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Scalable Inside-Out Image-Based Rendering

Peter Hedmah  Tobias Ritschél ~ George Drettaks  Gabriel Brostow
LUniversity College London  ?Inria
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Figure 1: Images from our method rendered in 1080p at 55 Hz on an Nvidia Titan X GPU. Input is an RGB-D video and 298 high-quality
photos of 'Dr Johnson's house', London. With no wheelchair access to this oor, curators were keen to have their rooms digitized.

Abstract 1 Introduction

The ability to capture and reproduce virtual versions of real indoor

Our aim is to give users real-time free-viewpoint rendering of real Places is essential for many applications, such as virtual navigation
indoor scenes, captured with off-the-shelf equipment such as a high-Of real-estate, museums, games, and safety training. While it is
quality color camera and a commodity depth sensor. Image-basedP0Ssible to obtain 3D reconstructions [Choi etl15] and display
Rendering (IBR) can provide the realistic imagery required at real- them with texture [Waechter et.&1014], this lacks view-dependent
time speed. For indoor scenes however, two challenges are especiallyeffe?ts- Even with perfegct geometry this approach looks arti cial,
prominent. First, the reconstructed 3D geometry must be compact,@S highlights are baked in or missing completely. Gradually, image-
but faithful enough to respect occlusion relationships when viewed based rendering (IBR) is becoming an effective way to achieve both
up close. Second, man-made materials call for view-dependent tex €alism and interactivity. High-quality results already exist for small
turing, but using too many input photographs reduces performance. Objects [Lensch et a003] and for outdoor environments [Fehn
We customize a typical RGB-D 3D surface reconstruction pipeline to 2004; Goesele et a2010; Chaurasia et a2013]. A key to re-
produce a coarse global 3D surface, and local, per-view geometry for Cent success in IBR is the usepr-view input image information
each input image. Our tiled IBR preserves quality by economizing SUch as custom meshes and super-pixel over-segmentation, which
on the expected contributions that entire groups of input pixels make Preserve depth boundaries even with imperfect 3D reconstructions.

toa nalimage. The two components are designed to work together, n4qor scenes present speci ¢ challenges. While capturing outdoor

giving real-time performance, while hardly sacri cing quality. Test-  qcanes or views around an object involves “outside-in” viewing (see

ing on a variety of challenging scenes shows that our inside-out IBR \yej et a1 2014] for globally consistent 3D in that setting), interiors

scales favorably with the number of input images. typically require an “inside-out” approach. For the latter, capturing
similar numbers of photos yields far less overlap in scene coverage.
This creates much larger parallax and many occlusions at close

Keywords: Concepts: Computing methodologies! Image distances, resulting in two challenges: the need for higher-quality

manipulation; Computational photography; 3D reconstruction, and for capturing signi cantly more input photos,
slowing down rendering when using per-view information.

We propose a new indoor IBR algorithm addressing both these
challenges by combining indoor-friendly depth sensors and multi-
view stereo (MVS) for improved reconstruction, and a scalable

This is an author-prepared preprint, the de ni- rendering algorithm which uses mesh simpli cation and tiling to

tive version appears in the ACM Digital Library accelerate free-viewpoint IBR of indoor scenes.
. Depth sensors allow easy 3D acquisition of indoor scenes, but have

(http://dl.acm.org). several limitations, e. g., depth maps that do not align well with im-
age edges, and low resolution compared with RGB cameras. Depth-
sensor fusion algorithms [Newcombe et 2011; NieRRner et al
2013; Zhou et al2013; Choi et al2015] provide high-quality 3D
reconstruction, but can fail in at regions such as walls, ceilings and

, the oor or when viewing incandescent lights. In contrast, MVS



http://dl.acm.org

can achieve better results for textured zones and lights, and allows3D information. Elaborate hardware has been used to methodically
high-quality alignment of meshes with image edges. We carefully capture large interior spaces, room by room, producing data that
combine these two modalities to accurately align a global depth-is hard to use in interactive systems [Bahmutov eR8D6]. In
sensor mesh to separately-captured images, speci cally addressing the Sun 3D data set [Xiao et. &013], 3D reconstruction is done
and signi cantly increasing — indoor IBR quality and speed. using Structure from Motion and RGB-D images, but does not use
digital camera images, which can result in imperfect reconstructions
especially at depth silhouettes. Using stereo cues to improve depth
sensor images is a well studied topic, surveyed by Nair et al. [2013].
These methods seldom fuse multiple depth images, and re ne depth
using precalibrated binocular stereo. In contrast, our per-view re-
nement method works with fused depth images and unstructured
multi-view capture.

One way to categorize previous free-viewpoint IBR methods is
whether they use a global mesh [Buehler et28l01; Eisemann

et al 2008; Goesele et a010], or, for more recent approaches,
forward-projection of per-view information [Zitnick and Kang 2007;
Kopf et al 2013; Chaurasia et.&2013; Ortiz-Cayon et aR015].
Per-view information compensates for insuf cient accuracy of the
global mesh, which can lack entire regions or contains incorrect
geometry. For indoor scenes, depth sensors can estimate a globallgisting 3D reconstruction methods suffer from various inaccura-
consistent” mesh [Newcombe et @011; Choi etal2015], butstill * gjes, including missing or spurious additional geometry, misalign-
have errors at object boundaries, producing visual artifacts during ment between geometry and image boundaries, and excessively
IBR. Per-view information is still needed, but the number of images smooth or noisy geometry; these result in distracting visual arti-
required for high quality is very high. facts for IBR [Stich et al2011]. Combining textures from multiple

There are two key challenges for IBR of indoor scenes: combine VIEWS on a reconstructed object is challenging [Lensch. €Qdl1].
the global 3D mesh with per-view geometry and render high-quality Reconstruction-based solutions to these problems include warping
novel views using this geometry, without degrading performance. images to match the geometry [Zhou and Koltun 2014], hiding
Our approach creates high-quality per-view meshes optimized to S€ams between images while texturing [Waechter.eGil4], or

align with depth and image edges, which we subsequently simplify. SUPer-resolution approaches [Gdicke et al2014]. In contrast, we

Our rendering algorithm introduces a specialized tiling data struc- carefully craft the 3D reconstruction to align RGB images with a
ture, which compactly references the per-view data. We introduce 9/0bal mesh, typically created by a depth sensor, then build per-view
an adaptive blending cost to combine several input views, and derive meshes to capture image and depth discontinuities with the accuracy
upper bounds of the cost for each tile. We use this cost to prioritize N€€ded for IBR. Large laser-scanned scenes can be rendered ef -
view-dependent data used to render the novel view, further accelerciently by converting them into local geometries, either into meshes

ating rendering. In summary we present two main contributions;  t© be rasterized [Arikan et 22014] or depth maps displayed with
ray tracing [Arikan et al2016]. These methods apply texture by

Careful merging of multi-modal sensor data for global scene hiding seams between high-resolution photographs projected onto
reconstruction, which makes it easy to capture indoor scenesthe local geometry, but only in Lambertian scenes. While they
for IBR, followed by an algorithm to produce per-view meshes focus on performance, our approaehnes global geometry into

that respect view-speci ¢ depth and color discontinuities. per-view geometries to improve quality and is designed to reproduce

A fast rendering algorithm allowing high-quality free- view-dependent effects such as highlights.

viewpoint IBR for indoor scenes, which uses a blending ap-
proach based on conservative cost bounds for quality, and usesimage-based Rendering ~ From the outset, Image-Based Render-
mesh simpli cation together with tiled rendering to decouple  ing methods (e. g., [McMillan and Bishop 1995; Levoy and Hanra-
speed from the number of input images. han 1996; Gortler et all996]) capture the entire visual information
of the scene using photographs. The Light Field [Levoy and Han-
rahan 1996] and the Lumigraph [Gortler et H)96] represent the
dense information of light rays in a scene using different parame-
terizations. The Lumigraph introduced the idea of using geometry
. to assist in the generation of novel views. View-dependent texture
2 Previous Work mapping assumes the existence of a global mesh and all appear-
ance variation is stored in textures [Debevec e1888]. Surface
Here we discuss the most closely related previous work in re- Jight elds are another parametrization of a light eld for scenes
construction and rendering. We refer to the excellent survey by containing opaque surface with view-dependent appearance [Wood
Shum et al. [2008] for the broader context of IBR. et al 2000]. There have been several methods that compress and
render such data ef ciently [Chen et &002; Vanhoey et aP013],

Geometry Reconstruction for IBR Several recent IBR methods ~ While Gigaray light elds [Birklbauer et al2013] use caching and
[Goesele et al2010; Eisemann et a2008; Chaurasia et 8013; tiling to accelerate computation. The_se methods operate on different
Ortiz-Cayon et al2015] use multi-view stereo (MVS) [Furukawa data than ours: typically a single object or small baseline image se-
and Ponce 2010; Goesele et2007] to reconstruct the 3D geom-  uénces. ng_h-quallty IBR can be achieved through dens_e capture
etry of the scene, starting only with a sequence of photographs asand by restricting the virtual camera to move on a plane [Aliaga et al
input. In most cases, these methods use outdoor scenes as exard002] or to follow a track [Uyttendaele et.&1004]. Our method
ples. Individual objects can be reconstructed at real-time rates with SUPPOrts free-viewpoint navigation and renders novel views that are
suf cient accuracy for IBR using visual hulls [Matusik et al. 2000]. Substantially different from the input images.

Indoor scenes have been digitized for IBR, e. g., Sinha et al. [2009] . . .
f en ; The Unstructured Lumigraph Rendering (ULR) algorithm uses a set
focused on piecewise-planar geometry, while Furukawa et al. [2009] of complex weights [Buehler et.&001] to overcome limitations

modeled shape using the Manhattan-world assumption. With man- X > . .
ual intervention and a carefully crafted user interface, Sankar et "¢lated to lack of geometry, input camera position, orientation and

al. [2012] reconstructed plausible indoor scenes, captured even on 6{es_olution_. If the ULR approach_is u_sed per pi_xel, the cost of visiting
mobile device. all input pixels for each output pixel is prohibitive. Floating Textures

overcome ghosting in ULR-like algorithms by using optical ow
For indoor scenes, consumer-level depth sensors [Newcomhe et ato improve blending, and also improve visibility [Eisemann et al
2011; Henry et al2012; Choi et al2015] can be used to recover 2008]. ULR allows some degree of “free-viewpoint navigation”

We show results on a variety of complex indoor scenes, demonstrat
ing that our approach provides high-quality results and can scale to
a higher number of input images, compared to previous work.



Figure 2: Overview of our algorithm(a) The user captures high-quality inside-pointing-outward RGB photos, shown here as three different
camera poses. Separately, they also record a low-resolution RGB-D video by walking around thétgcEme high-resolution photos are
used to reconstruct a sparse 3D point cloud, to which the depth-maps are regigtgrat the depth maps are fused into a global geometry,
which smooths away many important details, but captures a consensual surface approxi(dafRerusing the high-res photos, we compute a
high-quality local mesh for each ong) The many local meshes are simpli ed to reduce triangle coffpfThe global geometry is partitioned

into tiles (in red) that organize the scene's visibility with respect to input viég)sit run-time, the per-view meshes are culled, leaving only
those predicted as relevant for rendering a novel view (pictured as a black canfierdahe relevant per-view geometry is rendered.

based on the global mesh which is usethagk-projectpixels in the quantity of the images used. Many redundant or useless images can
novel view into the input images. Recently, Pujades et al. [2014] sometimes be worse than a smaller number of well-chosen views.
present an interesting analysis of ULR by modeling the uncertainty Our tiled rendering approach is related to the view planning problem,
in geometric reconstruction, but it is not adapted to our real-time applied to IBR [Vazquez et a003], which can also be solved by
rendering context. Alternative solutions include Ambient Point putting a user into the loop [Davis et. &012]. We develop a
Clouds [Goesele et a2010], which degrade image quality with a compact and ef cient solution, combining a pre-processing phase
“non-photorealistic” look when reconstruction is unreliable, guided with a fast run-time step.

by epipolar constraints. However, in all the above cases imprecise or
incomplete geometry and misalignment with input images results in

signi cant visual artifacts in IBR, which worsen for indoor scenes. 3 Overview

A different class of approaches is based on the idea of using view-Our goal is to achieve real-time free-viewpoint image-based render-
dependent information that preserves image discontinuities. Theseing of indoor scenes, using a collection of high-resolution digital
reduce artifacts at occlusion boundariesfdryvard-projectingthe color photographs and RGB video from a consumer-level depth
over-segmented input images into the novel view [Zitnick and Kang sensor as input (Fig. 2a). Unlike traditional methods for RGB-D
2007; Chaurasia et.&013; Ortiz-Cayon et aR015]. Bhat et al. reconstruction [Newcombe et.&l011; Dai et al2016] and tex-
[2007] use forward projection to enhance an existing video, allowing turing [Zhou and Koltun 2014; Waechter et 2D14], we aim to
them to enforce temporal coherence and hide seams between inputeproduce view-dependent appearance such as highlights, and to
views using of ine graph cuts. Kopf et al. [2013] forward project render accurate images even in regions where a global 3D recon-
gradients and solve a Poisson problem to generate the image irstruction of the scene has missing or inaccurate data.

the novel view, enabling smooth interpolation of re ections. For- o . )

ward projection-based methods [Chaurasia €2@13; Ortiz-Cayon ~ Accurately aligning the photographs with the RG&Bimages

et al 2015] produce high-quality free-viewpoint navigation mainly (Fig. 2b) and creating a global 3D reconstruction of the scene
in outdoor scenes, typically when looking at a “backdrop” such as (Fig. 2c) is necessary for consistent rendering. However, these steps
a building facade or a walil. For indoor scenes, forward-warping alone are not suf cient to achieve high quality with back-projection
per-pixel geometry of the many input views required quickly be- IBR (e.g., [Buehler et aR001; Eisemann et 22008]), since object
comes the computational bottleneck, given that a one-megapixelPoundaries in the photographs seldom align with the global geome-

input image becomes a one-million vertex mesh. try. Rather than relying on improved global geometry, we make a
deliberate trade-off: To respect object boundaries we sacri ce global

A different — but direct — approach is to produce a novel view as agreement and create per-view geometry for each high-resolution
an optimization [Fitzgibbon et aP005], such that the novel-view  photograph (Fig. 2d). Now, we can render novel high-quality images
image matches the statistics of a set of examples. This approactby forward projecting per-view geometries into the novel view, and
has been demonstrated to work well for small changes of viewpoint blending them using view-dependent blend weights.

and for dense image sets; it is however unclear how well the method o ) )

adapts to the more challenging scenario we consider, with much Even with high-quality geometry, hundreds of input photographs
larger changes in viewpoint and interactive rates. Initial results are required to faithfully reproduce the view-dependent appearance
indicate that Deep Learning could be applicable to IBR [Flynn et al ©f indoor scenes during free view-point navigation, given the many
2016], but in its current state this method suffers from blurring and occlusions and large parallax at close distances. However, iterat-
high computational cost. Commercially backed systems like Google ing over all photographs when rendering novel views is very ex-
Jump and Facebook Surround 360 are emerging, which achieve highPensive, especially for forward projection where each photograph
quality results by limiting the user to follow pre-de ned paths. This corresponds to a per-view mesh with more than a million vertices.
keeps quality very high and makes on-set capture relatively easy;T0 overcome this problem, we present a culling strategy with three

extending to our free-viewpoint context is much more challenging. elements: Simpli ed per-view geometry (Fig. 2e), a tiling data
structure to only render potentially visible geometry (Fig. 2f), and

Finally, the quality of IBR critically depends on the quality and worst-case cost bounds to avoid rendering per-view geometry likely



to be discarded during view-dependent blending (Fig. 2g). of the RGB-D images using standard Structure-from-Maotion (SfM)
. . software [Moulon et al2013], including radial distortion correction
Combining the insights above, our approach works as follows: Dur- o the high-resolution photographs. A fundamental limitation with
ing of ine pre-processing we rst use Structure-from-Motion 10 g s that it is unable to estimate the scale of the scene. Fortunately,
align the photographs with the RGB-D images in the same coordi-j; 4oes provide us with the 3D locations of feature points and their
nate system and create global geometry using off-the-shelf sur_faceZD projections into the images (speci cally the RGB-D images).
reconstruction (Fig. 2b & 2c, Sec. 4.1). Next, we create per-view ging this information, we align the SfM reconstruction with the
geometry that aligns well with input image edges. We use the global (metric) scale of the RGB-D images: We use linear regression in a
geometry to guide an iterative region-growing multi-view stereo pANSAC loop to nd the metric scaling factor that aligns the depths
method that creates per-view depth maps for each input photographyf feature points, projected into the RGB-D images, with the values
(Fig. 2d, Sec. 4.2). We then convert the depth maps into a simpli- stored in their depth maps.
ed mesh representation suitable for rendering (Fig. 2e, Sec. 4.3).
Finally, we store the resulting meshes in a tiling data structure to ) ) ] )
implement our culling strategy (Fig. 2f, Sec. 5.2). During run-time, Surface Reconstruction  We project all pixels in the RGB-D im-
we query the data structure to nd tiles of relevant per-view geom- ages outinto a uni ed point cloud. Note that any point between an
etry needed to form the novel view (Fig. 2g, Sec. 5.2), and derive RGB-D camera and the surfaces it can see (determined by its depth
bounds on the blending cost per tile to allow prioritization. Then, Pixels) is likely to be an outlier; we call this\asibility con ict. In-
we forward project these tiles into the novel view and blend them spired by Furukawa and Ponce [2010], we use this insight to design
using adaptive blend weights that automatically balance blurring @ Visibility Iter that removes invalid points from the point cloud:
and banding (Fig. 2h, Sec. 5.1). We now proceed to explain the 3D If & point causes more thamnax Visibility con icts, we remove it

reconstruction (Sec. 4) and the rendering (Sec. 5) phases in detail. from the cloud. As the depth captured by an RGB-D camera is less
accurate further awapmax is made a decreasing function of depth

. in meters, i. e.nmax = blOm=zc. Finally, we estimate normals for
4 3D Reconstruction the remaining points in the cloud using RANSAC plane-estimation,

. and fuse them into a global mesh using Screened Poisson Surface
In the absence of perfectly accurate global geometry, we insteadreconstruction [Kazhdan and Hoppe 2013].

seek global geometry with suf cient quality to serve as initialization
for local per-view reconstruction. In general, image-based rendering
methods strive to be robust against imperfect 3D geometry. However,
some problems are dif cult to x with rendering alone, such as big
holes, “ ying” geometry and disjoint reconstructions.

4.2 Local Per-view Geometry

For high-quality IBR, pixel-accurate alignment of depth with lumi-
nance edges is much more important than the precise depth value
Indoor scenes are harder than outdoor in many ways, but they do[Stich etal 2011; Chaurasia et.&013]. We achieve this by creating
allow for the use of Kinect-style depth sensors. We use such a deptha different depth map for every input view, which might deviate from
camera, along with a high-resolution digital color camera because the global mesh, but respects image edges.

takrt::n t?getk:]er, they will _?Ir:ow ur?dto rtlelcon?]tcrjuk(]:_t E”otkg att-lroc()jkir:g We use the global mesh created in the previous step to guide the
parts of scenes (€. g., ceilings and walls) a Ighly textured areas, o 4tion of these high-quality per-input-view depth maps, which we

Lr:)mgtt'gﬁéfgofng'?;L:efﬁgfetﬁucgogrﬁéithé” i:":ﬁévi‘thgfene then use for rendering novel views. For this purpose we employ
We fgund that global reJconstructic?né under- or )(lless often) over- 2 region-growing multi-view stereo method to align the global ge-
g ometry with edges in the high-resolution images. We designed this

23“2: Tﬁ mg i\r']OISR/?eSJSSCSrT)z;leg]een;ii’nso tngaﬁar'Ltc%gggﬂc\ﬁgﬂ method to exploit the global mesh in three ways: 1) to provide a
9 P : ysp 9.9 ood initialization of the surfaces in the scene, 2) to derive a reliable

Is designed to reward the average agreement between the estimate construction cost function for optimization and 3) to determine

3D shape and all views. But even small inaccuracies in the camera, ;... : - . :
poses conspire to erode 3D shapes. Our goal of free-viewpaint IBRB\/ISIbIlIty when selecting views for evaluating photo-consistency.

is less forgiving about missed details, but quite compatible with
global inconsistencies. We thus separate reconstruction into two
goals: nding a global 3D structure that brings all data into the same
coordinate system, and constructing local per-view geometry, which
aligns well with image edges in just the nearby input images.

To achieve this, we rst use the RGB-D images to reconstruct a con-
sistent global geometry of the scene (Sec. 4.1), which we then re ne
into view-speci ¢ depth maps for each high-resolution camera using
multi-view stereo (Sec. 4.2). Finally, we convert the depth maps into
simpli ed meshes amenable to ef cient rendering (Sec. 4.3).

Figure 3: The spatial propagation scheme of normal diffusion MVS.
4.1 Global Geometry Starting from pixels associated with planes (depths and norn(a)s)

we update the plane at a pixel (in red) by rst extending the planes
In this step, we align the RGB and RGB-D images and consolidate of neighboring pixelgb). We replace the plane at a pixel if any
the depth information into one consensual surface geometry. Weof the extended planes has a lower reconstruction @@sfThis is

found this procedure to work best for our input data, in terms of scene performed for all pixels in the image and repeated for 10 iterations.
completeness. However, other geometry reconstruction methods

(e.g., BundleFusion [Dai et #2016], developed in parallel) might

be worthwhile replacements, once available. The objective for our region-growing method is to nd a plane (i.e.,

a depth and a normal) with a low reconstruction cost (de ned below)
for each pixel in an input image. To this end, we initialize the
RGB-to-RGB-D Registration ~ We estimate relative camera poses planes with the global geometry and iteratively re ne them using
between the high-resolution photographs and the color componentthe spatial propagation scheme from normal diffusion multi-view



stereo (ND-MVS) [Galliani et al2015]. At every iteration, we 5 Rendering
create a set of plane candidates for each pixel by extending the
planes of its neighbors, Fig. 3. Then, we replace the plane at a pixelWe can now use the simpli ed per-view meshes for indoor IBR
with the candidate that has the lowest reconstruction cost. In all by blending many input views. To achieve high quality, including
experiments, we perform 10 iterations of propagation. Please seeview-dependent effects such as highlights, we introduce an adaptive
Galliani et al. [2015] for exact details of the propagation scheme. blending cost (Sec. 5.1). Directly rendering the per-view meshes is
. - _ . however prohibitively expensive, so we introduce two acceleration
Our reconstruction cos;ﬁ_) incorporates prior information from the methods (Sec. 5.2). First, we present a spatial tiling data structure,
global mesh with multi-view photo-consistency. More precisely, limiting the per-view meshes used to render a given novel view. The
c(i) = cp(i)+ cm(i)+ cs(i); (1) number of tiles drawn is further reduced using a priority scheme, by
deriving a bound on the blending cost for each tile. Details of our

is a sum of a photo-consistency, mesh, and smoothness terms.  Gpy rendering implementation (Sec. 5.3) conclude this section.

We evaluate the photo-consistergyi) at a pixel by reprojecting

a small @ 3) patch around the pixel via the candidate plane
into other images, where we compare both the colors and image
gradients using the formulation in [Galliani et 2D15]. We use the
global mesh to reliably select these other images. First, we rank the
images based on the overlap they have with the input image when
both are projected onto the global mesh. Then, we reproject the
patch into the top six images not occluded by the global mesh.

The mesh priocy, (i) encourages candidate planes to stay close to

the global mesiM . This is important for texture-less regions, where  Figure 4: Adaptive bandwidth selection for two cases: One with
photo-consistency does not provide any extra information. Formally, a single good input vietop) and the other with many mediocre
wherep; is the world-space location of the candidate planeand  ones(bottom) In the “select” case, the rst view matches the novel

is a point on the global mesh, view well and has a low IBR cost. With a low minimum cost the
i mi2 Iter bandwidth becomes narrow, assigning most of the blend weight

Cm (i) = min Jp.ijz: (2) to the best view. In the “blend” case, all views have a high cost.

m2m (50 mm) Consequently, the minimum cost is high and the Iter bandwidth

The smoothness term(i) encourages the resulting depth map to becomes wide, blending all input views with nearly equal weights.
be smooth for neighboring pixeisandj of similar color. Formally,

X . 02 in. 2
N i gj : 0P Pz .
cs(i) - e&p 57 - mn 0:1; @oomm? 5.1 Blending
(©)] We form the novel view by locally blending the inputimages. Choos-
whereN (i) is the set of neighboring pixels tandc; andc; are the ing appropriate blend weights is key to capturing view-dependent
RGB colors at pixel andj . In all experiments, we set; = 0:1. effects while minimizing ghosting artifacts. We do this by rst re-

solving visibility of the novel view. Then, we compute a per-pixel
cost for every input view. Finally, we reconstruct the novel view by
adaptively blending the visible input views based on this cost.

As a post-process, we remove pixels at unusual depths with the
visibility Iter described in Sec. 4.1, usingmax = 8. Finally, we
use single-view information to align the depth maps to image edges
where multi-view reconstruction fails. We Iter each depth map with ) .
a cross-bilateral weighted median Iter [Ma et 2D13] (guided by ~ Resolving Visibility ~ As we form the nal image by blending
color, . =0:1)with a4 px standard deviation. multiple per-view geometries, we cannot resolve visibility with

a traditional depth test that only recovers the front-most surface.
Instead we use a fuzzy depth test (detailed in Sec. 5.3), allowing us
to consider all per-view geometries that represent the same surface,
even if they do not perfectly align.

4.3 Representation

Instead of storing full per-pixel per-input view depth maps, we cre-
ate a compressed, per-view polygonal mesh for faster drawing and
reduced storage. To this end, we convert every pixel in the depth Cost We derive an IBR cost that prioritizes which input views
map to a 3D vertex and form a grid mesh by connecting neighboring to blend for every pixel in the novel view. This is a function
vertices with triangles.  To avoid connecting foreground and back- cigr (yi;yn;x) of the camera positiop; for the input viewi, the
ground layers at occlusion boundaries, we do not create triangles atcamera positioy, for the novel view and a locatiax on the per-
edges where the depth difference between the neighboring pixels isview geometry. Similarly to ULR [Buehler et.&2001] our cost is
larger than 10 cm. We call those edggditsin the mesh. a weighted sum of two term@sgr (Yi;yn;x) = (1 )Cat Cu,

. . .de ned as follows:
Meshes made from depth maps have saw-tooth artifacts at dlscontl-d e ned as follows

nuities, which worsen for surfaces at glancing angles. To avoid this, ¢, = (yi! x! yn) (Angle term)  (4)

we replace the depth of pixels at splits by a cross-bilateral average -~ -

of their neighborhood depths, guided by both RGB and depth. ci=max 01 Yo X (Distance term)  (5)
nyi Xy

Finally, off-the-shelf mesh simpli cation [Garland and Heckbert

1997] is used to reduce the number of triangles in the mesh. We runThe angle termis the angle between the direction vectors from
the simpli cation until the mesh has an edge longer than 75 pixels towards the camera locatiogs andy,. This helps to reproduce

in its input view, which typically yields a 50 to 100 reduction in view-dependent effects, as it prioritizes input views observing the
the number of triangles. We ag vertices next to a split as boundary scene from viewpoints similar to the novel view. Tdistance term
conditions that should not be altered during simpli cation. As can depends on the ratio of the distance between the current position
be seen in Fig. 9, this preserves crisp occlusion boundaries. and the input viewy; resp. the novel view,. This reduces blur
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a) 3D scene b) Top view c) Tiling d) Culling

Figure 5: The tiling procedure, for a 3D scene with a single ro¢a)) acquired from three input viewgellow, red, blue)o rendered in the

novel view (in black). With a top-down perspectlsg we see that the blue and red input cameras can be seen in the black novel view, while
the yellow one does not. Our method partitions the scene into a grid and splits the geometry irft). tNesw, tiles (e. g., all yellow ones and

part of red and blue) not visible in the novel view get remofddThe table in(e) shows the priority of each input view tile (columns) for all

grid cells visible in the novel view (rows). Table entries are blank wherever the input view does not have a tile in the corresponding grid cell.

(undersampling) in the image by penalizing input views far from the regular 3D grid as shown in Fig. 5. As a pre-process (Fig. 5c), we
surfaces visible in the novel view. Input views closer than the novel associate all triangles in the input views with the grid cells they
view are not penalized, and we correct for oversampling using mip intersect. We refer to the unique pairing of a grid cell with an input
maps and anisotropic ltering. In all experiments, we set 0:1. view as annput tile, i. e., the collection of triangles from a single
input view that intersect a grid cell. At run-time, we save effort
by only rendering input tiles visible to the novel-view (tiling and
culling). In Fig. 5d, we see that this allows us to ignore the yellow
view altogether as well as parts of the red and blue views.

Bandwidth Selection ~ We form the novel view by blending to-
gether the input views using blend weights determined by IBR cost.
Speci cally, we compute the blend weight = exp( c¢= ) for

an input viewi by applying an exponential Iter kernel to the IBR

A ) > However, because of our view-dependent blending, only a few visi-
costc = cigr (Yi;Yn;X). This implies a trade-off illustrated in

: . . oL ble input tiles will actually contribute to the nal image. We there-

Fig. 4. We can choose a wide lter bandwidthresulting in blur- ¢4 strive to render a small subset of the input tiles that ensures
ring (i. e., giving all views a similar weight) or a narrow bandwidth 51, |BR cost for all pixels in the novel view. To achieve this,

implying banding (i. ., giving only one view a very large weight). \ye sort the input tiles according to their worst-case IBR cost and
Our key observation is that no single weighting function can capture qray only the best ones in each visible grid cell. The exact number
two conditions that happen in practice: At one extreme, if many \aries petween grid cells, as we stop drawing input tiles when we
similar but incorrect views are available we need to select a wide yatermine that a cell has been suf ciently covered. Predicting the
bandwidth, i. e., to blur many images. Going for a single, but im- st case IBR cost is part of our contribution, which focuses the

perfect view would produce a sharp, but wrong result. Atthe other o, qering effort to the input tiles that actually affect the nal image.
extreme, one view is much better than the others. Here, only this

input view should be selected and others should not receive any\we next discuss all steps in detail.
weight as blurring many views would spoil the good one.

Similarly to variable kernel density estimation, we achieve this trade- Tiling and Culling  We store the input tiles in a 3D grid with
off by letting the lter bandwidth depend on the local costs of the 5 resolution 082 32 32 that covers the scene. During pre-
input views. We adaptively set the Iter bandwidth by scaling the  processing, we create the input tiles by conservatively voxelizing the
lter bandwidth with the IBR costmin of the best novel view. In - per.view geometry into the grid. As a consequence, each triangle in

otherwords = Cmin ; Where  (setto 0.33in all experiments)  the input geometry may belong to multiple input tiles.

controls how quickly we transition from blending the input views to

selecting the best one. At run-time, we need to nd the grid cells visible to the novel
view. This is done in two passes. First, we draw the coarse global

5.2 Tiled rendering geometry into the framebuffer of the novel view. Second, we process

all framebuffer pixels in parallel and mark all grid cells they intersect

Even with the simpli ed mesh representation, drawing the per-view s Visible using an atomic operation. To account for the mismatch
geometry of every input view into the novel view is slow. The key between the coarse global geometry and the per-view input geometry,
idea here is to avoid iterating over all input views when forming We perform this intersection conservatively by in ating each pixel
the novel view. We achieve this by operatingtdas, i. e., entire in the framebuffer into a cube with a side lengttbafm.

groups of input triangles and novel-view pixels. Similar ideas have

Riggéziﬂ |2nor1ela]l-t|me graphics with tile-based shading [Olsson andPriorization To select which input tiles to render, we sort them
) within each visible grid cell according to their worst-case IBR cost,

The idea is shown in Fig. 5. Consider an example of four views 1-€., an upper bound fazer (yi;yn;X) between the input view
(black, red, blue and orange) observing a room as seen in Fig. 5aYi and the novel viewy, wherex is allowed to be anywhere in
The black camera is the novel view, the others are input views. the grid cell. Concretely is inside an axis-aligned bounding box
Fig. 5b is a top-view of the same scene. For every pixel in the (Xmin ; Xmax ), See Fig. 6a. Using separately computed upper bounds
novel view (black), we need to compute IBR weights for all input for the angle ternta ¢ and the distance termy  ¢§® , we
views (yellow, red and blue) so we can determine which images to form the upper bounder (yi;yn;x) (1 )™ + cg™:
fetch RGB values from. With forward warping, this means that all

triangles from each input view need to be drawn into the novel view. 10 nd anupperboundfoca = (yi ! x! yn), we exploit that
the angles in a triangle sum toradians. Consider the triangle be-

To reduce the computational cost, we partition the scene into atweenx;y; andy,. We nd lower bounds min (i) and min (Yn)



minimum IBR costcnin  of all input views that project onto each
pixel. This is required for the per-pixel Iter bandwidthexplained

in Sec. 5.1. Finally, the last pass forms the image, blending together
the input views using the bandwidths computed in the previous pass.

6 Experiments

Figure 6: We derive the upper bound on the anglgyi ! x ! We compare our approach to existing baseline algorithms, using

Yn), wherey; is an input viewy, the novel view and an arbitrary published code wherever possible. Most existing rendering systems

pointin a grid cell(a, Eq. 6) We nd the bound implicitly through  were meant for outside-in scenes, so results are presented on our

lower pounds for the other angles in the trlangle.. Here, we use the own data. Here and in the supplemental video, we provide qualita-

bounding sphere around the grid cell (centey, radiusr) to bound tive comparisons of our reconstruction and rendering phases, and
(x! yi! yn)(b,Eq.7) quantitative results for speed tests.

Data Sets We captured our own scenes as we needed both high-
quality photos and depth-maps with good coverage of all interesting
cnax = (Y1) o (Yn): ©) surfaces in a variety of indoor environments. We captls@300
a min (Y min (Yn)- RAW photos using a digital camera (Sony NEX-C3laP8 816
Fig. 6b shows how we compute the lower boungh (y;) foroneof ~ Of Canon EOS 550D 4296 864). We also recorded an RGB-D
the other angles(x ! yi ! yn). First, we convert the bounding video using the Asus Xtion PRO depth-camera, and sub-sampled in

boX (Xmin ; Xmax ) 10 its encompassing bounding sphere centered at ime t0 yield150-450 640 480RGB-D images. In a pre-processing
X with the radiug . Now, step, images were color-harmonized using Adobe Lightroom.

for the other two angles in the triangle and form the upper bound:

; In Fig. 1, 7, 8 and the supplemental video we show results in the
mn (Yi)= (X¢! yi! yn) sin?t O T @) following scenes:
Wyi Xell CREEPY ATTIC. Asmall 6 4 4 m?®) attic in an old building
We derive an upper bound for the distance tegnbased on the max- ~ containing textiles and artwork. There is a prominent object (doll on

imum distancelmax (y) and minimum distancemin (y) between a chair) in the middle of the room, which clearly shows the need for
a pointy and a bounding bokXmin ; Xmax ). USingdmin (Yn) as per-input view local geometry since under- or overestimated global
lower bound for the numerator anigha (i) as an upper bound for ~ geometry results in clear IBR artifacts.

the denominator, we see that DorM RoOM: A small bedroom scenél( 4 5m®)in a student

dorm with prominent textureless walls.

o (V1) MUSEUM: A preserved house from the 17th century. This is a large
max (Yi scene{6 6 5m?) exhibiting textureless walls, glossy tabletops
and paintings behind mirror-re ective glass.

PLAYROOM: A medium-sized§ 6 5m?®) livingroom cluttered

with toys for young children. Aside from large, textureless surfaces
this scene contains many small geometric details that cannot easily
be captured using geometry reconstruction alone.

max

g™ =max 0;1 drin (Yn) (8)

Drawing Once all input tiles have been sorted, we determine how
many are to be rendered from each grid cell. Ideally, we would
conserve bandwidth by rendering as few input tiles as possible.
However, this may result in holes in the novel view; the triangles in
an input tile are not guaranteed to cover a grid cell, e. g., due to splits

(Sec. 4.3) or image boundaries. We refer to an input tile without any BOOK SHOR Alarge (L1 9 5m?) basement in a book shop with

of these discontinuities ammplete dif cult occlusion characteristics (aisles separated by bookshelves).
] ) ] ) The books present a challenge for reconstruction and rendering as

For each grid cell, we render the sorted input tiles until three com- they are often non-diffuse and textured with high-frequency details.

plete tiles or a maximum of 12 input tiles have been rendered. We READING CORNER Asmall 7 4 4 m®) reading corner in an

found 12 to be a good trade-off between completeness and compact- ) ) g S

ness. In our experiments this typically reduces the number of drawn academic book store. The scene contains a leather chair with strong

primitives to fewer thari0 % of the original per-view meshes. view-dependent effects.

5.3 Implementation Rendering Comparison  In the accompanying video and Fig. 8
We compare our algorithm to [Ortiz-Cayon et 2015], and also to

Four geometry passes are required to render a novel view. DeferredJLR [Buehler et al2001] with improved visibility akin to oating

shading cannot be used to avoid multiple passes, as the color of everjextures [Eisemann et.&2008]. Compared to [Ortiz-Cayon et al

output pixel is determined by blending several input primitives. 2015], our mesh-based approach tends to preserve complex shape
boundaries better since super-pixels are warped independently in

As described in Sec. 5.2, the rst pass renders the global geometrytheir method. This is illustrated in the left side of Fig. 8, where the

to nd the visible grid cells. These cells are downloaded to the arm and leg of the doll show severe ghosting using [Ortiz-Cayon

CPU, which prioritizes the input tiles to render in the remaining et al 2015] Compared to ULR, our approach preserves the shape

three passes. We store the geometry associated with all input tiles inof detailed objects (the doll, middle of Fig. 8) or hard-to-capture

a single large vertex buffer object, allowing us to perform the other objects like the lamp (Fig. 8 on the right).

passes using a singigDrawlIndirect OpenGL instruction.

The nal three passes implement the blending algorithm described Geometry Comparison  In Fig. 9 we compare the geometry re-
in Sec. 5.1. First, we recover the front-most surface with a depth constructions from different components of our system. We see
pre-pass, which enables us to perform a fuzzy depth test: In thethat the global reconstruction alone is complete but tends to over-
remaining two passes any surface fragment far eno@ieng) or underestimate the size of foreground objects. We include ND-
from the front-most surface is discarded. The second pass nds the MVS [Galliani et al 2015] (Local only) as an upper bound for the



Figure 7: Example results from the supplemental video (top to bott@oKSHOR PLAYROOM, DORM ROOMand READING CORNER

Figure 8: Two example differences between ULR [Buehler €2@0D1] versus our approach, and Ortiz-Cayonet al. [2015] and our approach.

quality which can be achieved using local geometry reconstruction particularly from prioritization; the only CPU component of our

alone, i. e., without the mesh prior and the improved visibility tests rendering algorithm. Fig. 11 shows how the performance of our tiled

in Sec. 4.2. This method uses stochastic search to nd the planes inalgorithm scales with the number of input images, demonstrating a

the scene as it does not rely on global geometry for initialization. In sub-linear trend where the frame time plateaus after 150 images.

general it preserves details better than the global reconstruction, but

is often incomplete (shown as white) as textureless regions are dif - .

cult to reconstruct using multi-view stereo. The geometry produced /  €onclusion and Future Work

by our local per-view re nement (Sec. 4.2) is complete and aligns

well with image edges. Note how it corrects occlusion boundaries We have presented a new IBR method that rst builds a high-quality

grossly misestimated in the global reconstructions (circled in black): global mesh from a depth sensor, and then registers high-resolution

The pillar (Fig. 9a); the cloth (Fig. 9b); the chair legs (Fig. 9c and photos to this mesh. We then build per-input-view meshes guided

9d); consistent vertical edges of a bookshelf (Fig. 9e) and the backby the global reconstruction. Our approach combines a global/local

of the armchair (Fig. 9f). Correctly reconstructing these boundaries representation of the scene to introduce a novel IBR algorithm which

is important for IBR, as getting them wrong causes foreground color introduces a new blending approach, a compact representation of the

to be displayed on background geometry or vice-versa. per-input-view meshes and uses a tiled rendering algorithm which
scales well with the number of input images.

Performance  Thl. 1 shows show statistics of our scenes and ren-

dering. We measured the average frame time at 1080p in each sceneimitations ~ Our approach is ultimately limited by the quality of

as the virtual camera moves along a predetermined path. Withoutthe initial capture; evidently SfM needs to succeed for all the input
tiling, rendering takes 31-60 ms on our high-end machine (Desktop images for our method to work. We suffer from the same limitations
PC; Nvidia GTX Titan X), and 209-388 ms on the low-end machine as all 3D reconstruction methods, and in particular for scenes with
(Laptop; Nvidia GTX 660M). Tiling provides a speedup bb glass, which are problematic for modern depth cameras [Choi et al
to 3 depending on the scene and hardware. Interestingly, tiling 2016]. Even in easier cases, feedback during capture would be
reduces the number of rendered triangles more drastically than framehelpful, since unobserved regions are usually completed as large
time. This is explained by the overhead from the tiling process itself, blobby surfaces by the Poisson reconstruction. Capture problems



Figure 9: Different geometry reconstructions. In each scene we compare in the highlighted inset: High-quality RGB; Global reconstruction
(Sec. 4.1); Our local-global reconstruction (Sec. 4.2); ND-MVS [Galliani e2815] (Local-only), an upper bound for local-only reconstruction
quality. Our local-global approach combines the best of both; complete reconstructions that align well with image edges (see the black circles).

could possibly be addressed with specialized on-set feedback abouAcknowledgements

the capture progress, in the spirit of [Davis et2012]. We show

typical artifacts due to incorrect reconstruction in Fig. 10. Thanks to Dr Johnson's Museum, Judd Books, Waterstones on
. ) . Gower Street, and Kathryn Emmett-Brostow for being so accom-

Handling much larger scenes with thousands of input photographs modating with our Iming. Thanks to Rodrigo Ortiz-Cayon for

is currently a challenge. A clever disk and main memory caching computing the comparisons. The authors are grateful for the support

scheme is required. Finally, our method is designed for relatively of gy project CR-PLAY (no 611089)ww.cr-play.eu , EPSRC

wide-baseline data sets. For light- eld like densities, the CPU over- EP/K023578/1, and project SEMAPOLIS (ANR-13-CORD-0003).
head for treating the tiling structure could become a bottleneck.
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Table 1: Evaluation of our tiled IBR in six scenes with different levels of complexity. In each scene, we record the number of primitives needed
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