceedings of the National Academy of Sciences, vol.110, issue.50, pp.20338-20381, 2013.
DOI : 10.1073/pnas.1307797110

J. Meador, M. Caldwell, P. Cohen, and T. Conway, Escherichia coli Pathotypes Occupy Distinct Niches in the Mouse Intestine, Infection and Immunity, vol.82, issue.5, pp.1931-1939, 2014.
DOI : 10.1128/IAI.01435-13

A. Fabich, S. Jones, F. Chowdhury, A. Cernosek, A. Anderson et al., Comparison of Carbon Nutrition for Pathogenic and Commensal Escherichia coli Strains in the Mouse Intestine, Infection and Immunity, vol.76, issue.3, pp.1143-52, 2008.
DOI : 10.1128/IAI.01386-07

M. Leatham, S. Banerjee, S. Autieri, R. Mercado?lubo, T. Conway et al., Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E. coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine, Infection and Immunity, vol.77, issue.7, pp.2876-86, 2009.
DOI : 10.1128/IAI.00059-09

R. Maltby, M. Leatham?jensen, T. Gibson, P. Cohen, and T. Conway, Nutritional Basis for Colonization Resistance by Human Commensal Escherichia coli Strains HS and Nissle 1917 against E. coli O157:H7 in the Mouse Intestine, PLoS ONE, vol.55, issue.4, 2013.
DOI : 10.1371/journal.pone.0053957.t004