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Abstract. Concurrent programming puts demands on software debugging and
testing, as concurrent software may exhibit problems not present in sequen-
tial software, e.g., deadlocks and race conditions. In aiming to increase effi-
ciency and effectiveness of debugging and bug-fixing for concurrent software,
a deep understanding of concurrency bugs, their frequency and fixing-times
would be helpful. Similarly, to design effective tools and techniques for test-
ing and debugging concurrent software understanding the differences between
non-concurrency and concurrency bugs in real-word software would be useful.
This paper presents an empirical study focusing on understanding the differ-
ences and similarities between concurrency bugs and other bugs, as well as the
differences among various concurrency bug types in terms of their severity and
their fixing time. Our basis is a comprehensive analysis of bug reports covering
several generations of an open source software system. The analysis involves
a total of 4872 bug reports from the last decade, including 221 reports related
to concurrency bugs. We found that concurrency bugs are different from other
bugs in terms of their fixing time and their severity. Our findings shed light on
concurrency bugs and could thereby influence future design and development of
concurrent software, their debugging and testing, as well as related tools.

Keywords: Concurrency bugs·Bug severity·Fixing time·Open source software.

1 Introduction

With the introduction of multicore and other parallel architectures, there is an increased
need for efficient and effective handling of software executing on such architectures.
An important aspect in this context is to understand the bugs that occur due to parallel
and concurrent execution of software. In this paper we look into how the increase of
such executions have impacted a number of issues, including the occurrence of related
bugs and the difficulty to fix these bugs compared to fixing non-concurrent ones.

Testing and debugging concurrent software are faced with a variety of chal-
lenges [1]. These challenges concern different aspects of software testing and debug-
ging, such as parallel programming [2], performance testing, error detection [3] and
more. Since concurrent software exhibit more non-deterministic behavior and non-
deterministic bugs are generally viewed to be more challenging than other types of
bugs [4, 5, 6], testing and debugging concurrent software are also considered to be
more challenging compared to testing and debugging of sequential software.
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Developing concurrent software requires developers to keep track of all the possi-
ble communication patterns that evolve from the large number of possible interleav-
ings or concurrently overlapping executions that can occur between different execution
threads through utilizing the shared memory. Handling the many execution scenarios
that this results in is a notoriously difficult task in debugging and makes it equally hard
to create test cases [7].

In the study presented in this paper we are particularly interested in isolating con-
currency bugs from other types of bugs (non-concurrency bugs) and analyzing the
distinguishing features in their respective fixing processes. Hence, the main emphasis
of this research is on concurrency bugs, and to explore the nature and extent of con-
currency bugs in real-world software. This exploration of bugs can be helpful to un-
derstand how we should address concurrency bugs, estimate the most time-consuming
ones, and prioritize them to speed up the debugging and bug-fixing processes. Also it
could be helpful for designers to avoid the errors that are more likely to occur during
the early phases of the software lifecycle.

In our study we address the following research questions:

– RQ1: How common are different types of concurrency bugs, compared to non-
concurrency bugs?

– RQ2: How much time is required to fix concurrency bugs, compared to fixing
non-concurrency bugs?

– RQ3: Are concurrency bugs more severe than non-concurrency bugs?

In this study we investigate the bug reports from an open source software project.
We classify bugs into two distinct groups, i.e., concurrency bugs and non-concurrency
bugs. We classify the concurrency bugs based on bug type, severity and fixing time.
We compare the non-concurrency and concurrency bug in terms of their reporting fre-
quency, severity and fixing time. Our results indicate that a relatively small share of
bugs is related to concurrency issues, while the vast majority are non-concurrency
bugs. Fixing time for concurrency and non-concurrency bugs is different but this dif-
ference is not big. In addition, concurrency bugs are considered to be slightly more
severe than non-concurrency bugs.

2 Methodology

In this study first we start with Bug-source software selection in order to select a proper
open source software for our study. Second, we identify the set of concurrency bug re-
ports in the issue tracking database of the selected project through a keyword search
in Bug report selection. Then we manually analyze the full set of identified bug re-
ports in order to exclude those that are not concurrency-related. Finally, in bug reports
classification process, we collect data for the concurrency bugs, and classify the bug
reports based using the classification scheme described in Section 3. The following
subsections describe the steps of this research process in further detail.

2.1 Bug-source Software Selection

We were interested in an open source application that coordinates distributed processes
with significant number of releases and an issue management platform for managing,
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configuring and testing. We selected the Apache Hadoop project1 as the open source
project for our study. The full justification for selecting Hadoop as our study object is
provided in the list below.

(1) Hadoop has changed constantly and considerably in 59 releases over six years
of development. (2) Due to Hadoop’s key concept of parallel and distributed abstrac-
tion it is recently adopted by several big companies (i.e., Facebook, Ebay, Yahoo, Ama-
zon and more). (3) Detailed information on bugs and bug fixes are openly available.
(4) The Hadoop framework has been widely adopted by both the industry and research
communities [8]. (5) It has a web interface for managing, configuring and testing its
services and components.

Hadoop tracks both enhancement requests and bugs using JIRA2. JIRA is an issue
management platform, which allows users to manage their issues throughout their en-
tire lifecycle. It is mainly used in software development and allows users to track any
kind of unit of work, such as project task, issue, story and bug to manage and track
development efforts.

2.2 Bug Reports Selection

In this stage we selected the concurrency bugs from the bug report database including
bugs from different versions of Apache Hadoop, including bug reports from the period
2006-2015, i.e., the last decade. In total, the Hadoop bug report database contains 4872
issues in this period that are tagged as “Bug”3.

We automatically filtered reports that are not likely to be relevant by performing
a search query on the bug report database. Our search query filtered bugs based on
(1) “Bug” as report type, (2) the status of the report, and (3) keywords relevant to
concurrency. Figure 1 summarizes the bug report selection process.

In filtering based on “Bug” as report type step, we practically searched in the
Apache Hadoop report database for the reports with issue type “Bug” according to our
main objective and bug definition.

In filtering based on the status of the report step, we searched for bugs with
“Closed” (i.e., this report considered finished, the resolution is correct) and “Fixed”
resolution status (i.e., fix for this issue has been implemented). We only selected
“Fixed” and “Closed” reports since unfixed and open bug reports might be invalid and
root causes described in the reports could be incorrect. It would then be impossible for
us to completely understand the details on these bugs and determine their types.

"Bug" as 
report type 

The status of 
the reports 

Keywords relevant 
to concurrency 

# = 4872 # = 3591 # = 411 

Fig. 1: Bug report selection workflow
In filtering based on the keywords relevant to concurrency step, we decided to use

the keywords that could help us to include the bug reports were compatible with the
scope of this study. In identifying such keywords, we reviewed the keywords utilized

1 https://issues.apache.org/jira/browse/hadoop
2 https://www.atlassian.com/software/jira
3 Bug is “a problem which impairs or prevents the functions of the product” [9].
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in similar previous studies [10, 1]. The keywords included in the search, i.e. the terms,
are as follows. After filtering we obtained a final set with 411 reports.

thread, blocked, locked, race, dead-lock, deadlock, concurrent, concurrency, atomic,
synchronize, synchronous, synchronization, starvation, suspension, “order violation”,
“atomicity violation”, “single variable atomicity violation”, “multi variable atomicity
violation”, livelock, live-lock, multi-threaded, multithreading, and multi-thread.

Table 1 shows the bug count across the different stages of the bug report selection
process. Note that this selection process may have some limitations, discussed in more
detail in subsection 5.1.

Table 1: Report counts from different stage of bug report selection process

Filter Selected reports # of
reports

2006-2015 & Bug & Fixed & Closed
Total Hadoop bug reports 3591
Keywords match related bug reports 411
Concurrency bug reports analyzed 221

2006-2015 & Bug & Fixed & Closed Sample of non-concurrency bug reports 221

2.3 Manual Exclusion of Bug Reports and Sampling of Non-concurrency Bugs

In this stage we manually analyzed the 411 bug reports obtained in the previous step4.
The manual inspection revealed that some of the bugs that matched the search query
were not concurrency bugs. Thus, we excluded them. More specifically, we determined
the relevance of the bugs by checking (1) if they describe a concurrency bug, and if
they do, (2) what type of concurrency bug is it. The latter is done, by comparing their
descriptions (or explanations) with our concurrency bug classification (Section 3.1). If
we could not map a report with any class we excluded that report from our set. We
also excluded reports with very little information, since we could not analyze them
properly. After filtering we obtained a final set with 221 concurrency bugs.

As explained in Section 1, our main objective is understanding the differences
between non-concurrency and concurrency bugs. For comparison purposes, we ran-
domly sampled an equally sized subset of non-concurrency bugs that were reported
during 2006-2015 and were “Fixed” and “Closed”. These bugs were used for compar-
ative analysis between the concurrency and non-concurrency bug sets. In this study,
we use the term non-concurrency bugs instead of sample of non-concurrency bugs for
all comparative analysis.

2.4 Bug Reports Classification

We analyzed the issues and information contained in the reports using them to map
to the concurrency bug classification manually. Each bug report contains several types
of information, which were valuable in recognizing and filtering the concurrency bugs
with other types of bugs to aids us understand the characteristics of bugs. The bug
reports contained for example the description of the bug with some discussions among
the developers on how to detect, where to detect (bug localization) and how to fix the
bugs. Typically most of the reports include a description of the correction of the bug,
and a link to the the version of the software where the bug has been corrected, and even
the scenario of reproducing the reported bug. The reports also contain additional fields
such as perceived priority, created date, resolved date, version affected and more.
4 We provide the raw data of this study at https://goo.gl/sr6iDQ.
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We used different types of fields in order to explore the concurrency bug issues in
the Hadoop project. We used the priority field to estimate the severity of the bug. The
interval between the Created date and Resolved date fields was used to calculate the
amount of (calendar) time required to fix the bug (fixing time).

3 Study Classification Schemes

In order to perform the bug classification process we defined three main classifiers and
grouped the reports based on these classifiers. The classifiers were Type of concur-
rency bug, fixing time and severity. These three classification schemes are described
in detail below.

3.1 Concurrency Bug Classification

In [10], our main contribution is a better understanding of the different types of concur-
rency bugs. We classified and mapped the relevant bug reports related to the types of
concurrency bugs using a classification of concurrency bug types. It categorizes con-
currency bugs into seven disjoint classes (i.e., Deadlock, Livelock, Starvation, Sus-
pension, Data race, Order violation and Atomicity violation).

3.2 Fixing Time Calculation

This class shows the time duration (days) which developer (or debugger) spend to fix
a reported bug. Fixing time, calculated by subtracting the Created date and Resolved
date fields of the bug.

3.3 Bug Report Severity Classification

In order to define priority for each issue based on developers’ perspective we used
a classification scheme similar to the classification defined in [9]. Blocker shows the
highest priority. It indicates that this issue takes precedence over all others. Critical in-
dicates that this issue is causing a problem and requires urgent attention. Major shows
that this issue has a significant impact. Minor indicates that this issue has a relatively
minor impact. Trivial is the lowest priority.

4 Results and Quantitative Analysis

This section provides the analysis of the data collected for bugs obtained from the
Hadoop project bug database. We used 442 bugs (i.e., 221 are concurrency bugs while
the rest are non-concurrency bugs sampled for our analysis) reported between 2006
and 2015. The bug selection process is described in Section 2.

RQ1: How common are different types of concurrency bugs, compared to
non-concurrency bugs?

As seen in Figure 2(a), out of the 3591 bugs reported in the Hadoop database, 221
(i.e., 6.15%) bugs are related to concurrency issues and are causing a certain type of
concurrency bugs, while the rest (i.e., 93.85%) are identified as non-concurrency bugs.
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The 221 concurrency bugs were further categorized according to the concurrency
bug classification in [10]. As mentioned already in Section 3.1, this taxonomy defines
seven types of concurrency bugs. For the sake of this study, we have added Not clear
category to the taxonomy. The Not clear category includes reports that cover bugs
related to concurrency and parallelism, but are not classified according to the concur-
rency bugs taxonomy. For these bugs, the summary and description of the report shows
it is a concurrency bug, but further classification of bug type is prohibited by a very
project implementation-specific explanation of the bug details and solution.

In addition, we investigated the frequency with which each type of concurrency
bug appears, with the aim of getting insights into bug prioritization. In Figure 2(b) we
show the number of concurrency bugs according to their category and how often they
are reported in the data we collected. From a total of 221 bug reports, almost half of
them (i.e., 44%) concern data races (or race conditions), a well-known and common
concurrent bug [11]. In addition, about 15% of the reports reported the Suspension bug
type and only two bug reports were categorized as Livelock bugs.

(a) Distribution of non-
concurrency and concurrency
bug types

14% 

44% 

11% 

5% 

1% 

4% 

15% 

6% 
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violation  Livelock Starvation Suspension Not clear 

# of reported bugs 30 97 25 11 2 9 33 14 

(b) Distribution of concurrency bugs

Fig. 2: Distribution of bugs

Answer RQ1: Only 6.15% of the total set of bugs are related to concurrency
issues, while the majority of bugs (i.e., 93.85%) are of non-concurrency type.

RQ2: How much time is required to fix concurrency bugs, compared to fixing
non-concurrency bugs?

In order to gain better understanding on how difficult is to fix concurrency bugs in com-
parison with non-concurrency bugs, we conducted a quantitative analysis of the effort
required to fix both concurrency and non-concurrency bugs. This effort was measured
as explained in Section 3.2.We used this time as an indicator for the complexity in-
volved in fixing these bugs.

Table 2(a) lists the detailed statistics on the obtained results for fixing time of con-
currency and non-concurrency bugs. These results are also summarized in Figure 3(a)
in the form of box-plots (the vertical axis scale of the plot is logarithmic). Interest-
ingly, the fixing time for concurrency and non-concurrency bugs is very similar, with
an average of 58 days and 54 days for fixing concurrency and non-concurrency bugs,
respectively.
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To evaluate if there is any statistical difference between concurrency and non-
concurrency bugs fixing time we use a Wilcoxon Signed Rank test, a non-parametric
hypothesis test for determining if there is any statistical difference among two data
sets, with the assumption that the data is drawn from an unknown distribution. We use
0.05 as the significance level.

Table 2: Descriptive statistics results for concurrency and non-concurrency bug sets in terms of
fixing time.

(a) Fixing time comparison

Concurrency 58.3 0.1 1221.0 13.1 143.4
Non-concurrency 54.2 0.1 998.1 7.9 133.3

           Fixing time  
Bug

Average Minimum Maximum Median Standard 
Deviation

(b) Fixing time comparison for concurrency bugs

Deadlock 43.1 0.1 943.2 4.3 171.5
Data race 80.0 0.1 1221.0 17.0 181.4
Order violation 54.9 0.1 471.3 20.4 100.6
Atomicity violation 39.1 0.2 253.7 19.7 72.3
Livelock 16.9 15.0 18.9 16.9 2.7
Starvation 24.4 1.0 89.2 12.8 29.6
Suspension 38.5 0.5 197.2 17.9 46.9

Median
Standard 
Deviation

                       Fixing time  
Concurrency bug

Average Minimum Maximum

In addition, we calculate the Vargha-Delaney A-statistic as a measure of effect
size [12] for analyzing significance. This statistic is independent of the sample size
and has a range between 0 and 1. The choice of what constitutes a significant effect
size can depend on context. Vargha and Delaney [12] suggest that A-statistic of greater
than 0.64 (or less than 0.36) is indicative of “medium” effect size, and of greater than
0.71 (or less than 0.29) can be indicative of a “large” effect size.

We are interested in determining if the fixing time for concurrency bugs is simi-
lar to the one for non-concurrency bugs. We begin by formulating the statistical hy-
potheses as follows: the null hypothesis is that fixing time of the concurrency and
non-concurrency bugs sets have identical distributions (H0) and the alternative hy-
pothesis is that the distributions are different (H1). Based on the p-value of 0.027,
which is less than 0.05, we reject the null hypothesis. That is, the fixing time of con-
currency bugs and non-concurrency bugs are statistically different. When calculating
the Vargha-Delaney A-statistic we obtained a value of 0.560 which indicates a ”small”
standardized effect size [12]. From our results, we can see that the fixing time for con-
currency bugs is different from the fixing time for non-concurrency bugs, but that this
difference corresponds to a “small” standardized effect size.

We were also interested in understanding the differences between fixing time for
each type of concurrency bugs. Figure 3(b) summarize our results in the form of box
plots. It is obvious that Data races took the longest time to fix (i.e., 80 days on aver-
age). Order violation and Deadlock type of bugs took less time (55 and 43 on average,
respectively) while Livelock and Starvation type of bugs took shorter fixing time (17
and 24 days on average, respectively). Table 2(b) lists the detailed statistics on the
obtained results for each type of concurrency bugs. To evaluate if there is any signif-
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Fig. 3: Fixing time analysis; boxes span from 1st to 3rd quartile, black middle lines are marking
the median and the whiskers extend up to 1.5x the inter-quartile range while the circles represent
the outliers.

icant statistical difference between the different types of concurrency bugs, we use a
Wilcoxon Signed Rank test and calculate the A-statistic effect size. To this end, we
report in Table 3 the p-values and the effect size for each type of concurrency bugs.
The tested hypotheses are formulated as follows: the null hypothesis is that fixing
time results between two different bug types are drawn from the same distribution and
the alternative hypothesis is that the fixing time results are drawn from different dis-
tributions. We use a traditional statistical significance limit of 0.05 and Vargha and
Delaney’s suggestion [12] for statistical significance. Examining Table 3, we can con-
clude that the null hypothesis is accepted with p-values above the traditional statistical
significance limit of 0.05 for the majority of bug types except for “Deadlock-Data
race” and “Deadlock-Suspension” pairs where the null hypothesis is rejected. This
shows that the bug fixing time is not different except between “Deadlock-Data race”
and “deadlock-Suspension”. For example, in Table 3 we show the obtained p-value of
0.008 for testing the pair “Deadlock-Data race”, which is less than 0.05, and therefore
we can reject the null hypothesis: the fixing time for Deadlock and Data Race bug
types are different. In addition, the A-statistic for the same pair of bug types is about
0.796 (or 0.204 in the second row), which is greater than the significance level of 0.71.
We can say that in this case the effect size is “large”. We can conclude that fixing time
for deadlock and data race bug types is different with a “large” effect size.

It should however be noted that the likelihood of statistical errors vastly increases
when doing multiple tests using the same dataset. The results from the inter-bug-type
comparisons are thus less reliable than the results from the comparison between con-
currency and non-concurrency bugs.
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Table 3: Wilcoxon test for concurrency bugs fixing time comparison

H0           HA
Hypothesis 
test result Deadlock Data race

Order 
violation

Atomicity 
violation Livelock Starvation Suspension

P-value - 0.007389 0.03635 0.06946 0.1476 0.128 0.001921
A-statistic - 0.7951961 0.2046976 0.0892762 0.0154108 0.0735466 0.2636306
P-value 0.007389 - 0.9368 0.9595 0.9702 0.646 0.5778
A-statistic 0.2048039 - 0.1302476 0.0572856 0.0100967 0.0507493 0.1589967
P-value 0.03635 0.9368 - 0.9452 0.8894 0.6391 0.6888
A-statistic 0.2826018 0.8697524 - 0.0990541 0.0181741 0.0821554 0.2936019
P-value 0.06946 0.9595 0.9452 - 0.9231 0.7902 0.6644
A-statistic 0.2983314 0.9427144 0.2428526 - 0.0195557 0.0879477 0.3191625
P-value 0.1476 0.9702 0.8894 0.9231 - 0.8128 0.8869
A-statistic 0.3081093 0.9899033 0.2548624 0.1121267 - 0.0919864 0.3364332
P-value 0.128 0.646 0.6391 0.7902 0.8128 - 0.4343
A-statistic 0.2998193 0.9492507 0.2444468 0.107716 0.0195026 - 0.3216601
P-value 0.001921 0.5778 0.6888 0.6644 0.8869 0.4343 -
A-statistic 0.2806356 0.8410033 0.2166543 0.0958657 0.017377 0.0797641 -

Starvation

Suspension

Deadlock

Data race

Order 
violation
Atomicity 
violation 

Livelock

Answer RQ2: Concurrency bugs do require longer fixing time than non-concurrency
bugs, but the difference is not very large.

RQ3: Are concurrency bugs more severe than non-concurrency bugs?

We analyzed the difference between concurrency and non-concurrency bug severity in
order to understand if the severity of bugs is differently distributed. Figure 4 shows the
severity distributions. In order to statistically compare the severity between concur-
rency bugs and non-concurrency bugs, we apply a Two-Sample Kolmogorov-Smirnov
test (also known as two-sample K-S test) to find if the frequency between these two
types of bugs is significantly different. Our null hypothesis can be formulated as fol-
lows: are the severity level results of concurrency bugs and non-concurrency bugs
drawn from the same distribution. In this test, if the D-value is larger than the critical-
D-value, the observed frequency is distributed differently.

Blocker Critical Major Minor Trivial 
Non-concurrency bugs 41 18 118 29 15 

Concurrency bugs 66 20 120 15 0 

19%$

8%$

53%$

13%$
7%$

30%$
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7%$
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Non-concurrency 
bugs 

Concurrency 
bugs 

Fig. 4: Concurrency and non-concurrency bug severity

Table 4 shows that the D-value is 0.131, which is larger than the Critical-D-value
of 0.091. Thus, statistically we have enough evidence to conclude that there is a differ-
ence between the concurrency and non-concurrency bug severity distribution. In other
words, the concurrency and non-concurrency severity types are distributed differently.

Finally, we are also interested to identify the severity distribution difference be-
tween different concurrency bugs classes. The results obtained for this analysis are
shown in Figure 5. The results indicate that the highest severity is observed for the
“Blocker” class. We expected that most of the bugs to be of Deadlock type. In reality,
as shown in Figure 5, most of the bugs are of Data race type. We can interpret this fact
in the following way: the Data race type might represent the most problematic bug
type in terms of severity in the Hadoop project.
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Table 4: Kolmogorov-Smirnov test for concurrency and non-concurrency bugs severity

 Observed 
Frequency

Observed 
Proportion

Observed 
Cumulative 

Proportion f(x)

 Observed 
Frequency

Observed 
Proportion

Observed 
Cumulative 

Proportion g(x)

Blocker 41 0.185520362 0.185520362 66 0.298642534 0.298642534 0.113122172
Critical 18 0.081447964 0.266968326 20 0.090497738 0.389140271 0.122171946
Major 118 0.533936652 0.800904977 120 0.542986425 0.932126697 0.131221719
Minor 29 0.131221719 0.932126697 15 0.067873303 1 0.067873303
Trivial 15 0.067873303 1 0 0 1 0

Non-concurrency bugs Concurrency bugs

Shade |f(x)-g(x)|

Critical D-value = D-value= Sup|f(x)-g(x)| = 0.131221719D221,0.05 =
1.36
221

= 0.091

On the other hand, after comparing the different type of concurrency bugs we found
that most of the bugs categorized as being part of the Data race type in terms of severity
belongs to the Major class; the highest population of Deadlock bugs belong to Critical
class; the highest population of bugs categorized in the Suspension type belongs to
Critical class; the highest population of bugs corresponding to Atomicity violation type
belongs to Major and Minor class; the highest population of Order violation bugs
belongs to Minor class and the highest population of Starvation bugs belong to Major
class. We can interpret that the Deadlock and Suspension bugs have higher severity.

Answer RQ3: Concurrency bugs are considered to be more severe than non-
concurrency bugs, but the difference is not that large.

Fig. 5: Concurrency bugs severity

5 Discussion

In our study, we found a much smaller share of concurrency bugs than the one found by
other similar studies. This could possibly be due to the different time span of our study
and that of other similar studies. An interesting observation is that 70% of the bugs
that we found were reported in the five-year interval of 2006-2010, and the remaining
30% were reported in the five-year interval of 2011-2015.
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Similarly, the fixing time found by other studies is much larger for concurrency
bugs than for non-concurrency bugs. We find a difference, but it is relatively small. This
could be due to a large portion of fixing time in other studies relate to reproducing the
bugs using the bug scenario in the bug description. In our study we found surprisingly
few reports stating difficulties in reproducing the bug.

The involvement of more than one thread cause a concurrency bug. For this reason
we predicted to find that concurrency bugs were more severe than non-concurrency
bugs. However, we expected most of the “Blocker” bugs to deadlock type due to its
characteristic and properties but this was not the case. In our study Data race was the
biggest portion of “Blocker”. We can interpreter that Data race is the most problematic
bug to fix in Hadoop project.

Moreover, our investigation shows that about half of the concurrency bugs are of
Data race type. The reason could be that Data race is more severe than other type
of bugs (as shown in Figure 5) and it would be normal if it takes longer time to fix.
About 15% of the bugs belongs to the Suspension type. By investigating the bug re-
ports’ description and comments we noticed that most of the Suspension bugs occurred
when the developer put a block of code in waiting mode for an unnecessary long time,
thereby causing a Suspension bug.

5.1 Validity Threats
In the design and execution of this study, there are several considerations that need to
be taken into account as they can potentially limit the validity of the results obtained.

– Some concurrency bugs might go unfixed or unreported because they occur in-
frequently, only on certain platforms/software configurations, or are hard to repro-
duce. It would be interesting to consider these kinds of bugs, but they are not likely
to have detailed discussions. As a result, these bugs are not considered as impor-
tant as the reported and fixed concurrency bugs that are used in our study. How-
ever, based on our investigation , 81 bug reports out of 4872 bug reports tagged as
“Cannot reproduce” while 25 of them mentioned at least one of the concurrency
keywords (listed in Section 2.2) in their description or comments.

– The reports with other status (i.e., “In Progress” -this issue is being actively
worked on at the moment by the assignee- or “Open” -This issue is in the ini-
tial ‘Open’ state, ready for the assignee to start work on it-) were not considered
in this study and there is a chance that we did not include the relevant reports.

– Even if the obtained results (for RQ1, RQ2 and RQ3) are based on data samples
from a single project, these results might apply to other software as well. More
analysis is required to confirm whether this is in fact the case.

6 Related Work
A series of related studies on debugging, predicting and fixing concurrent software
have been conducted. In particular, there is a large body of studies on prediction [13,
14, 15, 16] and propagation [17, 18] of bugs in source code.

Most of these studies strive to identify the components or source code files, that
are most prone to contain bugs. Fault prediction partially focuses on understanding the
behavior of programmers and its effects on software reliability. This work is comple-
mentary to the study conducted in this research, which is concentrated on a specific
type of bugs (i.e., concurrency bugs) and on understanding their consequences.
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In [19], Vandiver et al. analyzed the consequences of bugs for three database sys-
tems. This work is focused on presenting a replication architecture, instead of on study-
ing bugs. The authors did not distinguish between concurrency and non-concurrency
bugs, and only evaluated whether they caused crash or Byzantine faults.

Three open-source applications bug databases (Apache web server, GNOME desk-
top environment and MySQL database) are investigated by Chandra and Chen [20],
with a slightly different focus than ours. The authors analyzed all types of bugs (only
12 of them were concurrency bugs) to determine the effectiveness of generic recovery
techniques in tolerating the bugs. Concurrency bugs are only one possible type of bug
that affects their results. In contrast, based on our main objective we focus on a more
narrow type of bugs by limiting ourselves to concurrency bugs, but provide a broader
analysis (comparing concurrency and non-concurrency bugs) taking into consideration
several types of these bugs.

Farchi et al. [21] analyzed concurrency bugs by creating such bugs artificially.
They asked programmers to write codes which have concurrency bugs. We believe that
artificially creating bugs may not lead to bugs that are representative of the real-world
software bugs. We, on the other hand, analyze the bug database of an open-source
software, which is well maintained, and widely used software.

Lu et al. examined concurrency bug patterns, manifestation, and fix strategies of
105 randomly selected real-world concurrency bugs from four open-source (MySQL,
Apache, Mozilla and OpenOffice) bug databases [1]. Their study concentrated on sev-
eral aspects of the causes of concurrency bugs, but the study of their effects was limited
to determining whether they caused deadlocks or not. We use the same study method-
ology to find relevant bug reports but we provide a complementary angle by studying
the effects of recent concurrency bugs not limited to deadlock and not-deadlock bugs.
In other words, according to our objective we used other classification(s) for our study.

7 Conclusion and Future Work
This paper provides a comprehensive study of 4872 fixed bug reports from a widely
used open source storage designed for big-data applications. The study covers the
fixed bug reports from the last ten years, with the purpose of understanding the differ-
ences between concurrency and non-concurrency bugs. Two aspects of these reports
are examined: fixing time and severity. Based on a structured selection process, we
ended up with 221 concurrency bugs and 221 non-concurrency bugs (sampled). By
analyzing these reports we have identified the frequencies of concurrency and non-
concurrency bugs. The study also helped us to recognize the most common type of
concurrency bugs in terms of severity and fixing time. The main results of this study
are: (1) Only a small share of bugs is related to concurrency while the vast majority are
non-concurrency bugs. (2) Fixing time for concurrency and non-concurrency bugs is
different but this difference is relatively small. (3) Concurrency and non-concurrency
bugs are different in terms of severity, while concurrency bugs are more severe than
non-concurrency bugs. These findings could help software designers and developers to
understand how to address concurrency bugs, estimate the most time-consuming ones,
and prioritize them to speed up the debugging and bug-fixing processes.
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